1
|
Franco AA, Lotero V, Rodríguez P, Beltran E, Manzi E, Devia-Zapata A, Medina-Valencia D. Outcomes and challenges treating pediatric acute myeloid leukemia: a retrospective analysis of patients treated at the Fundación Valle del Lili between 2011 and 2020. Hematol Transfus Cell Ther 2024; 46:420-427. [PMID: 37872063 PMCID: PMC11451350 DOI: 10.1016/j.htct.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023] Open
Abstract
INTRODUCTION Acute myeloid leukemia is a challenging disease, due to a poor prognosis in developing countries. Herein, we aim to describe the clinical characteristics and outcomes after chemotherapy and transplantation. METHODS A retrospective analytic observational study was performed with patients under 18 years of age with newly diagnosed acute myeloid leukemia treated at a referral center in Colombia. Two groups were compared: induction therapy (IT) and induction therapy plus consolidation (IT + C). The survival analysis was performed using the Kaplan-Meier method. RESULTS We analyzed 34 patients diagnosed with acute myeloid leukemia; 20 received hematopoietic stem cell transplantation. Most were French-American-British (FAB) classification types M1, M5 and M0. The transplantation was haploidentical in 65%, conditioning was myeloablative in 67% and graft-versus-host disease prophylaxis was performed with post-transplant cyclophosphamide in 70%. Overall, the 5-year survival was 52% and the overall 5-year survival in the transplanted group was 80%. There were 16 deaths; in the IT group, n = 12, and in the IT + C group, n = 4. In the former, the main cause of death was septic shock and in the latter, it was relapse. CONCLUSION Transplantation is a safe option. Receiving treatment and supportive measures in hematopoietic stem cell transplantation units is necessary to avoid infections, especially during induction cycles.
Collapse
Affiliation(s)
- Alexis A Franco
- Fundación Valle del Lili, Departamento Materno infantil, servicio de hemato-oncología pediátrica, unidad de trasplante de médula ósea, Cra 98 No. 18-49, Cali 760032, Colombia; Universidad Icesi, Facultad de Ciencias de la Salud. Calle 18 No. 122-135, Cali 760031, Colombia
| | - Viviana Lotero
- Universidad Icesi, Facultad de Ciencias de la Salud. Calle 18 No. 122-135, Cali 760031, Colombia; Fundación Valle del Lili, Departamento Materno infantil, servicio de hemato-oncología pediátrica, Cra 98 No. 18-49, Cali 760032, Colombia
| | - Pamela Rodríguez
- Universidad Icesi, Facultad de Ciencias de la Salud. Calle 18 No. 122-135, Cali 760031, Colombia; Fundación Valle del Lili, Departamento Materno infantil, servicio de hemato-oncología pediátrica, Cra 98 No. 18-49, Cali 760032, Colombia
| | - Estefania Beltran
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cra 98 No. 18-49, Cali 760032, Colombia
| | - Eliana Manzi
- Universidad Icesi, Facultad de Ciencias de la Salud. Calle 18 No. 122-135, Cali 760031, Colombia; Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cra 98 No. 18-49, Cali 760032, Colombia
| | - Angela Devia-Zapata
- Fundación Valle del Lili, Centro de Investigaciones Clínicas, Cra 98 No. 18-49, Cali 760032, Colombia
| | - Diego Medina-Valencia
- Fundación Valle del Lili, Departamento Materno infantil, servicio de hemato-oncología pediátrica, unidad de trasplante de médula ósea, Cra 98 No. 18-49, Cali 760032, Colombia; Universidad Icesi, Facultad de Ciencias de la Salud. Calle 18 No. 122-135, Cali 760031, Colombia.
| |
Collapse
|
2
|
Yeoh DK, Haeusler GM, Slavin MA, Kotecha RS. Challenges and considerations for antifungal prophylaxis in children with acute myeloid leukemia. Expert Rev Hematol 2024; 17:679-686. [PMID: 39110722 DOI: 10.1080/17474086.2024.2390639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Children receiving treatment for acute myeloid leukemia (AML) are at high risk of invasive fungal disease (IFD). Evidence from pediatric studies support the efficacy of antifungal prophylaxis in reducing the burden of IFD in children receiving therapy for AML, yet existing antifungal agents have specific limitations and comparative data to inform the optimal prophylactic approach are lacking. AREAS COVERED This review summarizes the epidemiology of invasive fungal disease (IFD) and current antifungal prophylaxis recommendations for children with acute myeloid leukemia (AML). Challenges with currently available antifungal agents and considerations related to the changing landscape of AML therapy are reviewed. A keyword search was conducted to identify pediatric studies regarding IFD and antifungal prophylaxis in children with AML up to December 2023. EXPERT OPINION Children undergoing treatment for AML are recommended to receive antifungal prophylaxis to reduce risk of IFD, with tolerability, pharmacokinetics, feasibility of administration, and drug interactions all factors that require consideration in this context. With increased use of novel targeted agents for AML therapy, together with the development of new antifungal agents, data from well-designed clinical studies to optimize prophylactic approaches will be essential to limit the burden of IFD in this vulnerable cohort.
Collapse
Affiliation(s)
- Daniel K Yeoh
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Gabrielle M Haeusler
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Royal Children's Hospital, Melbourne, Australia
| | - Monica A Slavin
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Australia
- Curtin Medical School, Curtin University, Perth, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Mehrbakhsh Z, Hassanzadeh R, Behnampour N, Tapak L, Zarrin Z, Khazaei S, Dinu I. Machine learning-based evaluation of prognostic factors for mortality and relapse in patients with acute lymphoblastic leukemia: a comparative simulation study. BMC Med Inform Decis Mak 2024; 24:261. [PMID: 39285373 PMCID: PMC11404043 DOI: 10.1186/s12911-024-02645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Predicting mortality and relapse in children with acute lymphoblastic leukemia (ALL) is crucial for effective treatment and follow-up management. ALL is a common and deadly childhood cancer that often relapses after remission. In this study, we aimed to apply and evaluate machine learning-based models for predicting mortality and relapse in pediatric ALL patients. METHODS This retrospective cohort study was conducted on 161 children aged less than 16 years with ALL. Survival status (dead/alive) and patient experience of relapse (yes/no) were considered as the outcome variables. Ten machine learning (ML) algorithms were used to predict mortality and relapse. The performance of the algorithms was evaluated by cross-validation and reported as mean sensitivity, specificity, accuracy and area under the curve (AUC). Finally, prognostic factors were identified based on the best algorithms. RESULTS The mean accuracy of the ML algorithms for prediction of patient mortality ranged from 64 to 74% and for prediction of relapse, it varied from 64 to 84% on test data sets. The mean AUC of the ML algorithms for mortality and relapse was above 64%. The most important prognostic factors for predicting both mortality and relapse were identified as age at diagnosis, hemoglobin and platelets. In addition, significant prognostic factors for predicting mortality included clinical side effects such as splenomegaly, hepatomegaly and lymphadenopathy. CONCLUSIONS Our results showed that artificial neural networks and bagging algorithms outperformed other algorithms in predicting mortality, while boosting and random forest algorithms excelled in predicting relapse in ALL patients across all criteria. These results offer significant clinical insights into the prognostic factors for children with ALL, which can inform treatment decisions and improve patient outcomes.
Collapse
Affiliation(s)
- Zahra Mehrbakhsh
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayyeh Hassanzadeh
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasser Behnampour
- Department of Biostatistics and Epidemiology, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ziba Zarrin
- Department of Photogrammetry and Remote Sensing, K.N. Toosi University of Technology, Tehran, Iran
| | - Salman Khazaei
- Health Sciences Research Center, Health Sciences & Technology Research Institute, Hamadan University of Medical Science, Hamadan, Iran
| | - Irina Dinu
- School of Public Health, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Ellson I, Martorell-Marugán J, Carmona-Sáez P, Ramos-Mejia V. MiRNA expression as outcome predictor in pediatric AML: systematic evaluation of a new model. NPJ Genom Med 2024; 9:40. [PMID: 39107334 PMCID: PMC11303725 DOI: 10.1038/s41525-024-00424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Accurately predicting patient outcomes is essential for optimizing treatment and improving outcomes in pediatric acute myeloid leukemia (AML). In recent years, microRNAs have emerged as a promising prognostic marker, with a growing body of evidence supporting their potential predictive value. We systematically reviewed all previous studies that have analyzed the expression of microRNAs as predictors of survival in pediatric AML and found 16 microRNAs and 4 microRNA signatures previously proposed as predictors of survival. We then used a public access cohort of 1414 pediatric AML patients from the TARGET project to develop a new predictive model using penalized lasso Cox regression based on microRNA expression. Here we propose a new score based on a 37-microRNA signature that is associated with AML and is able to predict survival more accurately than previous microRNA-based methods.
Collapse
Affiliation(s)
- Ivan Ellson
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016, Granada, Spain
| | - Jordi Martorell-Marugán
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016, Granada, Spain
- Fundación para la Investigación Biosanitaria de Andalucía Oriental-Alejandro Otero (FIBAO), 18012, Granada, Spain
| | - Pedro Carmona-Sáez
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016, Granada, Spain.
- Department of Statistics, University of Granada, 18071, Granada, Spain.
| | - Verónica Ramos-Mejia
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS, 18016, Granada, Spain.
- Department of Cell Biology, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
5
|
Renard C, Corbel A, Paillard C, Pochon C, Schneider P, Simon N, Buchbinder N, Fahd M, Yakoub-Agha I, Calvo C. [Preventive and therapeutic strategies for relapse after hematopoietic stem cell transplant for pediatric AML (SFGM-TC)]. Bull Cancer 2024:S0007-4551(24)00109-7. [PMID: 38926053 DOI: 10.1016/j.bulcan.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 06/28/2024]
Abstract
Treatment of pediatric high-risk acute myeloid leukemia (AML), defined either on molecular or cytogenetic features, relies on bone marrow transplant after cytologic remission. However, relapse remains the first post-transplant cause of mortality. In this 13th session of practice harmonization of the francophone society of bone marrow transplantation and cellular therapy (SFGM-TC), our group worked on recommendations regarding the management of post-transplant relapse in AML pediatric patients based on international literature, national survey and expert opinion. Overall, immunomodulation strategy relying on both measurable residual disease (MRD) and chimerism evaluation should be used for high-risk AML. In very high-risk (VHR) AML with a 5-year overall survival ≤30 %, a post-transplant maintenance should be proposed using either hypomethylating agents, combined with DLI whenever possible, or FLT3 tyrosine kinase inhibitors if this target is present on leukemia cells. In the pre-emptive or early relapse settings (< 6 months post-transplant), treatments combining DLI, Azacytidine and Venetoclax should be considered. Access to phase I/II trails for targeted therapies (menin, IDH or JAK inhibitors) should be discussed in each patient according to the underlying molecular abnormalities of the disease.
Collapse
Affiliation(s)
- Cécile Renard
- Service d'hématologie pédiatrique, Institut d'hématologie et d'oncologie pédiatrique, Hospices Civils de Lyon, 1, place Professeur Joseph Renaut, 69008 Lyon, France.
| | - Alizee Corbel
- Service d'hémato-cancérologie pédiatrique, CHU de Rennes, 16, boulevard de Bulgarie, 35200 Rennes, France
| | - Catherine Paillard
- Service d'onco-hématologie pédiatrique, Hôpital de Hautepierre CHRU de Strasbourg, avenue Molière, 67200 Strasbourg, France
| | - Cécile Pochon
- service d'onco-hématologie pédiatrique, hôpital de Brabois CHRU de Nancy, rue du Morvan, 54511 Vandoeuvre-les-Nancy, France
| | - Pascale Schneider
- service d'hémato-oncologie pédiatrique, hôpital Charles-Nicolle CHU de Rouen, 1, rue De Germont, 76038 Rouen, France
| | - Nicolas Simon
- Université Lille, EA 7365-GRITA-groupe de recherche sur les formes injectables et les technologies associées, CHU Lille, Institut de Pharmacie, 59000 Lille, France
| | - Nimrod Buchbinder
- service d'hémato-oncologie pédiatrique, hôpital Charles-Nicolle CHU de Rouen, 1, rue De Germont, 76038 Rouen, France
| | - Mony Fahd
- Service d'hématologie et immunologie pédiatrique, hôpital Robert Debré, AP-HP, 48, boulevard Sérurier, 75019 Paris, France
| | | | - Charlotte Calvo
- Service d'hématologie et immunologie pédiatrique, hôpital Robert Debré, AP-HP, 48, boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
6
|
Ren Z, Vanhooren J, Derpoorter C, De Moerloose B, Lammens T. A 69 long noncoding RNA signature predicts relapse and acts as independent prognostic factor in pediatric AML. Blood Adv 2024; 8:3299-3310. [PMID: 38640434 PMCID: PMC11226973 DOI: 10.1182/bloodadvances.2024012667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
ABSTRACT Risk stratification using genetics and minimal residual disease has allowed for an increase in the cure rates of pediatric acute myeloid leukemia (pedAML) to up to 70% in contemporary protocols. Nevertheless, ∼30% of patients still experience relapse, indicating a need to optimize stratification strategies. Recently, long noncoding RNA (lncRNA) expression has been shown to hold prognostic power in multiple cancer types. Here, we aimed at refining relapse prediction in pedAML using lncRNA expression. We built a relapse-related lncRNA prognostic signature, named AMLlnc69, using 871 transcriptomes of patients with pedAML obtained from the Therapeutically Applicable Research to Generate Effective Treatments repository. We identified a 69 lncRNA signature AMLlnc69 that is highly predictive of relapse risk (c-index = 0.73), with area under the receiver operating characteristic curve (AUC) values for predicting the 1-, 2-, and 3-year relapse-free survival (RFS) of 0.78, 0.77, and 0.77, respectively. The internal validation using a bootstrap method (resampling times = 1000) resulted in a c-index of 0.72 and AUC values for predicting the 1-, 2-, and 3-year RFS of 0.77, 0.76, and 0.76, respectively. Through a Cox regression analysis, AMLlnc69, nucleophosmin mutation, and white blood cell at diagnosis were identified as independent predictors of RFS. Finally, a nomogram was build using these 2 parameters, showing a c-index of 0.80 and 0.71 after bootstrapping (n = 1000). In conclusion, the identified AMLlnc69 will, after prospective validation, add important information to guide the management of patients with pedAML. The nomogram is a promising tool for easy stratification of patients into a novel scheme of relapse-risk groups.
Collapse
Affiliation(s)
- Zhiyao Ren
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Jolien Vanhooren
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Charlotte Derpoorter
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Barbara De Moerloose
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
7
|
Mehrbakhsh Z, Tapak L, Behnampour N, Roshanaei G. Identification of Risk Factors for Relapse in Childhood Leukemia Using Penalized Semi-parametric Mixture Cure Competing Risks Model. J Res Health Sci 2024; 24:e00615. [PMID: 39072551 PMCID: PMC11264451 DOI: 10.34172/jrhs.2024.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 04/21/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Leukemia is the most common childhood malignancy. Identifying prognostic factors of patient survival and relapse using more reliable statistical models instead of traditional variable selection methods such as stepwise regression is of great importance. The present study aimed to apply a penalized semi-parametric mixture cure model to identify the prognostic factors affecting short-term and long-term survival of childhood leukemia in the presence of competing risks. The outcome of interest in this study was time to relapse. Study Design: A retrospective cohort study. METHODS A total of 178 patients (0‒15 years old) with leukemia participated in this study (September 1997 to September 2016, followed up to June 2021) at Golestan University of Medical Sciences, Iran. Demographic, clinical, and laboratory data were collected, and then a penalized semi-parametric mixture cure competing risk model with smoothly clipped absolute deviation (SCAD) and least absolute shrinkage and selection operator (LASSO) regularizations was used to analyze the data. RESULTS Important prognostic factors of relapse patients selected by the SCAD regularization method were platelets (150000‒400000 vs.>400000; odds ratio=0.31) in the cure part and type of leukemia (ALL vs. AML, hazard ratio (HR)=0.08), mediastinal tumor (yes vs. no, HR=16.28), splenomegaly (yes vs. no; HR=2.94), in the latency part. In addition, significant prognostic factors of death identified by the SCAD regularization method included white blood cells (<4000 vs.>11000, HR=0.25) and rheumatoid arthritis signs (yes vs. no, HR=5.75) in the latency part. CONCLUSION Several laboratory factors and clinical side effects were associated with relapse and death, which can be beneficial in treating the disease and predicting relapse and death time.
Collapse
Affiliation(s)
- Zahra Mehrbakhsh
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasser Behnampour
- Department of Biostatistics and Epidemiology, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ghodratollah Roshanaei
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Dehghan Z, Mirmotalebisohi SA, Mozafar M, Sameni M, Saberi F, Derakhshanfar A, Moaedi J, Zohrevand H, Zali H. Deciphering the similarities and disparities of molecular mechanisms behind respiratory epithelium response to HCoV-229E and SARS-CoV-2 and drug repurposing, a systems biology approach. Daru 2024; 32:215-235. [PMID: 38652363 PMCID: PMC11087451 DOI: 10.1007/s40199-024-00507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/08/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mozafar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saberi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Javad Moaedi
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Zohrevand
- Student Research Committee, Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Hoffmeister LM, Suttorp J, Walter C, Antoniou E, Behrens YL, Göhring G, Awada A, von Neuhoff N, Reinhardt D, Schneider M. Panel-based RNA fusion sequencing improves diagnostics of pediatric acute myeloid leukemia. Leukemia 2024; 38:538-544. [PMID: 38086945 PMCID: PMC10912021 DOI: 10.1038/s41375-023-02102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 03/06/2024]
Abstract
New methods like panel-based RNA fusion sequencing (RNA-FS) promise improved diagnostics in various malignancies. We here analyzed the impact of RNA-FS on the initial diagnostics of 241 cases with pediatric acute myeloid leukemia (AML). We show that, compared to classical cytogenetics (CCG), RNA-FS reliably detected risk-relevant fusion genes in pediatric AML. In addition, RNA-FS strongly improved the detection of cryptic fusion genes like NUP98::NSD1, KMT2A::MLLT10 and CBFA2T3::GLIS2 and thereby resulted in an improved risk stratification in 25 patients (10.4%). Validation of additionally detected non-risk-relevant high confidence fusion calls identified PIM3::BRD1, C22orf34::BRD1, PSPC1::ZMYM2 and ARHGAP26::NR3C1 as common genetic variants and MYB::GATA1 as recurrent aberration, which we here describe in AML subtypes M0 and M7 for the first time. However, it failed to detect rare cytogenetically confirmed fusion events like MNX1::ETV6 and other chromosome 12p-abnormalities. As add-on benefit, the proportion of patients for whom measurable residual disease (MRD) monitoring became possible was increased by RNA-FS from 44.4 to 75.5% as the information on the fusion transcripts' sequence allowed the design of new MRD assays.
Collapse
Affiliation(s)
- Lina Marie Hoffmeister
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Julia Suttorp
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christiane Walter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Evangelia Antoniou
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Amani Awada
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Nils von Neuhoff
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Markus Schneider
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
10
|
Wan X, Wang J, Fang F, Hu Y, Zhang Z, Tao Y, Zhang Y, Yu J, Wu Y, Zhou B, Yin H, Ma L, Li X, Zhuo R, Cheng W, Zhang S, Pan J, Lu J, Hu S. Super enhancer related gene ANP32B promotes the proliferation of acute myeloid leukemia by enhancing MYC through histone acetylation. Cancer Cell Int 2024; 24:81. [PMID: 38383388 PMCID: PMC10882810 DOI: 10.1186/s12935-024-03271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a malignancy of the hematopoietic system, and childhood AML accounts for about 20% of pediatric leukemia. ANP32B, an important nuclear protein associated with proliferation, has been found to regulate hematopoiesis and CML leukemogenesis by inhibiting p53 activity. However, recent study suggests that ANP32B exerts a suppressive effect on B-cell acute lymphoblastic leukemia (ALL) in mice by activating PU.1. Nevertheless, the precise underlying mechanism of ANP32B in AML remains elusive. RESULTS Super enhancer related gene ANP32B was significantly upregulated in AML patients. The expression of ANP32B exhibited a negative correlation with overall survival. Knocking down ANP32B suppressed the proliferation of AML cell lines MV4-11 and Kasumi-1, along with downregulation of C-MYC expression. Additionally, it led to a significant decrease in H3K27ac levels in AML cell lines. In vivo experiments further demonstrated that ANP32B knockdown effectively inhibited tumor growth. CONCLUSIONS ANP32B plays a significant role in promoting tumor proliferation in AML. The downregulation of ANP32B induces cell cycle arrest and promotes apoptosis in AML cell lines. Mechanistic analysis suggests that ANP32B may epigenetically regulate the expression of MYC through histone H3K27 acetylation. ANP32B could serve as a prognostic biomarker and potential therapeutic target for AML patients.
Collapse
Affiliation(s)
- Xiaomei Wan
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, The First Affiliated Hospital of Wannan Medical College, Wuhu, 24100, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yixin Hu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yanfang Tao
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Yongping Zhang
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Juanjuan Yu
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yumeng Wu
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Bi Zhou
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Suzhou Hospital of AnHui Medical University, Suzhou, 234000, China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Li Ma
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Ran Zhuo
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Wei Cheng
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, The First Affiliated Hospital of Wannan Medical College, Wuhu, 24100, China
| | - Shuqi Zhang
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, The First Affiliated Hospital of Wannan Medical College, Wuhu, 24100, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.
| |
Collapse
|
11
|
Zhang K, An X, Zhu Y, Huang L, Yao X, Zeng X, Liang S, Yu J. Netrin-1 inducing antiapoptotic effect of acute myeloid leukemia cells in a concentration-dependent manner through the Unc-5 netrin receptor B-focal adhesion kinase axis. Cancer Biol Ther 2023; 24:2200705. [PMID: 37038247 PMCID: PMC10088980 DOI: 10.1080/15384047.2023.2200705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy that commonly occurs in children. The prognosis of pediatric AML is relatively poor, thus threatening the patient's survival. The aberrant expression of the axon guidance factor, netrin-1, is observed in various types of malignancies, and it participates in the proliferation and apoptosis of tumor cells. Herein, we aimed to explore the role of netrin-1 in AML cells. Netrin-1 is highly expressed in AML patients. Proliferation and anti-apoptosis were observed in AML cells treated with netrin-1. The interaction between netrin-1 and Unc-5 netrin receptor B (UNC5B) was detected through coimmunoprecipitation, and UNC5B ribonucleic acid interference restrained the influence of netrin-1 on the AML cells. The phosphorylation of focal adhesion kinase-protein kinase B (FAK-Akt) was upregulated in AML cells treated with netrin-1. Both FAK and Akt inhibitors abrogated the effects of netrin-1 on the proliferation and apoptosis of AML cells. In conclusion, netrin-1 could promote the growth and reduce the apoptosis of AML cells in a concentration-dependent manner, and that these effects were mediated by activating the FAK-Akt signaling pathway via the UNC5B.
Collapse
Affiliation(s)
- Kainan Zhang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Pediatric research institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xizhou An
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yao Zhu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Pediatric research institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Huang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Pediatric research institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyuan Yao
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xing Zeng
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shaoyan Liang
- Pediatric research institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
12
|
Pawinska-Wasikowska K, Czogala M, Skoczen S, Surman M, Rygielska M, Ksiazek T, Pac A, Wieczorek A, Skalska-Sadowska J, Samborska M, Wachowiak J, Chaber R, Tomaszewska R, Szczepanski T, Zielezinska K, Urasinski T, Moj-Hackemer M, Kalwak K, Kozlowska M, Irga-Jaworska N, Balwierz W, Bukowska-Strakova K. Gemtuzumab ozogamicin for relapsed or primary refractory acute myeloid leukemia in children-the Polish Pediatric Leukemia and Lymphoma Study Group experience. Front Immunol 2023; 14:1268993. [PMID: 38187390 PMCID: PMC10766767 DOI: 10.3389/fimmu.2023.1268993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Background Gemtuzumab ozogamicin (GO), one of the first targeted drugs used in oncology, consists of an anti-cluster of differentiation 33 (CD33) monoclonal antibody bound to a derivative of cytotoxic calicheamicin. After the drug withdrawn in 2010 due to a significantly higher rate of early deaths, GO regained approval in 2017 for the treatment of newly diagnosed, refractory, or relapsed acute myeloid leukemia (AML) in adults and children over 15 years of age. The objective of the study was a retrospective analysis of clinical characteristics, treatment outcomes, and GO toxicity profile in children with primary refractory or relapsed (R/R) AML treated in Poland from 2008 to 2022. Methods Data were collected through the Polish Registry of Acute Myeloid Leukemia. From January 2008 to December 2022, 35 children with R/R AML were treated with GO in seven centers of the Polish Pediatric Leukemia and Lymphoma Study Group. Results Most of the children (30 of 35) received only one GO cycle in combination with various chemotherapy cycles (IDA-FLA, DOXO-FLA, FLA, FLAG, and others). Eighteen children (51%) achieved complete remission (CR), 14 did not respond to treatment, and three progressed. GO therapy was followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT) in 18 children in CR. The 5-year overall survival (OS) after GO therapy was 37.1% ± 8.7% for the total cohort. There was a trend toward a superior outcome in patients with strong expression of CD33 expression (over 50% positive cells) compared with that in patients with lower expression of CD33 (OS, 41.2% ± 11.9% versus 27.8% ± 13.2%; p = 0.5; 5-year event-free survival, 35.4% ± 11.6% versus 25.7% ± 12.3%; p = 0.5, respectively). Children under 15 years have better outcome (OS, 34.9% ± 10.4% versus 30% ± 14.5%, p = 0.3). The most common adverse events were bone marrow aplasia, fever of unknown origin, infections, and elevated liver enzyme elevation. Sinusoidal obstruction syndrome occurred in two children. Conclusions The use of GO in severely pretreated children, including those under 15 years of age, with previous failure of AML treatment is a feasible and effective bridging therapy to allo-HSCT with an acceptable toxicity profile.
Collapse
Affiliation(s)
- Katarzyna Pawinska-Wasikowska
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Malgorzata Czogala
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Szymon Skoczen
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Marta Surman
- Laboratory of Clinical Immunology, University Children’s Hospital of Krakow, Krakow, Poland
| | - Monika Rygielska
- Department of Pediatric Oncology and Hematology, Hematology Laboratory, University Children’s Hospital, Krakow, Poland
| | - Teofila Ksiazek
- Department of Medical Genetics, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Pac
- Department of Epidemiology and Preventive Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Wieczorek
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Jolanta Skalska-Sadowska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Samborska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Radoslaw Chaber
- Department of Pediatric Oncohematology, Clinical Province Hospital of Rzeszow, Rzeszow, Poland
- Department of Pediatrics, Institute of Medical Sciences, Medical College, University of Rzeszow, Rzeszow, Poland
| | - Renata Tomaszewska
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Karolina Zielezinska
- Department of Pediatrics, Hemato-Oncology and Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tomasz Urasinski
- Department of Pediatrics, Hemato-Oncology and Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Malgorzata Moj-Hackemer
- Clinical Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Kalwak
- Clinical Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Kozlowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Ninela Irga-Jaworska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
13
|
Rogojina A, Klesse LJ, Butler E, Kim J, Zhang H, Xiao X, Guo L, Zhou Q, Hartshorne T, Garcia D, Weldon K, Holland T, Bandyopadhyay A, Prado LP, Wang S, Yang DM, Langevan AM, Zou Y, Grimes AC, Assanasen C, Gidvani-Diaz V, Zheng S, Lai Z, Chen Y, Xie Y, Tomlinson GE, Skapek SX, Kurmasheva RT, Houghton PJ, Xu L. Comprehensive characterization of patient-derived xenograft models of pediatric leukemia. iScience 2023; 26:108171. [PMID: 37915590 PMCID: PMC10616347 DOI: 10.1016/j.isci.2023.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/25/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Patient-derived xenografts (PDX) remain valuable models for understanding the biology and for developing novel therapeutics. To expand current PDX models of childhood leukemia, we have developed new PDX models from Hispanic patients, a subgroup with a poorer overall outcome. Of 117 primary leukemia samples obtained, successful engraftment and serial passage in mice were achieved in 82 samples (70%). Hispanic patient samples engrafted at a rate (51/73, 70%) that was similar to non-Hispanic patient samples (31/45, 70%). With a new algorithm to remove mouse contamination in multi-omics datasets including methylation data, we found PDX models faithfully reflected somatic mutations, copy-number alterations, RNA expression, gene fusions, whole-genome methylation patterns, and immunophenotypes found in primary tumor (PT) samples in the first 50 reported here. This cohort of characterized PDX childhood leukemias represents a valuable resource in that germline DNA sequencing has allowed the unambiguous determination of somatic mutations in both PT and PDX.
Collapse
Affiliation(s)
- Anna Rogojina
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Laura J. Klesse
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Erin Butler
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taylor Hartshorne
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dawn Garcia
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Trevor Holland
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Abhik Bandyopadhyay
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Luz Perez Prado
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghan M. Yang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anne-Marie Langevan
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Allison C. Grimes
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chatchawin Assanasen
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yang Xie
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gail E. Tomlinson
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Stephen X. Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Raushan T. Kurmasheva
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Tseng S, Lee ME, Lin PC. A Review of Childhood Acute Myeloid Leukemia: Diagnosis and Novel Treatment. Pharmaceuticals (Basel) 2023; 16:1614. [PMID: 38004478 PMCID: PMC10674205 DOI: 10.3390/ph16111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is the second most common hematologic malignancy in children. The incidence of childhood AML is much lower than acute lymphoblastic leukemia (ALL), which makes childhood AML a rare disease in children. The role of genetic abnormalities in AML classification, management, and prognosis prediction is much more important than before. Disease classifications and risk group classifications, such as the WHO classification, the international consensus classification (ICC), and the European LeukemiaNet (ELN) classification, were revised in 2022. The application of the new information in childhood AML will be upcoming in the next few years. The frequency of each genetic abnormality in adult and childhood AML is different; therefore, in this review, we emphasize well-known genetic subtypes in childhood AML, including core-binding factor AML (CBF AML), KMT2Ar (KMT2A/11q23 rearrangement) AML, normal karyotype AML with somatic mutations, unbalanced cytogenetic abnormalities AML, NUP98 11p15/NUP09 rearrangement AML, and acute promyelocytic leukemia (APL). Current risk group classification, the management algorithm in childhood AML, and novel treatment modalities such as targeted therapy, immune therapy, and chimeric antigen receptor (CAR) T-cell therapy are reviewed. Finally, the indications of hematopoietic stem cell transplantation (HSCT) in AML are discussed.
Collapse
Affiliation(s)
- Serena Tseng
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Mu-En Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Pei-Chin Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
15
|
Ye F, Fan C, Peng M, Liu S, Dong J, Yang L, Zhang H. Screening and validating circular RNAs that estimate disease risk and treatment response of pediatric acute myeloid leukemia: a microarray-based analyses and RT-qPCR validation. J Cancer Res Clin Oncol 2023; 149:11233-11245. [PMID: 37358666 DOI: 10.1007/s00432-023-04879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE Circular RNA (circRNA) is a type of novel non-coding RNA with close involvement in the tumorigenesis and treatment response of leukemias. This study aimed to screen and validate candidate circRNAs that estimate disease risk and response to induction therapy of pediatric acute myeloid leukemia (AML). METHODS Bone marrow samples were obtained from 4 complete response (CR) pediatric AML patients, 4 non-CR pediatric AML patients, and 4 controls to screen differentially expressed circRNAs (DECs) through microarray analyses. Ten candidate circRNAs were selected and validated in 40 pediatric AML patients and 10 controls through reverse transcription-quantitative polymerase chain reaction. RESULTS Microarray assay discovered 378 upregulated DECs and 688 downregulated DECs in pediatric AML patients vs. controls; 832 upregulated DECs and 950 downregulated DECs in CR AML patients vs. non-CR AML patients. Then cross-analysis identified 441 DECs that both related to pediatric AML risk and CR achievement. Further validation of ten candidate circRNAs in larger sample-sized populations showed that circ_0032891, circ_0076995, circ_0014352, circ_0047663, circ_0007444, circ_0001684, circ_0000544, and circ_0005354 were related to pediatric AML risk; circ_0032891, circ_0076995, circ_0014352, circ_0047663, circ_0007444, circ_0001684, and circ_0000544 were related to CR achievement in pediatric AML patients. Regarding the correlation of candidate circRNAs with survival profile, only circ_0032891, circ_0076995, and circ_0000544 forecasted event-free survival; circ_0076995 and circ_0001684 estimated overall survival in pediatric AML patients. CONCLUSION CircRNA profile is intensively implicated in the disease risk and treatment response of pediatric AML, especially that circ_0032891, circ_0000544, circ_0076995, and circ_0001684 are related to pediatric AML risk, CR achievement, and survival.
Collapse
Affiliation(s)
- Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
| | - Chenying Fan
- Department of Pediatrics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
| | - Min Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
| | - Siqin Liu
- Department of Pediatrics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
| | - Jiajia Dong
- Department of Pediatrics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
| | - Hui Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
16
|
Czogała M, Czogała W, Pawińska-Wąsikowska K, Książek T, Bukowska-Strakova K, Sikorska-Fic B, Łaguna P, Fałkowska A, Drabko K, Muszyńska-Rosłan K, Krawczuk-Rybak M, Kozłowska M, Irga-Jaworska N, Zielezińska K, Urasiński T, Bartoszewicz N, Styczyński J, Skalska-Sadowska J, Wachowiak J, Rodziewicz-Konarska A, Kałwak K, Ciebiera M, Chaber R, Mizia-Malarz A, Chodała-Grzywacz A, Karolczyk G, Bobeff K, Młynarski W, Mycko K, Badowska W, Tomaszewska R, Szczepański T, Machnik K, Zamorska N, Balwierz W, Skoczeń S. Characteristics and Outcome of FLT3-ITD-Positive Pediatric Acute Myeloid Leukemia-Experience of Polish Pediatric Leukemia and Lymphoma Study Group from 2005 to 2022. Cancers (Basel) 2023; 15:4557. [PMID: 37760526 PMCID: PMC10526903 DOI: 10.3390/cancers15184557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The FMS-like tyrosine kinase 3 (FLT3) gene mutated in 10-15% of pediatric acute myeloid leukemia (AML) is associated with an inferior outcome. The aim of the study was to analyze the outcome and characteristics of FLT3-ITD-positive pediatric AML. METHODS We retrospectively analyzed the nationwide pediatric AML database from between 2005 and 2022. FLT3-ITD was found in 54/497 (10.7%) patients with available analysis. Three consecutive treatment protocols were used (AML-BFM 2004 Interim, AML-BFM 2012 Registry, AML-BFM 2019 recommendations). RESULTS Probabilities of 5-year overall (OS), event-free (EFS) and relapse-free survival were significantly lower in the FLT3-ITD-positive patients compared to FLT3-ITD-negative (0.54 vs. 0.71, p = 0.041; 0.36 vs. 0.59, p = 0.0004; 0.47 vs. 0.70, p = 0.0029, accordingly). An improvement in the outcome was found in the analyzed period of time, with a trend of better survival in patients treated under the AML-BFM 2012 and AML-BFM 2019 protocols compared to the AML-BFM 2004 protocol (5-year EFS 0.52 vs. 0.27, p = 0.069). There was a trend of improved outcomes in patients treated with FLT3 inhibitors (n = 9, 2-year EFS 0.67 vs. 0.33, p = 0.053) and those who received stem cell transplantation (SCT) (n = 26; 5-year EFS 0.70 vs. 0.27, p = 0.059). The co-occurrence of the WT1 mutation had a dismal impact on the prognosis (5-year EFS 0.23 vs. 0.69, p = 0.002), while the NPM1 mutation improved survival (5-year OS 1.0 vs. 0.44, p = 0.036). CONCLUSIONS It seems that SCT and FLT3 inhibitors have a beneficial impact on the prognosis. Additional genetic alterations, like the WT1 and NPM1 mutations, significantly influence the outcome.
Collapse
Affiliation(s)
- Małgorzata Czogała
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.C.); (K.P.-W.); (W.B.); (S.S.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
| | - Wojciech Czogała
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.C.); (K.P.-W.); (W.B.); (S.S.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
| | - Katarzyna Pawińska-Wąsikowska
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.C.); (K.P.-W.); (W.B.); (S.S.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
| | - Teofila Książek
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
- Department of Medical Genetics, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Barbara Sikorska-Fic
- Department of Pediatrics, Oncology, Hematology and Transplantology, Medical University of Warsaw, 02-091 Warszawa, Poland; (B.S.-F.); (P.Ł.)
| | - Paweł Łaguna
- Department of Pediatrics, Oncology, Hematology and Transplantology, Medical University of Warsaw, 02-091 Warszawa, Poland; (B.S.-F.); (P.Ł.)
| | - Anna Fałkowska
- Department of Paediatric Haematology and Oncology and Transplantology, Medical University of Lublin, 20-095 Lublin, Poland; (A.F.); (K.D.)
| | - Katarzyna Drabko
- Department of Paediatric Haematology and Oncology and Transplantology, Medical University of Lublin, 20-095 Lublin, Poland; (A.F.); (K.D.)
| | - Katarzyna Muszyńska-Rosłan
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.M.-R.); (M.K.-R.)
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.M.-R.); (M.K.-R.)
| | - Marta Kozłowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.K.); (N.I.-J.)
| | - Ninela Irga-Jaworska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.K.); (N.I.-J.)
| | - Karolina Zielezińska
- Department of Paediatrics, Hemato-Oncology and Gastroenterology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.Z.); (T.U.)
| | - Tomasz Urasiński
- Department of Paediatrics, Hemato-Oncology and Gastroenterology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.Z.); (T.U.)
| | - Natalia Bartoszewicz
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, 85-094 Bydgoszcz, Poland; (N.B.); (J.S.)
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, 85-094 Bydgoszcz, Poland; (N.B.); (J.S.)
| | - Jolanta Skalska-Sadowska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (J.S.-S.); (J.W.)
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (J.S.-S.); (J.W.)
| | - Anna Rodziewicz-Konarska
- Department of Bone Marrow Transplantation, Pediatric Oncology and Hematology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (A.R.-K.); (K.K.)
| | - Krzysztof Kałwak
- Department of Bone Marrow Transplantation, Pediatric Oncology and Hematology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (A.R.-K.); (K.K.)
| | - Małgorzata Ciebiera
- Clinic of Pediatric Oncology and Hematology, State Hospital 2, 35-301 Rzeszów, Poland; (M.C.); (R.C.)
| | - Radosław Chaber
- Clinic of Pediatric Oncology and Hematology, State Hospital 2, 35-301 Rzeszów, Poland; (M.C.); (R.C.)
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszów, Poland
| | - Agnieszka Mizia-Malarz
- Department of Oncology, Hematology and Chemotherapy, Upper Silesia Children’s Care Health Centre, 40-752 Katowice, Poland;
- Department of Pediatrics, Medical University of Silesia, Upper Silesia Children’s Care Health Centre, 40-752 Katowice, Poland
| | - Agnieszka Chodała-Grzywacz
- Department of Pediatric Hematology and Oncology, Regional Polyclinic Hospital in Kielce, 25-736 Kielce, Poland; (A.C.-G.); (G.K.)
| | - Grażyna Karolczyk
- Department of Pediatric Hematology and Oncology, Regional Polyclinic Hospital in Kielce, 25-736 Kielce, Poland; (A.C.-G.); (G.K.)
| | - Katarzyna Bobeff
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland; (K.B.); (W.M.)
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland; (K.B.); (W.M.)
| | - Katarzyna Mycko
- Department of Pediatrics and Hematology and Oncology, Province Children’s Hospital, 10-561 Olsztyn, Poland; (K.M.); (W.B.)
| | - Wanda Badowska
- Department of Pediatrics and Hematology and Oncology, Province Children’s Hospital, 10-561 Olsztyn, Poland; (K.M.); (W.B.)
| | - Renata Tomaszewska
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (R.T.); (T.S.)
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (R.T.); (T.S.)
| | - Katarzyna Machnik
- Department of Pediatrics, Hematology and Oncology, City Hospital, 41-500 Chorzow, Poland;
| | - Natalia Zamorska
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.C.); (K.P.-W.); (W.B.); (S.S.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.C.); (K.P.-W.); (W.B.); (S.S.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
| |
Collapse
|
17
|
Testi AM, Moleti ML, Angi A, Bianchi S, Barberi W, Capria S. Pediatric Autologous Hematopoietic Stem Cell Transplantation: Safety, Efficacy, and Patient Outcomes. Literature Review. Pediatric Health Med Ther 2023; 14:197-215. [PMID: 37284518 PMCID: PMC10239625 DOI: 10.2147/phmt.s366636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Autologous stem cell transplantation (auto-HSCT) is a part of the therapeutic strategy for various oncohematological diseases. The auto-HSCT procedure enables hematological recovery after high-dose chemotherapy, otherwise not tolerable, by the infusion of autologous hematopoietic stem cells. Unlike allogeneic transplant (allo-HSCT), auto-HSCT has the advantage of lacking acute-graft-versus-host disease (GVHD) and prolonged immunosuppression, however, these advantages are counterbalanced by the absence of graft-versus-leukemia. Moreover, in hematological malignancies, the autologous hematopoietic stem cell source may be contaminated by neoplastic cells, leading to disease reappearance. In recent years, allogeneic transplant-related mortality (TRM) has progressively decreased, almost approaching auto-TRM, and many alternative donor sources are available for the majority of patients eligible for transplant procedures. In adults, the role of auto-HSCT compared to conventional chemotherapy (CT) in hematological malignancies has been well defined in many extended randomized trials; however, such trials are lacking in pediatric cohorts. Therefore, the role of auto-HSCT in pediatric oncohematology is limited, in both first- and second-line therapies and still remains to be defined. Nowadays, the accurate stratification in risk groups, according to the biological characteristics of the tumors and therapy response, and the introduction of new biological therapies, have to be taken into account in order to assign auto-HSCT a precise role in the therapeutic strategies, also considering that in the developmental age, auto-HSCT has a clear advantage over allo-HSCT, in terms of late sequelae, such as organ damage and second neoplasms. The purpose of this review is to report the results obtained with auto-HSCT in the different pediatric oncohematological diseases, focusing on the most significant literature data in the context of the various diseases and discussing this data in the light of the current therapeutic landscape.
Collapse
Affiliation(s)
- Anna Maria Testi
- Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy
| | - Maria Luisa Moleti
- Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy
| | - Alessia Angi
- Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy
| | - Simona Bianchi
- Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy
| | - Walter Barberi
- Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy
| | - Saveria Capria
- Department of Translational and Precision Medicine, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
18
|
Chianese U, Papulino C, Megchelenbrink W, Tambaro FP, Ciardiello F, Benedetti R, Altucci L. Epigenomic machinery regulating pediatric AML: clonal expansion mechanisms, therapies, and future perspectives. Semin Cancer Biol 2023; 92:84-101. [PMID: 37003397 DOI: 10.1016/j.semcancer.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.
Collapse
Affiliation(s)
- Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Princess Máxima Center, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| | - Francesco Paolo Tambaro
- Bone Marrow Transplant Unit, Pediatric Oncology Department AORN Santobono Pausilipon, 80129, Naples Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy; IEOS, Institute for Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131 Naples, Italy.
| |
Collapse
|
19
|
Yunis LK, Linares-Ballesteros A, Aponte N, Barros G, García J, Niño L, Uribe G, Quintero E, Yunis JJ. Pharmacogenetics of ABCB1, CDA, DCK, GSTT1, GSTM1 and outcomes in a cohort of pediatric acute myeloid leukemia patients from Colombia. Cancer Rep (Hoboken) 2023; 6:e1744. [PMID: 36316809 PMCID: PMC10026301 DOI: 10.1002/cnr2.1744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND AND AIM Different studies have shown pharmacogenetic variants related to drug toxicity in acute myeloid leukemia (AML) patients. Our aim was to identify the association between ABCB1, CDA, DCK, GSTT1, and GSTM1 variants with clinical outcomes and toxicity in pediatric patients with AML. METHODS Fifty-one confirmed de novo AML pediatric patients were included. A SNaPshot™ assay and conventional PCR were used to evaluate ABCB1, CDA, DCK, GSTT1, and GSTM1 variants. Clinical outcomes and toxicity associations were evaluated using odds ratios and Chi-square analysis. RESULTS Patients carrying ABCB1 (1236C > T, rs1128503) GG genotype in had a 6.8 OR (CI 95% 1.08-42.73, p = .044) for cardiotoxicity as compared to patients carrying either AA or GA genotypes 0.14 OR (CI 95% 0.023-0.92, p = .044). For ABCB1 (1236G > A rs1128503/2677C > A/T rs2032582/3435G > A rs1045642) AA/AA/AA combined genotypes had a strong association with death after HSTC OR 13.73 (CI 95% 1.94-97.17, p = .009). Combined genotypes GG/CC/GG with CDA (79A > C, rs2072671) CA genotype or CDA (-451G > A, rs532545) CT genotype, had a 4.11 OR (CI 95% 2.32-725, p = .007) and 3.8 OR (CI 95% 2.23-6.47, p = .027) with MRD >0.1% after first chemotherapy cycle, respectively. CONCLUSION Our results highlight the importance of pharmacogenetic analysis in pediatric AML, particularly in populations with a high degree of admixture, and might be useful as a future tool for patient stratification for treatment.
Collapse
Affiliation(s)
- Luz K Yunis
- Grupo de Patología Molecular, Universidad Nacional de Colombia, Bogotá, Colombia
- Servicios Médicos Yunis Turbay y Cía S.A.S, Instituto de Genética, Bogotá, Colombia
| | - Adriana Linares-Ballesteros
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
- Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia-HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Nelson Aponte
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
- Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia-HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Gisela Barros
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
- Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia-HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Johnny García
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
- Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia-HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Laura Niño
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
- Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia-HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Gloria Uribe
- Unidad de Patología, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Edna Quintero
- Unidad de Patología, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Juan J Yunis
- Grupo de Patología Molecular, Universidad Nacional de Colombia, Bogotá, Colombia
- Servicios Médicos Yunis Turbay y Cía S.A.S, Instituto de Genética, Bogotá, Colombia
- Departamento de Patología, Facultad de Medicina e Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
20
|
Zhou Y, Zhu H, Han J, Xu Y, Wang D, Jin W, Zhu R, Qiao L. miR-125b-5p Suppresses Leukemia Cell Proliferation by Regulating MCL1. J Environ Pathol Toxicol Oncol 2023; 42:17-26. [PMID: 36734950 DOI: 10.1615/jenvironpatholtoxicoloncol.2022041924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Leukemia threatens children's health, and leukemia cell proliferation and apoptosis participate in the regulation of leukemia. The current study aims to probe into the miR-125b-5p biological function in regulating leukemia cell proliferation and apoptosis by myeloid cell leukemia 1 (MCL1). Quantitative real-time polymerase chain reaction was conducted to quantify miR-125b-5p expression in leukemia cells. Cell transfection, cell-counting assay 8, Western blot, and flow cytometry assays were applied to assess the miR-125b-5p function in leukemia. A dual-luciferase reporter gene assay was applied to investigate the mechanism. miR-125b-5p was lessened in leukemia cells, and the increased miR-125b-5p repressed leukemia cell proliferation and boosted apoptosis. Further, miR-125b-5p could bound with the MCL1 3'-untranslated region and regulated its expression. Furthermore, the elevated expression of miR-125b-5p repressed leukemia cell proliferation and boosted apoptosis through downregulating MCL1. miR-125b-5p inhibited leukemia cell proliferation and boosted apoptosis through decreasing MCL1.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Huan Zhu
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jinan Han
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ying Xu
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Dan Wang
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Wen Jin
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ruyuan Zhu
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lixing Qiao
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
21
|
Gu Y, Lin X, Dong Y, Wood G, Seidah NG, Werstuck G, Major P, Bonert M, Kapoor A, Tang D. PCSK9 facilitates melanoma pathogenesis via a network regulating tumor immunity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:2. [PMID: 36588164 PMCID: PMC9806914 DOI: 10.1186/s13046-022-02584-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND PCSK9 regulates cholesterol homeostasis and promotes tumorigenesis. However, the relevance of these two actions and the mechanisms underlying PCSK9's oncogenic roles in melanoma and other cancers remain unclear. METHODS PCSK9's association with melanoma was analysed using the TCGA dataset. Empty vector (EV), PCSK9, gain-of-function (D374Y), and loss-of-function (Q152H) PCSK9 mutant were stably-expressed in murine melanoma B16 cells and studied for impact on B16 cell-derived oncogenesis in vitro and in vivo using syngeneic C57BL/6 and Pcsk9-/- mice. Intratumoral accumulation of cholesterol was determined. RNA-seq was performed on individual tumor types. Differentially-expressed genes (DEGs) were derived from the comparisons of B16 PCSK9, B16 D374Y, or B16 Q152H tumors to B16 EV allografts and analysed for pathway alterations. RESULTS PCSK9 expression and its network negatively correlated with the survival probability of patients with melanoma. PCSK9 promoted B16 cell proliferation, migration, and growth in soft agar in vitro, formation of tumors in C57BL/6 mice in vivo, and accumulation of intratumoral cholesterol in a manner reflecting its regulation of the low-density lipoprotein receptor (LDLR): Q152H, EV, PCSK9, and D374Y. Tumor-associated T cells, CD8 + T cells, and NK cells were significantly increased in D374Y tumors along with upregulations of multiple immune checkpoints, IFNγ, and 143 genes associated with T cell dysfunction. Overlap of 36 genes between the D374Y DEGs and the PCSK9 DEGs predicted poor prognosis of melanoma and resistance to immune checkpoint blockade (ICB) therapy. CYTH4, DENND1C, AOAH, TBC1D10C, EPSTI1, GIMAP7, and FASL (FAS ligand) were novel predictors of ICB therapy and displayed high level of correlations with multiple immune checkpoints in melanoma and across 30 human cancers. We observed FAS ligand being among the most robust biomarkers of ICB treatment and constructed two novel and effective multigene panels predicting response to ICB therapy. The profiles of allografts produced by B16 EV, PCSK9, D374Y, and Q152H remained comparable in C57BL/6 and Pcsk9-/- mice. CONCLUSIONS Tumor-derived PCSK9 plays a critical role in melanoma pathogenesis. PCSK9's oncogenic actions are associated with intratumoral cholesterol accumulation. PCSK9 systemically affects the immune system, contributing to melanoma immune evasion. Novel biomarkers derived from the PCSK9-network effectively predicted ICB therapy responses.
Collapse
Affiliation(s)
- Yan Gu
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Xiaozeng Lin
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Ying Dong
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Geoffrey Wood
- grid.34429.380000 0004 1936 8198Department of Pathology, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Nabil G. Seidah
- grid.511547.30000 0001 2106 1695Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W 1R7 Canada
| | - Geoff Werstuck
- grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Pierre Major
- grid.25073.330000 0004 1936 8227Department of Oncology, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Michael Bonert
- grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Anil Kapoor
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Damu Tang
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
22
|
Yunis LK, Linares-Ballesteros A, Barros G, Garcia J, Aponte N, Niño L, Uribe G, Quintero E, Perez J, Martinez L, Yunis JJ. Genomic alterations in a cohort of pediatric acute myeloid leukemia patients at two cancer centers in Colombia. Int J Hematol 2023; 117:269-277. [PMID: 36279042 PMCID: PMC9889450 DOI: 10.1007/s12185-022-03475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023]
Abstract
Few studies identifying genomic aspects in pediatric acute myeloid leukemia patients in Latin American countries have been reported. The aim of this study was to identify genomic alterations, clinical characteristics and outcomes in a cohort of pediatric AML patients. This descriptive observational cohort study included patients with confirmed de novo acute myeloid leukemia up to 18 years of age. Cytogenetics and conventional FISH analysis, next-generation sequencing and PCR testing were performed. The correlation of genomic data with treatment response and outcomes were analyzed. Of the 51 patients analyzed, 67.4% had a cytogenetic abnormality and 74.5% had a genetic variant. FLT3 variants (ITD or TKD D835) were found in 27.4%, followed by NRAS (21.6%), KRAS (13.7%) and WT1 and KIT (11.8%). Patients were stratified by risk (66.6% high-risk) after the end of induction. FLT3-ITD was associated with relapse (OR 11.25; CI 1.89-66.72, p 0.006) and NRAS with death during induction (OR 16.71; CI 1.51-184.59, p 0.022). Our study highlights the importance of rapid incorporation of genetic testing in pediatric AML in Colombia, as it directly affects treatment decisions and outcomes. Incorporation of targeted therapies with conventional chemotherapy is an increasingly urgent need in pediatric patients.
Collapse
Affiliation(s)
- Luz K. Yunis
- Grupo de Patología Molecular, Universidad Nacional de Colombia, Bogotá D.C., Colombia ,Servicios Médicos Yunis Turbay Y Cía S.A.S., Instituto de Genética, Calle 86B # 49D-28, Of 305, Bogotá D.C., Colombia
| | - Adriana Linares-Ballesteros
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia ,Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia- HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Gisela Barros
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia ,Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia- HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Johnny Garcia
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia ,Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia- HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Nelson Aponte
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia ,Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia- HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Laura Niño
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia ,Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia- HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Gloria Uribe
- Unidad de Patología, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Edna Quintero
- Unidad de Patología, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá D.C., Colombia
| | - Jaime Perez
- Unidad de Hemato-Oncología, Clínica Infantil Colsubsidio, Bogotá D.C., Colombia
| | - Leila Martinez
- Unidad de Hemato-Oncología, Clínica Infantil Colsubsidio, Bogotá D.C., Colombia
| | - Juan J. Yunis
- Grupo de Patología Molecular, Universidad Nacional de Colombia, Bogotá D.C., Colombia ,Servicios Médicos Yunis Turbay Y Cía S.A.S., Instituto de Genética, Calle 86B # 49D-28, Of 305, Bogotá D.C., Colombia ,Departamento de Patología, Facultad de Medicina E Instituto de Genética, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| |
Collapse
|
23
|
Gu L, Liao P, Liu H. Cancer-associated fibroblasts in acute leukemia. Front Oncol 2022; 12:1022979. [PMID: 36601484 PMCID: PMC9806275 DOI: 10.3389/fonc.2022.1022979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Although the prognosis for acute leukemia has greatly improved, treatment of relapsed/refractory acute leukemia (R/R AL) remains challenging. Recently, increasing evidence indicates that the bone marrow microenvironment (BMM) plays a crucial role in leukemogenesis and therapeutic resistance; therefore, BMM-targeted strategies should be a potent protocol for treating R/R AL. The targeting of cancer-associated fibroblasts (CAFs) in solid tumors has received much attention and has achieved some progress, as CAFs might act as an organizer in the tumor microenvironment. Additionally, over the last 10 years, attention has been drawn to the role of CAFs in the BMM. In spite of certain successes in preclinical and clinical studies, the heterogeneity and plasticity of CAFs mean targeting them is a big challenge. Herein, we review the heterogeneity and roles of CAFs in the BMM and highlight the challenges and opportunities associated with acute leukemia therapies that involve the targeting of CAFs.
Collapse
Affiliation(s)
- Ling Gu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore, Singapore,Academic & Clinical Development, Duke-NUS Medical School, Singapore, Singapore,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Hanmin Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| |
Collapse
|
24
|
Strachan DC, Gu CJ, Kita R, Anderson EK, Richardson MA, Yam G, Pimm G, Roselli J, Schweickert A, Terrell M, Rashid R, Gonzalez AK, Oviedo HH, Alozie MC, Ilangovan T, Marcogliese AN, Tada H, Santaguida MT, Stevens AM. Ex Vivo Drug Sensitivity Correlates with Clinical Response and Supports Personalized Therapy in Pediatric AML. Cancers (Basel) 2022; 14:cancers14246240. [PMID: 36551725 PMCID: PMC9777060 DOI: 10.3390/cancers14246240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease that accounts for ~20% of all childhood leukemias, and more than 40% of children with AML relapse within three years of diagnosis. Although recent efforts have focused on developing a precise medicine-based approach towards treating AML in adults, there remains a critical gap in therapies designed specifically for children. Here, we present ex vivo drug sensitivity profiles for children with de novo AML using an automated flow cytometry platform. Fresh diagnostic blood or bone marrow aspirate samples were screened for sensitivity in response to 78 dose conditions by measuring the reduction in leukemic blasts relative to the control. In pediatric patients treated with conventional chemotherapy, comprising cytarabine, daunorubicin and etoposide (ADE), ex vivo drug sensitivity results correlated with minimal residual disease (r = 0.63) and one year relapse-free survival (r = 0.70; AUROC = 0.94). In the de novo ADE analysis cohort of 13 patients, AML cells showed greater sensitivity to bortezomib/panobinostat compared with ADE, and comparable sensitivity between venetoclax/azacitidine and ADE ex vivo. Two patients showed a differential response between ADE and bortezomib/panobinostat, thus supporting the incorporation of ex vivo drug sensitivity testing in clinical trials to further evaluate the predictive utility of this platform in children with AML.
Collapse
Affiliation(s)
| | | | | | | | | | - George Yam
- Notable Labs, Foster City, CA 94404, USA
| | | | | | | | - Maci Terrell
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raushan Rashid
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alan K. Gonzalez
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hailey H. Oviedo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle C. Alozie
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamilini Ilangovan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | - Alexandra M. Stevens
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
25
|
Meena JP, Makkar H, Gupta AK, Bakhshi S, Gupta R, Thakral D, Chopra A, Tanwar P, Upadhyay AD, Pathak N, Seth R. A comprehensive analysis of cytogenetics, molecular profile, and survival among pediatric acute myeloid leukemia: a prospective study from a tertiary referral center. AMERICAN JOURNAL OF BLOOD RESEARCH 2022; 12:177-189. [PMID: 36742278 PMCID: PMC9890188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The objectives of this study were to investigate the cyto-molecular profile and survival of pediatric acute myeloid leukemia (AML). METHODS This prospective study was carried out in a tertiary care hospital from October 2018 to December 2020. Karyotype and cytogenetics analyses were done to identify chromosomal aberrations in pediatric AML. The targeted molecular panel utilized the polymerase chain reaction (PCR), reverse transcription-polymerase chain reaction (RT-PCR), and fragment analysis. RESULTS A total of 70 patients of AML with aged ≤18 years were enrolled in this study. The cytogenetic analyses revealed abnormal/recurrent cytogenetic abnormalities (CA) in 64.3% of patients and normal cytogenetics (CN) in 35.7% of patients. FAB M2 subtype showed frequent aberrant expression of the CD19 marker. CD7, CD11b, and CD36a were significantly present in the absence of molecular markers. Common chromosomal abnormalities were t(translocation) (8;21) (55%), monosomy/deletion 7 (13%), monosomal karyotype (5%) and complex karyotype (3%). The fusion transcripts RUNX1-RUNX1T1 [t(8;21)] (41%) and CBFB-MYH11 [t(16;16)] (3%) were detected by RT-PCR and FLT3-TKD D835 mutation (1.5%) by allele-specific oligo PCR. Fragment analysis revealed NPM1 (8%) mutation and FLT-ITD (9.5%) mutations. Complete remission was achieved in all evaluable patients. The median follow-up period of our patients was 225 days (IQR 28; 426 days). The median event-free survival (EFS) in all patients was 11.9 months (95% CI, 5-12.6 months). The forty months overall survival probability (pOS) was 58% in all patients. CONCLUSION The majority of patients had abnormal/recurrent cytogenetics abnormalities. FAB M2 subtype showed frequent aberrant expression of the CD19. The absence of molecular markers may suggest the presence of CD7, CD11b, and CD36a expression. The overall survival has increased considerably in LMIC.
Collapse
Affiliation(s)
- Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Harshita Makkar
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Deepshi Thakral
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Ashish Datt Upadhyay
- Department of Biostatistics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Nivedita Pathak
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| |
Collapse
|
26
|
Luo Y, Xu Y, Li X, Shi X, Huang P, Chen Y, He Z. A Prognostic Model of Seven Immune Genes to Predict Overall Survival in Childhood Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7724220. [PMID: 36518627 PMCID: PMC9744619 DOI: 10.1155/2022/7724220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 12/05/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is one of the most common hematological malignancies and accounts for about 20% of childhood leukemias. Currently, immunotherapy is one of the recommended treatment schemes for recurrent AML patients to improve their survival rates. Nonetheless, low remission and high mortality rates are observed in recurrent AML and challenge the prognosis of AML patients. To address this problem, we aimed to establish and verify a reliable prognostic risk model using immune-related genes to improve the prognostic evaluation and recommendation for personalized treatment of AML. METHODS Transcriptome data and clinical data were acquired from the TARGET database while immune genes were sourced from InnateDB and ImmPort Shared databases. The mRNA expression profile matrix of immune genes from 62 normal samples and 1408 AML cases was extracted from the transcriptome data and subjected to differential expression (DE) analysis. The entire cohort of DE immune genes was randomly divided into the test group and training group. The prognostic model associated with immune genes was constructed using the training group. The test group and entire cohort were employed for model validation. Lastly, we analyzed the potential clinical application of the model and its association with immune cell infiltration. RESULTS In total, 751 DE immune genes were differentially regulated, including 552 upregulated and 199 downregulated. Based on these DE genes, we developed and validated a prognostic risk model composed of seven immune genes, GDF1, TPM2, IL1R1, PSMD4, IL5RA, DHCR24, and IL12RB2. This model is able to predict the 5-year survival rate more accurately compared with age, gender, and risk stratification. Further analysis showed that CD8+ T-cell contents and neutrophil infiltration decreased but macrophage infiltration increased as the risk score increased. CONCLUSIONS A seven-immune gene model of AML was developed and validated. We propose this model as an independent prognostic variable able to estimate the 5-year survival rate. In addition, the model can also reflect the immune microenvironment of AML patients.
Collapse
Affiliation(s)
- Yan Luo
- Suzhou Medical College of Soochow University, Suzhou 215325, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yanpeng Xu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi 563000, China
| | - Xue Li
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xiaoqi Shi
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| |
Collapse
|
27
|
Horvath TD, Poventud-Fuentes I, Olayinka L, James A, Haidacher SJ, Hoch KM, Stevens AM, Haag AM, Devaraj S. Validation of atovaquone plasma levels by liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring in pediatric patients. J Mass Spectrom Adv Clin Lab 2022; 26:23-27. [PMID: 36388060 PMCID: PMC9641598 DOI: 10.1016/j.jmsacl.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Atovaquone, an antiparasitic and antifungal, has potential as an anticancer agent. Our LC-MS/MS-based method can accurately quantify atovaquone in plasma. Low LOQ and small sample volume requirements add versatility to our method. Measuring atovaquone in plasma helps to determine the effective dose in children.
Background Atovaquone has traditionally been used as an antiparasitic and antifungal agent, but recent studies have shown its potential as an anticancer agent. The high variability in atovaquone bioavailability highlights the need for therapeutic drug monitoring, especially in pediatric patients. The goal of our study was to develop and validate the performance of an assay to quantify atovaquone plasma concentrations collected from pediatric cancer patients using LC-MS/MS. Methods Atovaquone was extracted from a 10 µL volume of K2-EDTA human plasma using a solution consisting of ACN: EtOH: DMF (8:1:1 v:v:v), separated using reverse-phase chromatography, and detected using a SCIEX 5500 QTrap MS system. LC-MS/MS assay performance was evaluated for precision, accuracy, carryover, sensitivity, specificity, linearity, and interferences. Results Atovaquone and its deuterated internal standard were analyzed using a gradient chromatographic method that had an overall cycle-time of 7.4 min per injection, and retention times of 4.3 min. Atovaquone was measured over a dynamic concentration range of 0.63 – 80 µM with a deviation within ≤ ± 5.1 % of the target value. Intra- and inter-assay precision were ≤ 2.7 % and ≤ 8.4 %, respectively. Dilutional, carryover, and interference studies were also within acceptable limits. Conclusions Our studies have shown that our LC-MS/MS-based method is both reliable and robust for the quantification of plasma atovaquone concentrations and can be used to determine the effective dose of atovaquone for pediatric patients treated for AML.
Collapse
Affiliation(s)
- Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Izmarie Poventud-Fuentes
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Lily Olayinka
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Asha James
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Alexandra M. Stevens
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, Houston, TX, USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
- Corresponding author.
| |
Collapse
|
28
|
Rutella S, Vadakekolathu J, Mazziotta F, Reeder S, Yau TO, Mukhopadhyay R, Dickins B, Altmann H, Kramer M, Knaus HA, Blazar BR, Radojcic V, Zeidner JF, Arruda A, Wang B, Abbas HA, Minden MD, Tasian SK, Bornhäuser M, Gojo I, Luznik L. Immune dysfunction signatures predict outcomes and define checkpoint blockade-unresponsive microenvironments in acute myeloid leukemia. J Clin Invest 2022; 132:e159579. [PMID: 36099049 PMCID: PMC9621145 DOI: 10.1172/jci159579] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023] Open
Abstract
BackgroundImmune exhaustion and senescence are dominant dysfunctional states of effector T cells and major hurdles for the success of cancer immunotherapy. In the current study, we characterized how acute myeloid leukemia (AML) promotes the generation of senescent-like CD8+ T cells and whether they have prognostic relevance.METHODSWe analyzed NanoString, bulk RNA-Seq and single-cell RNA-Seq data from independent clinical cohorts comprising 1,896 patients treated with chemotherapy and/or immune checkpoint blockade (ICB).ResultsWe show that senescent-like bone marrow CD8+ T cells were impaired in killing autologous AML blasts and that their proportion negatively correlated with overall survival (OS). We defined what we believe to be new immune effector dysfunction (IED) signatures using 2 gene expression profiling platforms and reported that IED scores correlated with adverse-risk molecular lesions, stemness, and poor outcomes; these scores were a more powerful predictor of OS than 2017-ELN risk or leukemia stem cell (LSC17) scores. IED expression signatures also identified an ICB-unresponsive tumor microenvironment and predicted significantly shorter OS.ConclusionThe IED scores provided improved AML-risk stratification and could facilitate the delivery of personalized immunotherapies to patients who are most likely to benefit.TRIAL REGISTRATIONClinicalTrials.gov; NCT02845297.FUNDINGJohn and Lucille van Geest Foundation, Nottingham Trent University's Health & Wellbeing Strategic Research Theme, NIH/NCI P01CA225618, Genentech-imCORE ML40354, Qatar National Research Fund (NPRP8-2297-3-494).
Collapse
Affiliation(s)
- Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Francesco Mazziotta
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen Reeder
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Tung-On Yau
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Rupkatha Mukhopadhyay
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin Dickins
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Heidi Altmann
- Department of Medicine, Universitätsklinikum Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Michael Kramer
- Department of Medicine, Universitätsklinikum Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Hanna A. Knaus
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Bruce R. Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood & Marrow Transplant and Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vedran Radojcic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Joshua F. Zeidner
- Division of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Andrea Arruda
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Bofei Wang
- Department of Leukemia, Division of Cancer Medicine and
| | - Hussein A. Abbas
- Department of Leukemia, Division of Cancer Medicine and
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark D. Minden
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Sarah K. Tasian
- Department of Pediatrics, Division of Oncology and Centre for Childhood Cancer Research, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Martin Bornhäuser
- Department of Medicine, Universitätsklinikum Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
- National Center for Tumor Diseases and German Cancer Consortium, Partner Site Dresden, Dresden, Germany
- German Cancer Research Centre, Heidelberg, Germany
| | - Ivana Gojo
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leo Luznik
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines 2022; 10:biomedicines10061405. [PMID: 35740427 PMCID: PMC9220202 DOI: 10.3390/biomedicines10061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric acute myeloid leukemia is a clonal disorder characterized by malignant transformation of the hematopoietic stem cell. The incidence and the outcome remain inferior when compared to pediatric ALL, although prognosis has improved in the last decades, with 80% overall survival rate reported in some studies. The standard therapeutic approach is a combined cytarabine and anthracycline-based regimen followed by consolidation with allogeneic stem cell transplantation (allo-SCT) for high-risk AML and allo-SCT for non-high-risk patients only in second complete remission after relapse. In the last decade, several drugs have been used in clinical trials to improve outcomes in pediatric AML treatment.
Collapse
|
30
|
Inaba H, van Oosterwijk JG, Panetta JC, Li L, Buelow DR, Blachly JS, Shurtleff S, Pui CH, Ribeiro RC, Rubnitz JE, Pounds S, Baker SD. Preclinical and Pilot Study of Type I FLT3 Tyrosine Kinase Inhibitor, Crenolanib, with Sorafenib in Acute Myeloid Leukemia and FLT3-Internal Tandem Duplication. Clin Cancer Res 2022; 28:2536-2546. [PMID: 35344039 PMCID: PMC9197875 DOI: 10.1158/1078-0432.ccr-21-4450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the safety, activity, and emergence of FLT3-kinase domain (KD) mutations with combination therapy of crenolanib and sorafenib in acute myeloid leukemia (AML) with FLT3-internal tandem duplication (ITD). PATIENTS AND METHODS After in vitro and xenograft efficacy studies using AML cell lines that have FLT3-ITD with or without FLT3-KD mutation, a pilot study was performed with crenolanib (67 mg/m2/dose, three times per day on days 1-28) and two dose levels of sorafenib (150 and 200 mg/m2/day on days 8-28) in 9 pediatric patients with refractory/relapsed FLT3-ITD-positive AML. Pharmacokinetic, pharmacodynamic, and FLT3-KD mutation analysis were done in both preclinical and clinical studies. RESULTS The combination of crenolanib and sorafenib in preclinical models showed synergy without affecting pharmacokinetics of each agent, inhibited p-STAT5 and p-ERK for up to 8 hours, and led to significantly better leukemia response (P < 0.005) and survival (P < 0.05) compared with single agents. Fewer FLT3-KD mutations emerged with dose-intensive crenolanib (twice daily) and low-intensity sorafenib (three times/week) compared with daily crenolanib or sorafenib (P < 0.05). The crenolanib and sorafenib combination was tolerable without dose-limiting toxicities, and three complete remissions (one with incomplete count recovery) and one partial remission were observed in 8 evaluable patients. Median crenolanib apparent clearance showed a nonsignificant decrease during treatment (45.0, 40.5, and 20.3 L/hour/m2 on days 1, 7, and 14, respectively) without drug-drug interaction. Only 1 patient developed a FLT3-KD mutation (FLT3 F691L). CONCLUSIONS The combination of crenolanib and sorafenib was tolerable with antileukemic activities and rare emergence of FLT3-TKD mutations, which warrants further investigation.
Collapse
Affiliation(s)
- Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - John C. Panetta
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lie Li
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Daelynn R. Buelow
- College of Pharmacy, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - James S. Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sharyn D. Baker
- College of Pharmacy, Department of Internal Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
31
|
Acute myelogenous leukemia – current recommendations and approaches in molecular-genetic assessment. ROMANIAN JOURNAL OF INTERNAL MEDICINE 2022; 60:103-114. [DOI: 10.2478/rjim-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract
Acute myelogenous leukemia is a multi-step hematological malignancy, affecting function, growth, proliferation and cell cycle of myeloid precursors. Overall assessment of patients with the disease requires among everything else, a comprehensive investigation of the genetic basis through various methods such as cytogenetic and molecular-genetic ones. This clarification provides diagnostic refinement and carries prognostic and predictive value in respect of essential therapeutic choices.
With this review of the literature, we focus on summarizing the latest recommendations and preferred genetic methods, as well as on emphasizing on their general benefits and limitations. Since none of these methods is actually totipotent, we also aim to shed light over the often-difficult choice of appropriate genetic analyses.
Collapse
|
32
|
Yang W, Qin M, Jia C, Yang J, Chen W, Luo Y, Jing Y, Wang B. Pediatric acute myeloid leukemia patients with KMT2A rearrangements: a single-center retrospective study. Hematology 2022; 27:583-589. [PMID: 35617149 DOI: 10.1080/16078454.2022.2071797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Pediatric acute myeloid leukemia (AML) with KMT2A rearrangements has a very different prognosis. Poor outcomes cannot be avoided even after hematopoietic stem cell transplantation. In order to investigate the prognosis and efficacy, we conducted a retrospective analysis. PATIENTS AND METHODS We retrospectively analyzed a total of 32 children with KMT2A rearrangements AML treated in our hospital between January 2015 and February 2021. RESULTS The proportion of patients with KMT2A-rearranged in the medium-risk group of overall survival (OS) and event-free survival (EFS) was 100%. No differences in OS, EFS and cumulative incidence of relapse (CIR) were detected between the haploidentical hematopoietic stem cell transplantation (haplo-HSCT) and full matched HSCT (P = 0.289, P = 0.303, P = 0.303). Acute graft-versus-host disease (aGVHD) was often detected in the haplo-HSCT cohort, while full matched HSCT had no obvious aGVHD, assessed as≤1 grade (P < 0.05). Patients in the medium-risk pediatric group could acquire 100% OS and EFS only after chemotherapy. There was no significant difference in OS, EFS and CIR between full matched HSCT and haploidentical transplantation in pediatric AML with KMT2A rearrangements, but full matched HSCT seemed to have a lower death rate. The severity of aGVHD in the full matched HSCT was less than that in the haploidentical transplantation group. CONCLUSION The primary choice of donor can be HLA-matched sibling donors or matched unrelated donors for children with AML with KMT2A rearrangements, and the secondary choice can be haploid donors.
Collapse
Affiliation(s)
- Wei Yang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Maoquan Qin
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Chenguang Jia
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Jun Yang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Wei Chen
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yanhui Luo
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yuanfang Jing
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Bin Wang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
33
|
Vicente-Garcés C, Esperanza-Cebollada E, Montesdeoca S, Torrebadell M, Rives S, Dapena JL, Català A, Conde N, Camós M, Vega-García N. Technical Validation and Clinical Utility of an NGS Targeted Panel to Improve Molecular Characterization of Pediatric Acute Leukemia. Front Mol Biosci 2022; 9:854098. [PMID: 35463953 PMCID: PMC9021638 DOI: 10.3389/fmolb.2022.854098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Development of next-generation sequencing (NGS) has provided useful genetic information to redefine diagnostic, prognostic, and therapeutic strategies for the management of acute leukemia (AL). However, the application in the clinical setting is still challenging. Our aim was to validate the AmpliSeq™ for Illumina® Childhood Cancer Panel, a pediatric pan-cancer targeted NGS panel that includes the most common genes associated with childhood cancer, and assess its utility in the daily routine of AL diagnostics. In terms of sequencing metrics, the assay reached all the expected values. We obtained a mean read depth greater than 1000×. The panel demonstrated a high sensitivity for DNA (98.5% for variants with 5% variant allele frequency (VAF)) and RNA (94.4%), 100% of specificity and reproducibility for DNA and 89% of reproducibility for RNA. Regarding clinical utility, 49% of mutations and 97% of the fusions identified were demonstrated to have clinical impact. Forty-one percent of mutations refined diagnosis, while 49% of them were considered targetable. Regarding RNA, fusion genes were more clinically impactful in terms of refining diagnostic (97%). Overall, the panel found clinically relevant results in the 43% of patients tested in this cohort. To sum up, we validated a reliable and reproducible method to refine pediatric AL diagnosis, prognosis, and treatment, and demonstrated the feasibility of incorporating a targeted NGS panel into pediatric hematology practice.
Collapse
Affiliation(s)
- Clara Vicente-Garcés
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Elena Esperanza-Cebollada
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Sara Montesdeoca
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Montserrat Torrebadell
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Rives
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu Barcelona, University of Barcelona, Barcelona, Spain
| | - José Luis Dapena
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu Barcelona, University of Barcelona, Barcelona, Spain
| | - Albert Català
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu Barcelona, University of Barcelona, Barcelona, Spain
| | - Nuria Conde
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Pediatric Hematology and Oncology Department, Hospital Sant Joan de Déu Barcelona, University of Barcelona, Barcelona, Spain
| | - Mireia Camós
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Nerea Vega-García
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona, Spain
- Leukemia and Other Pediatric Hemopathies, Developmental Tumors Biology Group, Institut de Recerca Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- *Correspondence: Nerea Vega-García,
| |
Collapse
|
34
|
Rosenzweig J, Pillai PM, Prockop S, Benayed R, Eidenschink Brodersen L, Najfeld V, Loken MR, Zhang Y, Shukla N. Acute myeloid leukemia with an MN1-ETV6 fusion in a young child with Down syndrome. Cold Spring Harb Mol Case Stud 2022; 8:a006167. [PMID: 35483876 PMCID: PMC9059786 DOI: 10.1101/mcs.a006167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Myeloid leukemia of Down syndrome (ML-DS) in young children is associated with distinct clinical and biological features and is typically initiated with oncogenic mutations in the X-linked megakaryocytic transcription factor GATA1. Here we present a 3-yr-old child with DS diagnosed with acute myeloid leukemia (AML), which lacks typical immunophenotypic and molecular characteristics of ML-DS, including GATA1 mutations. The leukemic blasts were found to have an MN1-ETV6 gene fusion, a high-risk oncofusion not previously described in DS patients. This report highlights the importance of immunophenotypic, cytogenetic, and molecular characterization of ML-DS for identification of rare cases with unique features that may benefit from treatment protocols that are more intensive than those developed for patients with typical GATA1 mutant ML-DS.
Collapse
Affiliation(s)
- Jaclyn Rosenzweig
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Pallavi M Pillai
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Mount Sinai Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Susan Prockop
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | - Vesna Najfeld
- Department of Medicine and Pathology, Tumor Cytogenomics, Icahn School of Medicine at Mount Sinai Hospital, New York, New York 10029, USA
| | | | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
35
|
Calcitonin receptor-like (CALCRL) is a marker of stemness and an independent predictor of outcome in pediatric AML. Blood Adv 2021; 5:4413-4421. [PMID: 34559198 PMCID: PMC8579256 DOI: 10.1182/bloodadvances.2021005236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
We have recently identified the G protein-coupled neuropeptide receptor calcitonin receptor-like (CALCRL) as an independent prognostic biomarker and a therapeutic target in more than 1500 adult patients with acute myeloid leukemia (AML). Here, we confirmed CALCRL expression as a prognostic factor in a cohort of 284 pediatric patients with AML. High CALCRL expression was independently associated with event-free survival (hazard ratio [HR], 1.87; 95% confidence interval [CI], 1.36-2.57; P = .0001), overall survival (HR, 1.55; 95% CI, 1.06-2.27; P = .025), and cumulative incidence of relapse (HR, 2.10; 95% CI, 1.49-1.96; P < .0001) when adjusting for age, white blood cell count, and genetic risk. Despite its association with leukemia stem cell signatures, CALCRL expression remained associated with all end points when compared with the 17-gene leukemic stem cell score. The strong association of CALCRL expression with the risk of relapse also in the pediatric population supports its role as novel age-independent master regulator of relapse-initiating, drug-tolerant AML cells in humans.
Collapse
|
36
|
Quessada J, Cuccuini W, Saultier P, Loosveld M, Harrison CJ, Lafage-Pochitaloff M. Cytogenetics of Pediatric Acute Myeloid Leukemia: A Review of the Current Knowledge. Genes (Basel) 2021; 12:924. [PMID: 34204358 PMCID: PMC8233729 DOI: 10.3390/genes12060924] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
Pediatric acute myeloid leukemia is a rare and heterogeneous disease in relation to morphology, immunophenotyping, germline and somatic cytogenetic and genetic abnormalities. Over recent decades, outcomes have greatly improved, although survival rates remain around 70% and the relapse rate is high, at around 30%. Cytogenetics is an important factor for diagnosis and indication of prognosis. The main cytogenetic abnormalities are referenced in the current WHO classification of acute myeloid leukemia, where there is an indication for risk-adapted therapy. The aim of this article is to provide an updated review of cytogenetics in pediatric AML, describing well-known WHO entities, as well as new subgroups and germline mutations with therapeutic implications. We describe the main chromosomal abnormalities, their frequency according to age and AML subtypes, and their prognostic relevance within current therapeutic protocols. We focus on de novo AML and on cytogenetic diagnosis, including the practical difficulties encountered, based on the most recent hematological and cytogenetic recommendations.
Collapse
Affiliation(s)
- Julie Quessada
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
| | - Wendy Cuccuini
- Hematological Cytogenetics Laboratory, Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris (APHP), 75010 Paris, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| | - Paul Saultier
- APHM, La Timone Children’s Hospital Department of Pediatric Hematology and Oncology, 13005 Marseille, France;
- Faculté de Médecine, Aix Marseille University, INSERM, INRAe, C2VN, 13005 Marseille, France
| | - Marie Loosveld
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
- Hematology Laboratory, Timone Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group Translational and Clinical Research Institute, Newcastle University Centre for Cancer Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Marina Lafage-Pochitaloff
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| |
Collapse
|
37
|
Fajardo-Orduña GR, Ledesma-Martínez E, Aguiñiga-Sánchez I, Mora-García MDL, Weiss-Steider B, Santiago-Osorio E. Inhibitors of Chemoresistance Pathways in Combination with Ara-C to Overcome Multidrug Resistance in AML. A Mini Review. Int J Mol Sci 2021; 22:ijms22094955. [PMID: 34066940 PMCID: PMC8124548 DOI: 10.3390/ijms22094955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common type of leukemia in older adults, is a heterogeneous disease that originates from the clonal expansion of undifferentiated hematopoietic progenitor cells. These cells present a remarkable variety of genes and proteins with altered expression and function. Despite significant advances in understanding the molecular panorama of AML and the development of therapies that target mutations, survival has not improved significantly, and the therapy standard is still based on highly toxic chemotherapy, which includes cytarabine (Ara-C) and allogeneic hematopoietic cell transplantation. Approximately 60% of AML patients respond favorably to these treatments and go into complete remission; however, most eventually relapse, develop refractory disease or chemoresistance, and do not survive for more than five years. Therefore, drug resistance that initially occurs in leukemic cells (primary resistance) or that develops during or after treatment (acquired resistance) has become the main obstacle to AML treatment. In this work, the main molecules responsible for generating chemoresistance to Ara-C in AML are discussed, as well as some of the newer strategies to overcome it, such as the inclusion of molecules that can induce synergistic cytotoxicity with Ara-C (MNKI-8e, emodin, metformin and niclosamide), subtoxic concentrations of chemotherapy (PD0332991), and potently antineoplastic treatments that do not damage nonmalignant cells (heteronemin or hydroxyurea + azidothymidine).
Collapse
Affiliation(s)
- Guadalupe Rosario Fajardo-Orduña
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
| | - Edgar Ledesma-Martínez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
- Department of Biomedical Sciences, School of Medicine, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| | - María de Lourdes Mora-García
- Immunobiology Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico;
| | - Benny Weiss-Steider
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
- Correspondence: ; Tel.: +52-55-57-73-41-08
| |
Collapse
|
38
|
Michlewska S, Maroto M, Hołota M, Kubczak M, Sanz Del Olmo N, Ortega P, Shcharbin D, de la Mata FJ, Bryszewska M, Ionov M. Combined therapy of ruthenium dendrimers and anti-cancer drugs against human leukemic cells. Dalton Trans 2021; 50:9500-9511. [PMID: 34254615 DOI: 10.1039/d1dt01388b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carbosilane ruthenium(ii) dendrimers have been complexed with conventional anti-cancer drugs. Due to its features, the presence of ruthenium within a dendrimer structure improves the anti-cancer properties of nanocomplexes containing 5-flurouracyl, methotrexate and doxorubicin. These dendrimers could be promising carriers of anti-cancer medicines. Ruthenium dendrimers that are positively charged can also enhance the cytotoxicity to cancer cells; moreover, they can form stable complexes with drugs. Results indicate that ruthenium dendrimers combined with doxorubicin and methotrexate significantly reduced the viability of leukaemia 1301 and HL-60 cancer cells.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging & Specialized Biological Techniques. Faculty of Biology & Environmental Protection. University of Lodz, Banacha12/16, Lodz 90-237, Poland. and Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland.
| | - Marta Maroto
- Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain
| | - Marcin Hołota
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland.
| | - Malgorzata Kubczak
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland.
| | - Natalia Sanz Del Olmo
- Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain
| | - Paula Ortega
- Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Dzmitry Shcharbin
- Institute of Biophysics & Cell Engineering of NASB, 220072 Minsk, Belarus
| | - Francisco Javier de la Mata
- Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland.
| | - Maksim Ionov
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland.
| |
Collapse
|