1
|
Cho YS, Cho H, Kim HR, Park SJ, Yeo JH, Ko YG, Lee J, Kim SY, Kim K, Byun Y. Macropinocytosis-targeted peptide-docetaxel conjugate for bystander pancreatic cancer treatment. J Control Release 2024; 376:829-841. [PMID: 39491626 DOI: 10.1016/j.jconrel.2024.10.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Oncogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are highly prevalent in pancreatic ductal adenocarcinoma (PDAC) and have garnered attention as potential targets for targeted therapies, such as KRAS inhibitors. However, the limited therapeutic efficacy of KRAS allele-specific inhibitors necessitate an efficient pan-KRAS cancer cell killing strategy. Here, we have examined enhanced macropinocytosis pathway in KRAS mutant cancer cells and report improved intracellular delivery of albumin-based therapeutics. We further established an albumin-binding peptide-docetaxel conjugate platform (MPD3), which has a caspase-3 cleavable feature, for macropinocytosis-targeted bystander payload delivery and realization of bystander killing of pan-KRAS cancer cells, complemented with caspase-3 mediated activation of MPD3 to bolster tumoral accumulation of cytotoxic payloads. Utilization of in vitro co-culture system of pan-KRAS cancer cells and pharmacodynamic marker staining revealed potent bystander killing effects of MPD3, highlighting MPD3 as an efficient delivery platform against pan-KRAS cancer. Moreover, MPD3 elicited robust anti-tumor activities in both local and liver metastatic PDAC tumor models in mice. Overall, this work establishes a paradigm for developing translational pan-KRAS cancer treatment and broadens the applicability of albumin binding peptide-drug conjugate against albumin-metabolism enriched cancers.
Collapse
Affiliation(s)
- Young Seok Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanhee Cho
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ha Rin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; School of Medicine, Stanford University, CA 94305, USA
| | - Seong Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Joo Hye Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Yoon Gun Ko
- Pharosgen Co.Ltd, 2-404 Jangji-dong 892, Seoul 05852, Republic of Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Sang Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Fucà G, Sabatucci I, Paderno M, Lorusso D. The clinical landscape of antibody-drug conjugates in endometrial cancer. Int J Gynecol Cancer 2024; 34:1795-1804. [PMID: 39074933 DOI: 10.1136/ijgc-2024-005607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Clinical outcomes remain challenging in advanced or recurrent endometrial cancer due to tumor heterogeneity and therapy resistance. Antibody-drug conjugates are a novel class of cancer therapeutics, representing a promising treatment option for endometrial cancer. Antibody-drug conjugates consist of a high-affinity antibody linked to a cytotoxic payload through a stable linker. After binding to specific antigens on tumor cells, the drug is internalized, and the payload is released. In addition, the free intracellular drug may be released outside the target cell through a 'bystander effect' and kill neighboring cells, which is crucial in treating malignancies characterized by heterogeneous biomarker expression like endometrial cancer.This article aims to provide a comprehensive overview of the current clinical landscape of antibody-drug conjugates in the treatment of endometrial cancer. We conducted a thorough analysis of recent clinical trials focusing on efficacy, safety profiles, and the mechanisms by which antibody-drug conjugates target endometrial cancer. We focused particularly on the most promising antibody-drug conjugate targets in endometrial cancer under clinical investigation, such as human epidermal growth factor receptor 2 (HER2), folate receptor alpha (FRα), trophoblast cell-surface antigen-2 (TROP2), and B7-H4. We also briefly comment on the challenges, including the emergence of resistance mechanisms, and future development directions (especially agents targeting multiple antigens, combinatorial strategies, and sequential use of agents targeting the same antigen but using different payloads) in antibody-drug conjugate therapy for endometrial cancer.
Collapse
Affiliation(s)
- Giovanni Fucà
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | - Ilaria Sabatucci
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | | | - Domenica Lorusso
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
3
|
Saberi SA, Cheng D, Nambudiri VE. Antibody-drug conjugates: A review of cutaneous adverse effects. J Am Acad Dermatol 2024; 91:922-931. [PMID: 39047980 DOI: 10.1016/j.jaad.2024.07.1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Antibody-drug conjugates (ADCs) are an emerging class of anticancer agents that combine targeting antibodies with potent cytotoxic agents. Their molecular configuration allows for increased therapeutic efficacy and reduced adverse-effect profiles compared to monoclonal antibodies or cytotoxic chemotherapy alone. ADCs cause off-target toxicities through several mechanisms, including premature deconjugation of the cytotoxic agent in the serum and the presence of the targeted antigen on normal tissues. Given cutaneous adverse events comprise 31.3% of all-grade adverse events in clinical trials involving ADCs, dermatologists are increasingly called upon to manage the cutaneous toxicities caused by these drugs. In this review, we summarize known cutaneous toxicities of the ADCs that have been approved for use by the US Food and Drug Administration to date. Dermatologists can play a key role in recognizing cutaneous reactions associated with ADCs, contributing to guidelines for their management, and aiding during clinical trials to generate detailed morphologic and histopathologic descriptions of cutaneous toxicities caused by ADCs.
Collapse
Affiliation(s)
- Shahin A Saberi
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Debby Cheng
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
4
|
Tao J, Gu Y, Zhou W, Wang Y. Dual-payload antibody-drug conjugates: Taking a dual shot. Eur J Med Chem 2024; 281:116995. [PMID: 39481229 DOI: 10.1016/j.ejmech.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Antibody-drug conjugates (ADCs) enable the precise delivery of cytotoxic agents by conjugating small-molecule drugs with monoclonal antibodies (mAbs). Over recent decades, ADCs have demonstrated substantial clinical efficacy. However, conventional ADCs often encounter various clinical challenges, including suboptimal efficacy, significant adverse effects, and the development of drug resistance, limiting their broader clinical application. Encouragingly, a next-generation approach-dual-payload ADCs-has emerged as a pioneering strategy to address these challenges. Dual-payload ADCs are characterized by the incorporation of two distinct therapeutic payloads on the same antibody, enhancing treatment efficacy by promoting synergistic effects and reducing the risk of drug resistance. However, the synthesis of dual-payload ADCs is complex due to the presence of multiple functional groups on antibodies. In this review, we comprehensively summarize the construction strategies for dual-payload ADCs, ranging from the design of ADC components to orthogonal chemistry. The subsequent sections explore current challenges and propose prospective strategies, highlighting recent advancements in dual-payload ADC research, thereby laying the foundation for the development of next-generation ADCs.
Collapse
Affiliation(s)
- Junjie Tao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Zhou
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
5
|
Valsasina B, Orsini P, Terenghi C, Ocana A. Present Scenario and Future Landscape of Payloads for ADCs: Focus on DNA-Interacting Agents. Pharmaceuticals (Basel) 2024; 17:1338. [PMID: 39458979 PMCID: PMC11510327 DOI: 10.3390/ph17101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
ADCs have emerged as a promising class of therapeutics, combining the targeting specificity of monoclonal antibodies with the cytotoxic potency of small-molecule drugs. Although the majority of approved ADCs are still based on microtubule binder payloads, the recent success of topoisomerase I inhibitors has revitalized interest in the identification of novel agents overcoming present limitations in the field including narrow therapeutic window and chemoresistance. The success of DNA binders as payload for ADCs has been very limited, up to now, due, among other factors, to high hydrophobicity and planar chemical structures resulting in most cases in ADCs with a strong tendency to aggregate, poor plasma stability, and limited therapeutic index. Some of these molecules, however, continue to be of interest due to their favorable properties in terms of cytotoxic potency even in chemoresistant settings, bystander and immunogenic cell death effects, and known combinability with approved drugs. We critically evaluated several clinically tested ADCs containing DNA binders, focusing on payload physicochemical properties, cytotoxic potency, and obtained clinical results. Our analysis suggests that further exploration of certain chemical classes, specifically anthracyclines and duocarmycins, based on the optimization of physicochemical parameters, reduction of cytotoxic potency, and careful design of targeting molecules is warranted. This approach will possibly result in a novel generation of payloads overcoming the limitations of clinically validated ADCs.
Collapse
Affiliation(s)
| | - Paolo Orsini
- Nerviano Medical Sciences, Viale Pasteur 10, 20014 Nerviano, Italy
| | - Chiara Terenghi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alberto Ocana
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 2546 Madrid, Spain
- START Madrid-FJD, Hospital Fundación Jiménez Díaz, 2546 Madrid, Spain
- Breast Cancer, Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 2546 Madrid, Spain
| |
Collapse
|
6
|
Chen R, Ren Z, Bai L, Hu X, Chen Y, Ye Q, Hu Y, Shi J. Novel antibody-drug conjugates based on DXd-ADC technology. Bioorg Chem 2024; 151:107697. [PMID: 39121594 DOI: 10.1016/j.bioorg.2024.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
In recent years, antibody-drug conjugate (ADC) technology, which uses monoclonal antibodies (mAbs) to specifically deliver effective cytotoxic payloads to tumor cells, has become a promising method of tumor targeted therapy. ADCs are a powerful class of biopharmaceuticals that link antibodies targeting specific antigens and small molecule drugs with potent cytotoxicity via a linker, thus enabling selective destruction of cancer cells while minimizing systemic toxicity. DXd is a topoisomerase I inhibitor that induces DNA damage leading to cell cycle arrest, making it an option for ADC payloads. The DXd-ADC technology, developed by Daiichi Sankyo, is a cutting-edge platform that produces a new generation of ADCs with improved therapeutic metrics and has shown significant therapeutic potential in various types of cancer. This review provides a comprehensive assessment of drugs developed with DXd-ADC technology, with a focus on mechanisms of action, pharmacokinetics studies, preclinical data, and clinical outcomes for DS-8201a, U3-1402, DS-1062a, DS-7300a, DS-6157a, and DS-6000a. By integrating existing data, we aim to provide valuable insights into the current therapeutic status and future prospects of these novel agents.
Collapse
Affiliation(s)
- Rong Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhiwen Ren
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuefang Hu
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture, Academy of Agricultural Planning and Engineering Mara, Beijing 100121, China
| | - Yuchen Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Qiang Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Yuan Hu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Gobbi H, Carvalho FM, Brot MD, Logullo AF, Silva CAM, Soares FA, Landeiro L, Rahal R, Barrios CH. Challenges in the evaluation of HER2 and HER2-low in breast cancer in Brazil and recommendations of a multidisciplinary working group. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240313. [PMID: 39356956 PMCID: PMC11444227 DOI: 10.1590/1806-9282.20240313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Helenice Gobbi
- Universidade Federal do Triângulo Mineiro, Discipline of Special Pathology - Uberaba (MG), Brazil
| | | | - Marina De Brot
- A.C.Camargo Cancer Center, Department of Pathological Anatomy - São Paulo (SP), Brazil
| | | | | | - Fernando Augusto Soares
- Universidade de São Paulo, Institute of Pathological Anatomy, School of Dentistry, D´Or São Luiz Network - São Paulo (SP), Brazil
| | | | - Rosemar Rahal
- Universidade Federal de Goiás, Department of Gynecology - Goiânia (GO), Brazil
| | - Carlos Henrique Barrios
- Latin American Cooperative Oncology Group and Oncoclínicas Group - Porto Alegre (RS), Brazil
| |
Collapse
|
8
|
Ferrari V, Mograbi B, Gal J, Milano G. Companion Tests and Personalized Cancer Therapy: Reaching a Glass Ceiling. Int J Mol Sci 2024; 25:9991. [PMID: 39337479 PMCID: PMC11431990 DOI: 10.3390/ijms25189991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The use of companion diagnostics has become a standard in precision oncology in the context of ongoing therapeutic innovation. However, certain limitations make their application imperfect in current practice. This position paper underscores the need to broaden the notion of companion testing, considering the potential of emerging technologies, including computational biology, to overcome these limitations. This wave of progress should impact not only our representation of the analytical tool itself but also the nature of the tumoral sample under analysis (liquid biopsies). The complex inter-relationship between companion test guided-personalized therapy, and health agency policies for new drug agreements will also be discussed.
Collapse
Affiliation(s)
- Victoria Ferrari
- Department of Medical Oncology, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| | - Baharia Mograbi
- FHU OncoAge, IHU RespirERA, IRCAN, Inserm, University Côte d’Azur, CNRS 7284, U1081, 06000 Nice, France
| | - Jocelyn Gal
- Epidemiology and Biostatistics Department, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| | - Gérard Milano
- Oncopharmacology Unit, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| |
Collapse
|
9
|
Ma S, Zhou Y, Ma D, Qi X, Jiang J. Application and challenge of HER2DX genomic assay in HER2+ breast cancer treatment. Am J Cancer Res 2024; 14:4218-4235. [PMID: 39417184 PMCID: PMC11477836 DOI: 10.62347/jwha6355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
HER2-positive breast cancer is highly aggressive, with a significant risk of recurrence and metastasis, leading to a poor prognosis. While most early-stage HER2-positive breast cancer patients benefit from combining trastuzumab monoclonal antibody with chemotherapy, the therapeutic response to various drug combinations varies across the HER2+ patient population. Therefore, predicting the prognosis and treatment response of HER2+ breast cancer patients to specific regimens is crucial for selecting appropriate precision individualized therapies. HER2DX is the first genomic tool designed to guide the treatment of HER2+ breast cancer patients. The three scores provided by HER2DX inform the entire treatment process, including predicting survival outcomes, recurrence, metastasis, and treatment responses like Pathological Complete Response Rate (pCR). It offers recommendations on follow-up intervals, treatment plans, and the duration of drug therapy. This review examines the literature and analyzes studies applying HER2DX to guide the comprehensive treatment and predict prognosis in HER2+ breast cancer patients, aiming to promote the widespread use of HER2DX in individualized treatment.
Collapse
Affiliation(s)
- Shujuan Ma
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical UniversityChongqing 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast CancerChongqing 400038, China
| | - Yan Zhou
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical UniversityChongqing 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast CancerChongqing 400038, China
| | - Dandan Ma
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical UniversityChongqing 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast CancerChongqing 400038, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical UniversityChongqing 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast CancerChongqing 400038, China
| | - Jun Jiang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical UniversityChongqing 400038, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis and Treatment of Breast CancerChongqing 400038, China
| |
Collapse
|
10
|
Theocharopoulos C, Ziogas IA, Douligeris CC, Efstathiou A, Kolorizos E, Ziogas DC, Kontis E. Antibody-drug conjugates for hepato-pancreato-biliary malignancies: "Magic bullets" to the rescue? Cancer Treat Rev 2024; 129:102806. [PMID: 39094332 DOI: 10.1016/j.ctrv.2024.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Hepato-Pancreato-Biliary (HPB) malignancies constitute a highly aggressive group of cancers that have a dismal prognosis. Patients not amenable to curative intent surgical resection are managed with systemic chemotherapy which, however, confers little survival benefit. Antibody-Drug Conjugates (ADCs) are tripartite compounds that merge the intricate selectivity and specificity of monoclonal antibodies with the cytodestructive potency of attached supertoxic payloads. In view of the unmet need for drugs that will enhance the survival rates of HPB cancer patients, the assessment of ADCs for treating HPB malignancies has become the focus of extensive clinical and preclinical investigation, showing encouraging preliminary results. In the current review, we offer a comprehensive overview of the growing body of evidence on ADC approaches tested for HPB malignancies. Starting from a concise discussion of the functional principles of ADCs, we summarize here all available data from preclinical and clinical studies evaluating ADCs in HPB cancers.
Collapse
Affiliation(s)
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | - Dimitrios C Ziogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens 11527, Greece
| | - Elissaios Kontis
- Department of Surgery, Metaxa Cancer Hospital, Piraeus 18537, Greece
| |
Collapse
|
11
|
Edoardo C, Giuseppe C. Trastuzumab-deruxtecan in solid tumors with HER2 alterations: from early phase development to the first agnostic approval of an antibody-drug conjugate. Expert Opin Investig Drugs 2024; 33:851-865. [PMID: 38967422 DOI: 10.1080/13543784.2024.2376573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) represent a revolutionary approach in the systemic treatment for both solid and hematologic tumors. Constituted by an antibody, a cytotoxic payload, and a linker, ADCs aim to selectively deliver cytotoxic agents to tumors while sparing normal tissues. Various ADCs have been tested and approved for multiple solid tumors so far, but if there is one that had a major impact on clinical practice, this is Trastuzumab-deruxtecan (T-DXd). Notably, T-DXd was approved for HER2-positive and HER2-low metastatic breast cancer (MBC), HER2-positive gastric cancer (GC), HER2-mutant non-small cell lung cancer (NSCLC) and HER2 3+ solid tumors. Moreover, it received Breakthrough Therapy Designation for HER2-positive colorectal cancer (CRC). AREAS COVERED We review preclinical and clinical data of T-DXd, focusing on early-phase ongoing trials exploring combination therapies to enhance the activity of T-DXd in HER2-expressing solid tumors. EXPERT OPINION The clinical use of T-DXd still raises questions about selection of patients, treatment duration, prioritization over other approved ADCs, and management of resistance. Concerns regarding the toxicity of T-DXd remain, particularly with combinations involving potentially toxic drugs. Advancements in biomarker identification and combination therapies offer promising avenues to enhance efficacy and overcome resistance to T-DXd, ultimately improving outcomes for patients with cancer.
Collapse
Affiliation(s)
- Crimini Edoardo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curigliano Giuseppe
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
12
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
13
|
Zhao C, Zhang R, Yang H, Gao Y, Zou Y, Zhang X. Antibody-drug conjugates for non-small cell lung cancer: Advantages and challenges in clinical translation. Biochem Pharmacol 2024; 226:116378. [PMID: 38908529 DOI: 10.1016/j.bcp.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Lung cancer is the leading cause of cancer death, with non-small cell lung cancer (NSCLC) accounting for approximately 85 % of all lung cancers and having a poor treatment and prognosis. Conventional clinical chemotherapy and immunotherapy are challenged by systemic toxicity and drug resistance, so researchers are increasingly focusing on antibody-drug conjugate (ADC), an innovative concept combining chemotherapy and targeted therapy, in which a drug selectively binds to antigens on the surface of a tumor cell via antibodies, which internalize the ADC, and then transfers the ADC to the lysosome via the endosomes to degrade the drug and kill the tumor cell. Despite the promising nature of ADCs, no ADC product for any indication including NSCLC has been approved for marketing by the FDA to date. In this review, we summarize the main advantages of ADCs and discuss in depth the design of the most desirable ADCs for NSCLC therapy. In addition to preclinical studies, we focus on the current state of clinical research on ADCs as interventions for the treatment of NSCLC by summarizing real-time clinical trial data from ClinicalTrials.gov, and reasonably speculate on the direction of the design of future generations of ADCs.
Collapse
Affiliation(s)
- Chenyu Zhao
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ruihan Zhang
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Yiwei Gao
- Department of China Medical University, The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ying Zou
- Department of Rehabilitation Centre, Shengjing Hospital of China Medical University, Shenyang 110122, Liaoning, China.
| | - Xudong Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| |
Collapse
|
14
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
15
|
Sun H, Wienkers LC, Lee A. Beyond cytotoxic potency: disposition features required to design ADC payload. Xenobiotica 2024; 54:442-457. [PMID: 39017706 DOI: 10.1080/00498254.2024.2381139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
1. Antibody-drug conjugates (ADCs) have demonstrated impressive clinical usefulness in treating several types of cancer, with the notion of widening of the therapeutic index of the cytotoxic payload through the minimisation of the systemic toxicity. Therefore, choosing the most appropriate payload molecule is a particularly important part of the early design phase of ADC development, especially given the highly competitive environment ADCs find themselves in today.2. The focus of the current review is to describe critical attributes/considerations needed in the discovery and ultimately development of cytotoxic payloads in support of ADC design. In addition to potency, several key dispositional characteristics including solubility, permeability and bystander effect, pharmacokinetics, metabolism, and drug-drug interactions, are described as being an integral part of the integrated activities required in the design of clinically safe and useful ADC therapeutic agents.
Collapse
Affiliation(s)
- Hao Sun
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Larry C Wienkers
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Anthony Lee
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| |
Collapse
|
16
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
17
|
Yu P, Zhu C, You X, Gu W, Wang X, Wang Y, Bu R, Wang K. The combination of immune checkpoint inhibitors and antibody-drug conjugates in the treatment of urogenital tumors: a review insights from phase 2 and 3 studies. Cell Death Dis 2024; 15:433. [PMID: 38898003 PMCID: PMC11186852 DOI: 10.1038/s41419-024-06837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
With the high incidence of urogenital tumors worldwide, urinary system tumors are among the top 10 most common tumors in men, with prostate cancer ranking first and bladder cancer fourth. Patients with resistant urogenital tumors often have poor prognosis. In recent years, researchers have discovered numerous specific cancer antigens, which has led to the development of several new anti-cancer drugs. Using protein analysis techniques, researchers developed immune checkpoint inhibitors (ICIs) and antibody-conjugated drugs (ADCs) for the treatment of advanced urogenital tumors. However, tumor resistance often leads to the failure of monotherapy. Therefore, clinical trials of the combination of ICIs and ADCs have been carried out in numerous centers around the world. This article reviewed phase 2 and 3 clinical studies of ICIs, ADCs, and their combination in the treatment of urogenital tumors to highlight safe and effective methods for selecting individualized therapeutic strategies for patients. ICIs activate the immune system, whereas ADCs link monoclonal antibodies to toxins, which can achieve a synergistic effect when the two drugs are combined. This synergistic effect provides multiple advantages for the treatment of urogenital tumors.
Collapse
Affiliation(s)
- Puguang Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiangyun You
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Urology, Yichang Central People's Hospital, Yichang, 443002, China
| | - Wen Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Renge Bu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
18
|
Gu Y, Wang Z, Wang Y. Bispecific antibody drug conjugates: Making 1+1>2. Acta Pharm Sin B 2024; 14:1965-1986. [PMID: 38799638 PMCID: PMC11119582 DOI: 10.1016/j.apsb.2024.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024] Open
Abstract
Bispecific antibody‒drug conjugates (BsADCs) represent an innovative therapeutic category amalgamating the merits of antibody‒drug conjugates (ADCs) and bispecific antibodies (BsAbs). Positioned as the next-generation ADC approach, BsADCs hold promise for ameliorating extant clinical challenges associated with ADCs, particularly pertaining to issues such as poor internalization, off-target toxicity, and drug resistance. Presently, ten BsADCs are undergoing clinical trials, and initial findings underscore the imperative for ongoing refinement. This review initially delves into specific design considerations for BsADCs, encompassing target selection, antibody formats, and the linker-payload complex. Subsequent sections delineate the extant progress and challenges encountered by BsADCs, illustrated through pertinent case studies. The amalgamation of BsAbs with ADCs offers a prospective solution to prevailing clinical limitations of ADCs. Nevertheless, the symbiotic interplay among BsAb, linker, and payload necessitates further optimizations and coordination beyond a simplistic "1 + 1" to effectively surmount the extant challenges facing the BsADC domain.
Collapse
Affiliation(s)
- Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijia Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
19
|
Desai B, Miti T, Prabhakaran S, Miroshnychenko D, Henry M, Marusyk V, Gatenbee C, Bui M, Scott J, Altrock PM, Haura E, Anderson ARA, Basanta D, Marusyk A. Peristromal niches protect lung cancers from targeted therapies through a combined effect of multiple molecular mediators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590626. [PMID: 38712093 PMCID: PMC11071426 DOI: 10.1101/2024.04.24.590626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Targeted therapies directed against oncogenic signaling addictions, such as inhibitors of ALK in ALK+ NSCLC often induce strong and durable clinical responses. However, they are not curative in metastatic cancers, as some tumor cells persist through therapy, eventually developing resistance. Therapy sensitivity can reflect not only cell-intrinsic mechanisms but also inputs from stromal microenvironment. Yet, the contribution of tumor stroma to therapeutic responses in vivo remains poorly defined. To address this gap of knowledge, we assessed the contribution of stroma-mediated resistance to therapeutic responses to the frontline ALK inhibitor alectinib in xenograft models of ALK+ NSCLC. We found that stroma-proximal tumor cells are partially protected against cytostatic effects of alectinib. This effect is observed not only in remission, but also during relapse, indicating the strong contribution of stroma-mediated resistance to both persistence and resistance. This therapy-protective effect of the stromal niche reflects a combined action of multiple mechanisms, including growth factors and extracellular matrix components. Consequently, despite improving alectinib responses, suppression of any individual resistance mechanism was insufficient to fully overcome the protective effect of stroma. Focusing on shared collateral sensitivity of persisters offered a superior therapeutic benefit, especially when using an antibody-drug conjugate with bystander effect to limit therapeutic escape. These findings indicate that stroma-mediated resistance might be the major contributor to both residual and progressing disease and highlight the limitation of focusing on suppressing a single resistance mechanism at a time.
Collapse
|
20
|
Schipilliti FM, Drittone D, Mazzuca F, La Forgia D, Guven DC, Rizzo A. Datopotamab deruxtecan: A novel antibody drug conjugate for triple-negative breast cancer. Heliyon 2024; 10:e28385. [PMID: 38560142 PMCID: PMC10981107 DOI: 10.1016/j.heliyon.2024.e28385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Triple negative breast cancer (TNBC) represents the breast cancer subtype with least favorable outcome because of the lack of effective treatment options and its molecular features. Recently, ADCs have dramatically changed the breast cancer treatment landscape; the anti-TROP2 ADC Sacituzumab Govitecan has been approved for treatment of previously treated, metastatic TNBC patients. The novel ADC Datopotecan-deruxtecan (Dato-DXd) has recently shown encouraging results for TNBC. In the current paper, we summarize and discuss available data regarding this TROP-2 directed agent mechanism of action and pharmacologic activity, we describe first results on efficacy and safety of the drug and report characteristics, inclusion criteria and endpoints of the main ongoing clinical trials.
Collapse
Affiliation(s)
| | - Denise Drittone
- Oncological Department, Sant'Andrea Hospital, University Sapienza in Rome, Rome, Italy
| | - Federica Mazzuca
- Department of Clinical and Molecular Medicine, Sapienza University, Oncology Unit, Azienda Ospedialiera Universitaria Sant'Andrea, Rome, Italy
| | | | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | | |
Collapse
|
21
|
Peng DM, Li J, Qiu JX, Zhao L. Neoadjuvant pertuzumab plus trastuzumab in combination with chemotherapy for human epidermal growth factor receptor 2 positive breast cancer: a real-world retrospective single-institutional study in China. World J Surg Oncol 2024; 22:88. [PMID: 38582875 PMCID: PMC10998413 DOI: 10.1186/s12957-024-03365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
INTRODUCTION Real-world studies on neoadjuvant dual anti-HER2 therapy combined with chemotherapy for breast cancer (BC) are scarce in China. This study aimed to evaluate the efficacy and safety of neoadjuvant dual anti-HER2 therapy combined with chemotherapy in a real-world setting. Moreover, differences in estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and proliferation cell nuclear antigen (Ki-67) expression pre- and post-neoadjuvant therapy were analyzed. METHODS Clinical and pathological data of patients with HER2-positive BC who received neoadjuvant dual anti-HER2 therapy combined with chemotherapy at Liaoning Cancer Hospital & Institute, China, between September 2021 and September 2023, were retrospectively reviewed. RESULTS Among 179 included patients, a pathologic complete response (pCR) was achieved in 109 patients (60.9%). The univariate analysis results indicated that the hormone receptor (HR) status (P = 0.013), HER2 status (P = 0.003), and cycles of targeted treatment (P = 0.035) were significantly correlated with pCR. Subsequent multivariable analysis showed that HR negative and HER2 status 3 + were independent predictive factors of pCR. Anemia was the most common adverse event (62.0%), and the most common grade 3-4 adverse event was neutropenia (6.1%). The differences in HER2 (34.5%) and Ki-67 (92.7%) expression between core needle biopsy and the residual tumor after neoadjuvant therapy were statistically significant, whereas the differences were insignificant in terms of ER or PR status. CONCLUSIONS The combination of neoadjuvant trastuzumab and pertuzumab with chemotherapy showed good efficiency, and the toxic side effects were tolerable in patients with BC. In cases where pCR was not achieved after neoadjuvant therapy, downregulation of HER2 and Ki-67 expressions was observed.
Collapse
Affiliation(s)
- Dong-Mei Peng
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, NO, Shenyang, 110042, P.R. China
| | - Juan Li
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, NO, Shenyang, 110042, P.R. China
| | - Jia-Xin Qiu
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, NO, Shenyang, 110042, P.R. China
| | - Lin Zhao
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, NO, Shenyang, 110042, P.R. China.
| |
Collapse
|
22
|
Guo Y, Shen Z, Zhao W, Lu J, Song Y, Shen L, Lu Y, Wu M, Shi Q, Zhuang W, Qiu Y, Sheng J, Zhou Z, Fang L, Che J, Dong X. Rational Identification of Novel Antibody-Drug Conjugate with High Bystander Killing Effect against Heterogeneous Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306309. [PMID: 38269648 PMCID: PMC10987111 DOI: 10.1002/advs.202306309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Bystander-killing payloads can significantly overcome the tumor heterogeneity issue and enhance the clinical potential of antibody-drug conjugates (ADC), but the rational design and identification of effective bystander warheads constrain the broader implementation of this strategy. Here, graph attention networks (GAT) are constructed for a rational bystander killing scoring model and ADC construction workflow for the first time. To generate efficient bystander-killing payloads, this model is utilized for score-directed exatecan derivatives design. Among them, Ed9, the most potent payload with satisfactory permeability and bioactivity, is further used to construct ADC. Through linker optimization and conjugation, novel ADCs are constructed that perform excellent anti-tumor efficacy and bystander-killing effect in vivo and in vitro. The optimal conjugate T-VEd9 exhibited therapeutic efficacy superior to DS-8201 against heterogeneous tumors. These results demonstrate that the effective scoring approach can pave the way for the discovery of novel ADC with promising bystander payloads to combat tumor heterogeneity.
Collapse
Affiliation(s)
- Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Zheyuan Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Wenbin Zhao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityHangzhou310018P. R. China
| | - Jialiang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Yi Song
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Liteng Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Mingfei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Qiuqiu Shi
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Weihao Zhuang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Yueping Qiu
- The Department of PharmacyZhejiang Cancer HospitalHangzhou310022P. R. China
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated Hospital, Zhejiang University School of MedicineHangzhou310002P. R. China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang UniversityHangzhou310018P. R. China
| | - Luo Fang
- The Department of PharmacyZhejiang Cancer HospitalHangzhou310022P. R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhou310058P. R. China
- Department of PharmacySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009P. R. China
| |
Collapse
|
23
|
Sandeep, Shinde SH, Ahmed S, Sharma SS, Pande AH. Engineered polyspecific antibodies: A new frontier in the field of immunotherapeutics. Immunology 2024; 171:464-496. [PMID: 38140855 DOI: 10.1111/imm.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The 21st-century beginning remarked with the huge success of monospecific MAbs, however, in the last couple of years, polyspecific MAbs (PsAbs) have been an interesting topic and show promise of being biobetter than monospecific MAbs. Polyspecificity, in which a single antibody serves multiple specific target binding, has been hypothesized to contribute to the development of a highly effective antibody repertoire for immune defence. This polyspecific MAb trend represents an explosion that is gripping the whole pharmaceutical industry. This review is concerned with the current development and quality enforcement of PsAbs. All provided literature on monospecific MAbs and polyspecific MAbs (PsAbs) were searched using various electronic databases such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, Google Patent and books via the keywords Antibody engineering, Polyspecific antibody, Conventional antibody, non-conventional antibody, and Single domain antibody. In the literature, there are more than 100 different formats to construct PsAb by quadroma technology, chemical conjugation and genetic engineering. Till March 2023, nine PsAb have been approved around the world, and around 330 are in advanced developmental stages, showing the dominancy of PsAb in the growing health sector. Recent advancements in protein engineering techniques and the fusion of non-conventional antibodies have made it possible to create complex PsAbs that demonstrate higher stability and enhanced potency. This marks the most significant achievement for cancer immunotherapy, in which PsAbs have immense promise. It is worth mentioning that seven out of the nine PsAbs have been approved as anti-cancer therapy. As PsAbs continue to acquire prominence, they could pave the way for the development of novel immunotherapies for multiple diseases.
Collapse
Affiliation(s)
- Sandeep
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Suraj H Shinde
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
24
|
Li M, Zhao X, Yu C, Wang L. Antibody-Drug Conjugate Overview: a State-of-the-art Manufacturing Process and Control Strategy. Pharm Res 2024; 41:419-440. [PMID: 38366236 DOI: 10.1007/s11095-023-03649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/16/2023] [Indexed: 02/18/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise an antibody, linker, and drug, which direct their highly potent small molecule drugs to target tumor cells via specific binding between the antibody and surface antigens. The antibody, linker, and drug should be properly designed or selected to achieve the desired efficacy while minimizing off-target toxicity. With a unique and complex structure, there is inherent heterogeneity introduced by product-related variations and the manufacturing process. Here this review primarily covers recent key advances in ADC history, clinical development status, molecule design, manufacturing processes, and quality control. The manufacturing process, especially the conjugation process, should be carefully developed, characterized, validated, and controlled throughout its lifecycle. Quality control is another key element to ensure product quality and patient safety. A patient-centric strategy has been well recognized and adopted by the pharmaceutical industry for therapeutic proteins, and has been successfully implemented for ADCs as well, to ensure that ADC products maintain their quality until the end of their shelf life. Deep product understanding and process knowledge defines attribute testing strategies (ATS). Quality by design (QbD) is a powerful approach for process and product development, and for defining an overall control strategy. Finally, we summarize the current challenges on ADC development and provide some perspectives that may help to give related directions and trigger more cross-functional research to surmount those challenges.
Collapse
Affiliation(s)
- Meng Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xueyu Zhao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China.
| |
Collapse
|
25
|
Shen L, Sun X, Chen Z, Guo Y, Shen Z, Song Y, Xin W, Ding H, Ma X, Xu W, Zhou W, Che J, Tan L, Chen L, Chen S, Dong X, Fang L, Zhu F. ADCdb: the database of antibody-drug conjugates. Nucleic Acids Res 2024; 52:D1097-D1109. [PMID: 37831118 PMCID: PMC10768060 DOI: 10.1093/nar/gkad831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of innovative biopharmaceutical drugs, which, via their antibody (mAb) component, deliver and release their potent warhead (a.k.a. payload) at the disease site, thereby simultaneously improving the efficacy of delivered therapy and reducing its off-target toxicity. To design ADCs of promising efficacy, it is crucial to have the critical data of pharma-information and biological activities for each ADC. However, no such database has been constructed yet. In this study, a database named ADCdb focusing on providing ADC information (especially its pharma-information and biological activities) from multiple perspectives was thus developed. Particularly, a total of 6572 ADCs (359 approved by FDA or in clinical trial pipeline, 501 in preclinical test, 819 with in-vivo testing data, 1868 with cell line/target testing data, 3025 without in-vivo/cell line/target testing data) together with their explicit pharma-information was collected and provided. Moreover, a total of 9171 literature-reported activities were discovered, which were identified from diverse clinical trial pipelines, model organisms, patient/cell-derived xenograft models, etc. Due to the significance of ADCs and their relevant data, this new database was expected to attract broad interests from diverse research fields of current biopharmaceutical drug discovery. The ADCdb is now publicly accessible at: https://idrblab.org/adcdb/.
Collapse
Affiliation(s)
- Liteng Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Guo
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zheyuan Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Song
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenxiu Xin
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
| | - Haiying Ding
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
| | - Xinyue Ma
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Weiben Xu
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wanying Zhou
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lili Tan
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Liangsheng Chen
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Siqi Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
26
|
Ruan D, Wu H, Meng Q, Xu R. Development of antibody-drug conjugates in cancer: Overview and prospects. Cancer Commun (Lond) 2024; 44:3-22. [PMID: 38159059 PMCID: PMC10794012 DOI: 10.1002/cac2.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
In recent years, remarkable breakthroughs have been reported on antibody-drug conjugates (ADCs), with 15 ADCs successfully entering the market over the past decade. This substantial development has positioned ADCs as one of the fastest-growing domains in the realm of anticancer drugs, demonstrating their efficacy in treating a wide array of malignancies. Nonetheless, there is still an unmet clinical need for wider application, better efficacy, and fewer side effects of ADCs. An ADC generally comprises an antibody, a linker and a payload, and the combination has profound effects on drug structure, pharmacokinetic profile and efficacy. Hence, optimization of the key components provides an opportunity to develop ADCs with higher potency and fewer side effects. In this review, we comprehensively reviewed the current development and the prospects of ADC, provided an analysis of marketed ADCs and the ongoing pipelines globally as well as in China, highlighted several ADC platforms and technologies specific to different pharmaceutical enterprises and biotech companies, and also discussed the new related technologies, possibility of next-generation ADCs and the directions of clinical research.
Collapse
Affiliation(s)
- Dan‐Yun Ruan
- Department of Clinical ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Hao‐Xiang Wu
- Department of Clinical ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Qi Meng
- Department of Clinical ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Rui‐Hua Xu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| |
Collapse
|
27
|
Domb C, Garcia JA, Barata PC, Mendiratta P, Rao S, Brown JR. Systematic review of recent advancements in antibody-drug and bicycle toxin conjugates for the treatment of urothelial cancer. Ther Adv Urol 2024; 16:17562872241249073. [PMID: 38779496 PMCID: PMC11110528 DOI: 10.1177/17562872241249073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
Antibody-drug conjugates and bicycle toxin conjugates represent a tremendous advance in drug delivery technology and have shown great promise in the treatment of urothelial cancer. Previously approved systemic therapies, including chemotherapy and immunotherapy, are often impractical due to comorbidities, and outcomes for patients with advanced disease remain poor, even when receiving systemic therapy. In this setting, antibody-drug and bicycle toxin conjugates have emerged as novel treatments, dramatically altering the therapeutic landscape. These drugs harness unique designs consisting of antibody or bicycle peptide, linker, and cytotoxic payload with more targeted delivery than conventional chemotherapy, thus eliminating malignant cells while reducing systemic toxicities. Potential targets investigated in urothelial cancer include Nectin-4, TROP2, HER2, and EphA2. Initial clinical trials demonstrated efficacy in treatment of refractory advanced urothelial cancer, as well as improvement in quality of life. These initial studies led to FDA approval of two antibody-drug conjugates, enfortumab vedotin and sacituzumab govitecan. Moreover, antibody-drug and bicycle toxin conjugates are being studied in ongoing clinical trials in frontline treatment of advanced disease as well as for localized cancer. These studies highlight the potential for additional future therapies with novel targets, novel antibodies, cytotoxic and immunomodulatory payloads, and unique structural designs enhancing efficacy and safety. There is increasing evidence that combinations with other cancer therapies, especially immunotherapy, improve treatment outcomes. The combination of enfortumab vedotin and pembrolizumab was recently approved for first-line treatment of advanced urothelial carcinoma. Despite the great promise of these novel drugs, robust predictive biomarkers are needed to determine the patients who would maximally benefit. This review surveys the rationale and current state of the evidence for these new drugs and describes future directions actively being explored.
Collapse
Affiliation(s)
- Chaim Domb
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Jorge A. Garcia
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Pedro C. Barata
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Prateek Mendiratta
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Santosh Rao
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Jason R. Brown
- University Hospitals Seidman Cancer Center, 11100 Euclid Ave., Lakeside 1200, Mailstop LKS 5079, Cleveland, OH 44106, USA
- Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
28
|
Hsu R, Benjamin DJ. A narrative review of antibody-drug conjugates in EGFR-mutated non-small cell lung cancer. Front Oncol 2023; 13:1252652. [PMID: 38107063 PMCID: PMC10722249 DOI: 10.3389/fonc.2023.1252652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
In the past 15 years, non-small cell lung cancer (NSCLC) treatment has changed with the discovery of mutations and the development of new targeted therapies and immune checkpoint inhibitors. Epidermal growth factor receptor (EGFR) was the first mutation in NSCLC to have a drug that was FDA-approved in 2013. Osimertinib, a third-generation tyrosine kinase inhibitor, is approved as first-line therapy for advanced NSCLC and in the adjuvant setting for Stage IB-IIIA resected NSCLC. However, resistance to osimertinib is inevitably an issue, and thus patterns of resistance to EGFR-mutated NSCLC have been studied, including MET amplification, EGFR C797X-acquired mutation, human epidermal growth factor 2 (HER2) amplification, and transformation to small cell and squamous cell lung cancer. Current management for EGFR-mutated NSCLC upon progression of EGFR TKI is limited at this time to chemotherapy and radiation therapy, sometimes in combination with the continuation of osimertinib. Antibody-drug conjugates (ADCs) are made up of a monoclonal antibody linked to a cytotoxic drug and are an increasingly popular class of drug being studied in NSCLC. Trastuzumab deruxtecan has received accelerated FDA approval in HER2-mutated NSCLC. ADCs offer a possible solution to finding a new treatment that could bypass the intracellular resistance mechanism. In this review article, we summarize the mechanism of ADCs and investigational ADCs for EGFR-mutated NSCLC, which include targets to MET amplification, HER3, Trop2, and EGFR, along with other ADC targets being investigated in NSCLC, and discuss future directions that may arise with ADCs in EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Robert Hsu
- Department of Internal Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center and Hospital, University of Southern California, Los Angeles, CA, United States
| | | |
Collapse
|
29
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
30
|
Fu Z, Gao C, Wu T, Wang L, Li S, Zhang Y, Shi C. Peripheral neuropathy associated with monomethyl auristatin E-based antibody-drug conjugates. iScience 2023; 26:107778. [PMID: 37727735 PMCID: PMC10505985 DOI: 10.1016/j.isci.2023.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Since the successful approval of gemtuzumab ozogamicin, antibody-drug conjugates (ADCs) have emerged as a pivotal category of targeted therapies for cancer. Among these ADCs, the use of monomethyl auristatin E (MMAE) as a payload is prevalent in the development of ADC drugs, which has significantly improved overall therapeutic efficacy against various malignancies. However, increasing clinical observations have raised concerns regarding the potential nervous system toxicity associated with MMAE-based ADCs. Specifically, a higher incidence of peripheral neuropathy has been reported in ADCs incorporating MMAE as payloads. Considering the increasing global use of MMAE-based ADCs, it is imperative to provide an inclusive overview of diagnostic and management strategies for this adverse event. In this review, we examine current information and what future research directions are required to better understand and manage this type of clinical challenge.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| |
Collapse
|
31
|
Ji C, Li F, Yuan Y, Zhang H, Bian L, Zhang S, Wang T, Li J, Jiang Z. Novel Anti-HER2 Antibody-Drug Conjugates Versus T-DM1 for HER2-Positive Metastatic Breast Cancer After Tyrosine Kinase Inhibitors Treatment. Oncologist 2023; 28:e859-e866. [PMID: 37218076 PMCID: PMC10546815 DOI: 10.1093/oncolo/oyad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) have been the preferred regimens for human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC) after trastuzumab. Unfortunately, there is little data showing which ADCs should be chosen for those patients whose treatment with tyrosine kinase inhibitors (TKIs) failed. This study aims to analyze the efficacy and safety between novel anti-HER2 ADCs and trastuzumab emtansine (T-DM1) for those with TKIs failure. MATERIALS AND METHODS HER2-positive MBC using ADCs from January 2013 to June 2022 were included, and all of them were treated with TKIs. The primary study endpoint was progression-free survival (PFS), and the secondary study endpoints were objective response rate (ORR), clinical benefit rate (CBR), and safety. RESULTS A total of 144 patients with 73 patients in the novel anti-HER2 ADCs group and 71 patients in the T-DM1 group. In these novel ADCs, 30 patients received trastuzumab deruxtecan (T-Dxd), 43 patients receive other novel ADCs. The median PFS in the novel ADCs group and T-DM1 group were 7.0 months versus 4.0 months, respectively, and ORR was 54.8% versus 22.5%, CBR was 65.8% versus 47.9%, respectively. In subgroups analysis, the PFS were both significantly improved in patients receiving T-Dxd and other novel ADCs compared with T-DM1. The most common grades 3-4 adverse events in the novel anti-HER-2 ADCs group were neutropenia (20.5%) and thrombocytopenia (28.1%) in the T-DM1 group. CONCLUSIONS In patients with HER2-positive MBC previously treated with TKIs, both T-Dxd and other novel anti-HER2 ADCs yielded statistically significant better PFS than T-DM1 did, with tolerable toxicities.
Collapse
Affiliation(s)
- Chenchen Ji
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Feng Li
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yang Yuan
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Huiqiang Zhang
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Li Bian
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Shaohua Zhang
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Tao Wang
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jianbin Li
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Zefei Jiang
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
32
|
Brignole C, Calarco E, Bensa V, Giusto E, Perri P, Ciampi E, Corrias MV, Astigiano S, Cilli M, Loo D, Bonvini E, Pastorino F, Ponzoni M. Antitumor activity of the investigational B7-H3 antibody-drug conjugate, vobramitamab duocarmazine, in preclinical models of neuroblastoma. J Immunother Cancer 2023; 11:e007174. [PMID: 37775116 PMCID: PMC10546160 DOI: 10.1136/jitc-2023-007174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION B7-H3 is a potential target for pediatric cancers, including neuroblastoma (NB). Vobramitamab duocarmazine (also referred to as MGC018 and herein referred to as vobra duo) is an investigational duocarmycin-based antibody-drug conjugate (ADC) directed against the B7-H3 antigen. It is composed of an anti-B7-H3 humanized IgG1/kappa monoclonal antibody chemically conjugated through a cleavable valine-citrulline linker to a duocarmycin-hydroxybenzamide azaindole (vc-seco-DUBA). Vobra duo has shown preliminary clinical activity in B7-H3-expressing tumors. METHODS B7-H3 expression was evaluated by flow-cytometry in a panel of human NB cell lines. Cytotoxicity was evaluated in monolayer and in multicellular tumor spheroid (MCTS) models by the water-soluble tetrazolium salt,MTS, proliferation assay and Cell Titer Glo 3D cell viability assay, respectively. Apoptotic cell death was investigated by annexin V staining. Orthotopic, pseudometastatic, and resected mouse NB models were developed to mimic disease conditions related to primary tumor growth, metastases, and circulating tumor cells with minimal residual disease, respectively. RESULTS All human NB cell lines expressed cell surface B7-H3 in a unimodal fashion. Vobra duo was cytotoxic in a dose-dependent and time-dependent manner against all cell lines (IC50 range 5.1-53.9 ng/mL) and NB MCTS (IC50 range 17.8-364 ng/mL). Vobra duo was inactive against a murine NB cell line (NX-S2) that did not express human B7-H3; however, NX-S2 cells were killed in the presence of vobra duo when co-cultured with human B7-H3-expressing cells, demonstrating bystander activity. In orthotopic and pseudometastatic mouse models, weekly intravenous treatments with 1 mg/kg vobra duo for 3 weeks delayed tumor growth compared with animals treated with an irrelevant (anti-CD20) duocarmycin-ADC. Vobra duo treatment for 4 weeks further increased survival in both orthotopic and resected NB models. Vobra duo compared favorably to TOpotecan-TEMozolomide (TOTEM), the standard-of-care therapy for NB relapsed disease, with tumor relapse delayed or arrested by two or three repeated 4-week vobra duo treatments, respectively. Further increased survival was observed in mice treated with vobra duo in combination with TOTEM. Vobra duo treatment was not associated with body weight loss, hematological toxicity, or clinical chemistry abnormalities. CONCLUSION Vobra duo exerts relevant antitumor activity in preclinical B7-H3-expressing NB models and represents a potential candidate for clinical translation.
Collapse
Affiliation(s)
- Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elena Giusto
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Eleonora Ciampi
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Michele Cilli
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Derik Loo
- MacroGenics Inc, Rockville, Maryland, USA
| | | | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
33
|
Antonarelli G, Corti C, Tarantino P, Salimbeni BT, Zagami P, Marra A, Trapani D, Tolaney S, Cortes J, Curigliano G. Management of patients with HER2-positive metastatic breast cancer after trastuzumab deruxtecan failure. ESMO Open 2023; 8:101608. [PMID: 37467660 PMCID: PMC10372550 DOI: 10.1016/j.esmoop.2023.101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
The current treatment of patients with human epidermal growth factor receptor 2 (HER2)-positive advanced breast cancer (ABC) has been greatly impacted in the past decade by the introduction of antibody-drug conjugates (ADCs), which represent a relatively novel therapeutic class with the peculiar ability to deliver otherwise overtly toxic chemotherapeutics to tumor sites by exploiting the specificities of monoclonal antibodies. Indeed, drug engineering refinements in ADC design, such as through the introduction of cleavable linkers and hydrophobic payloads, resulted in improved patient outcomes in recent years. Two different ADCs, namely trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd), have already entered clinical practice for the treatment of HER2-positive ABC. In this scenario, T-DXd has shown to portend better survival outcomes compared to T-DM1, while leaving a large unsought area of unmet medical need upon T-DXd failure. Treatment decision and benefit of cancer drugs following T-DXd still represent an area of clinical controversy, where a preclinical investigation and clinical development should be prioritized. As the pace of innovation is currently accelerating, and with novel ADC formulations advancing in early-phase clinical trials, the whole BC field is changing at an unprecedented rate, with potential broadenings of therapeutic indications. In this review, we present the clinical landscape of HER2-positive advanced BC and discuss our vision on how to tackle T-DXd resistance, providing a perspective on the priority areas of the cancer research in this setting.
Collapse
Affiliation(s)
- G Antonarelli
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan; Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy. https://twitter.com/GabrAnton
| | - C Corti
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan; Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy. https://twitter.com/CCortiMD
| | - P Tarantino
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan; Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA. https://twitter.com/PTarantinoMD
| | - B T Salimbeni
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan; Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - P Zagami
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan; Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy. https://twitter.com/paolazagam
| | - A Marra
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy. https://twitter.com/antoniomarraMD
| | - D Trapani
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan; Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy. https://twitter.com/darioT_
| | - S Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA. https://twitter.com/stolaney1
| | - J Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona; Medical Scientia Innovation Research (MedSIR), Barcelona; Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain.
| | - G Curigliano
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan; Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.
| |
Collapse
|
34
|
Kou L, Chen X, Xie X, Wen Q, Li J, Li Y. The efficacy and safety of trastuzumab deruxtecan (T-DXd) in HER2-expressing solid tumours: a single-arm meta-analysis. Jpn J Clin Oncol 2023; 53:722-729. [PMID: 37114934 DOI: 10.1093/jjco/hyad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE We performed a meta-analysis to assess the efficacy and safety of T-DXd in the treatment of HER2-expressing solid tumours. METHODS We systematically searched PubMed, Web of Science, Embase and the Cochrane Library and collected studies published before March 17, 2023, on T-DXd for HER2-expressing tumours for a meta-analysis. We performed a subgroup analysis based on the different cancer types and the doses used. RESULTS There were 11 studies including 1349 HER2-expressing patients in this meta-analysis. The pooled ORR was 47.91%, and the pooled DCR was 87.01%. The mPFS and mOS combined were 9.63 and 10.71 months, respectively. The most common adverse reactions in grades 1-2 were decreased appetite (49.3%) and vomiting (43.0%). The netropemia (31.2%) and leukopenia (31.2%) were the most common grade 3 and higher adverse reactions. Subgroup analysis showed that breast cancer had the best ORR and DCR, with 66.96 and 96.52%, respectively. CONCLUSIONS Overall, the efficacy of T-DXd in treating HER2-expressing solid tumours is encouraging, especially breast and non-small cell lung cancers, and has an acceptable safety profile. However, concerns remain about potentially serious treatment adverse events (e.g. interstitial lung disease/pneumonia). More well-designed, large-scale randomized controlled trials are needed to demonstrate our study.
Collapse
Affiliation(s)
- Liqiu Kou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiu Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiaolu Xie
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of South west Medical University, Luzhou 646000, China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
35
|
Hurwitz J, Haggstrom LR, Lim E. Antibody-Drug Conjugates: Ushering in a New Era of Cancer Therapy. Pharmaceutics 2023; 15:2017. [PMID: 37631232 PMCID: PMC10458257 DOI: 10.3390/pharmaceutics15082017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have provided new therapeutic options and significant promise for patients with cancer, particularly where existing treatments are limited. Substantial effort in ADC development is underway globally, with 13 ADCs currently approved and many more in development. The therapeutic benefits of ADCs leverage the ability to selectively target cancer cells through antibody binding, resultant relative sparing of non-malignant tissues, and the targeted delivery of a cytotoxic payload. Consequently, this drug class has demonstrated activity in multiple malignancies refractory to standard therapeutic options. Despite this, limitations exist, including narrow therapeutic windows, unique toxicity profiles, development of therapeutic resistance, and appropriate biomarker selection. This review will describe the development of ADCs, their mechanisms of action, pivotal trials, and approved indications and identify common themes. Current challenges and opportunities will be discussed for this drug class in cancer therapeutics at a time when significant developments in antibody therapies, immunotherapy, and targeted agents are occurring.
Collapse
Affiliation(s)
- Joshua Hurwitz
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2053, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | - Elgene Lim
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2053, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
36
|
Schreiber AR, O'Bryant CL, Kabos P, Diamond JR. The emergence of targeted therapy for HER2-low triple-negative breast cancer: a review of fam-trastuzumab deruxtecan. Expert Rev Anticancer Ther 2023; 23:1061-1069. [PMID: 37742278 DOI: 10.1080/14737140.2023.2257885] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Metastatic triple-negative breast cancer (TNBC) is an aggressive sub-type of breast cancer. Despite recent advances, metastatic TNBC remains difficult to treat with limited targeted treatment options. Fam-trastuzumab deruxtecan (T-DXd), is a novel antibody-drug conjugate (ADC) targeting human epidermal growth factor receptor 2 (HER2) and is composed of a unique linker bound to the topoisomerase I inhibitor DXd. T-DXd has significant anti-tumor activity in patients with HER2-low TNBC. AREAS COVERED This review reports on the mechanism, pre-clinical/clinical studies, efficacy, and tolerability of T-DXd. A literature search was conducted via PubMed using keywords such as 'fam-trastuzumab deruxtecan,' 'Enhertu,' and 'HER2-low cancers.' EXPERT OPINION The Phase III Destiny-Breast04 Trial showed benefit in progression-free and overall survival in patients with HER2-low metastatic breast cancers treated with T-DXd compared to treatment of physician's choice chemotherapy. T-DXd is the first pharmaceutical to effectively target a HER2-low population with clinically meaningful efficacy in patients with HER2-low TNBC. Compared to chemotherapy, T-DXd has a similar safety profile, with the additional need for close monitoring for interstitial lung disease. Given the clinical activity of T-DXd in TNBC, it is likely there will be continued efforts to refine HER2-low diagnostics and to develop additional ADCs with other protein targets.
Collapse
Affiliation(s)
- Anna R Schreiber
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cindy L O'Bryant
- Department of Clinical Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Kabos
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer R Diamond
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
37
|
Qiu S, Zhang J, Wang Z, Lan H, Hou J, Zhang N, Wang X, Lu H. Targeting Trop-2 in cancer: Recent research progress and clinical application. Biochim Biophys Acta Rev Cancer 2023; 1878:188902. [PMID: 37121444 DOI: 10.1016/j.bbcan.2023.188902] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The development of new antitumor drugs depends mainly upon targeting tumor cells precisely. Trophoblast surface antigen 2 (Trop-2) is a type I transmembrane glycoprotein involved in Ca2+ signaling in tumor cells. It is highly expressed in various tumor tissues than in normal tissues and represents a novel and promising molecular target for caner targeted therapy. Up to now, the mechanisms and functions associated with Trop-2 have been extensively studied in a variety of solid tumors. According to these findings, Trop-2 plays an important role in cell proliferation, apoptosis, cell adhesion, epithelial-mesenchymal transition, as well as tumorigenesis and tumor progression. In addition, Trop-2 related drugs are also being developed widely. There are a number of Trop-2 related ADC drugs that have demonstrated potent antitumor activity and are currently been studied, such as Sacituzumab Govitecan (SG) and Datopotamab Deruxtecan (Dato-Dxd). In this study, we reviewed the progress of Trop-2 research in solid tumors. We also sorted out the composition and rationale of Trop-2 related drugs and summarized the related clinical trials. Finally, we discussed the current status of Trop-2 research and expanded our perspectives on its future research directions. Importantly, we found that Trop-2 targeted ADCs have great potential for combination with other antitumor therapies. Trop-2 targeted ADCs can reprogramme tumor microenvironment through multiple signaling pathways, ultimately activating antitumor immunity.
Collapse
Affiliation(s)
- Shuying Qiu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Jianping Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Zhuo Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hui Lan
- Department of Medical Oncology, Affiliated Lishui Hospital of Zhejiang University/Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Jili Hou
- Department of Medical Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, China
| | - Nan Zhang
- Department of Medical Oncology, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
38
|
Petersen ME, Brant MG, Lasalle M, Fung VKC, Rojas AH, Wong J, Das S, Barnscher SD, Rich JR, Winters GC. Structure-Activity Relationships of Bis-Intercalating Peptides and Their Application as Antibody-Drug Conjugate Payloads. J Med Chem 2023. [PMID: 37307297 DOI: 10.1021/acs.jmedchem.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic analogs based on the DNA bis-intercalating natural product peptides sandramycin and quinaldopeptin were investigated as antibody drug conjugate (ADC) payloads. Synthesis, biophysical characterization, and in vitro potency of 34 new analogs are described. Conjugation of an initial drug-linker derived from a novel bis-intercalating peptide produced an ADC that was hydrophobic and prone to aggregation. Two strategies were employed to improve ADC physiochemical properties: addition of a solubilizing group in the linker and the use of an enzymatically cleavable hydrophilic mask on the payload itself. All ADCs showed potent in vitro cytotoxicity in high antigen expressing cells; however, masked ADCs were less potent than payload matched unmasked ADCs in lower antigen expressing cell lines. Two pilot in vivo studies were conducted using stochastically conjugated DAR4 anti-FRα ADCs, which showed toxicity even at low doses, and site-specific conjugated (THIOMAB) DAR2 anti-cMet ADCs that were well tolerated and highly efficacious.
Collapse
Affiliation(s)
- Mark E Petersen
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Michael G Brant
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Manuel Lasalle
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Vincent K C Fung
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | | | - Jodi Wong
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Samir Das
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Stuart D Barnscher
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Jamie R Rich
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| | - Geoffrey C Winters
- Technical and Manufacturing Operations, Zymeworks Inc., Vancouver, BC V5T 1G4, Canada
| |
Collapse
|
39
|
Tarantino P, Ricciuti B, Pradhan SM, Tolaney SM. Optimizing the safety of antibody-drug conjugates for patients with solid tumours. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00783-w. [PMID: 37296177 DOI: 10.1038/s41571-023-00783-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Over the past 5 years, improvements in the design of antibody-drug conjugates (ADCs) have enabled major advances that have reshaped the treatment of several advanced-stage solid tumours. Considering the intended rationale behind the design of ADCs, which is to achieve targeted delivery of cytotoxic molecules by linking them to antibodies targeting tumour-specific antigens, ADCs would be expected to be less toxic than conventional chemotherapy. However, most ADCs are still burdened by off-target toxicities that resemble those of the cytotoxic payload as well as on-target toxicities and other poorly understood and potentially life-threatening adverse effects. Given the rapid expansion in the clinical indications of ADCs, including use in curative settings and various combinations, extensive efforts are ongoing to improve their safety. Approaches currently being pursued include clinical trials optimizing the dose and treatment schedule, modifications of each ADC component, identification of predictive biomarkers for toxicities, and the development of innovative diagnostic tools. In this Review, we describe the determinants of the toxicities of ADCs in patients with solid tumours, highlighting key strategies that are expected to improve tolerability and enable improvements in the treatment outcomes of patients with advanced-stage and those with early stage cancers in the years to come.
Collapse
Affiliation(s)
- Paolo Tarantino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Biagio Ricciuti
- Harvard Medical School, Boston, MA, USA
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shan M Pradhan
- Office of Oncologic Diseases, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Xu B, Ma F, Wang T, Wang S, Tong Z, Li W, Wu X, Wang X, Sun T, Pan Y, Yao H, Wang X, Luo T, Yang J, Zeng X, Zhao W, Cong XJ, Chen J. A Phase IIb, single arm, multicenter trial of sacituzumab govitecan in Chinese patients with metastatic triple-negative breast cancer who received at least two prior treatments. Int J Cancer 2023; 152:2134-2144. [PMID: 36621000 DOI: 10.1002/ijc.34424] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023]
Abstract
Refractory or relapsing metastatic triple-negative breast cancer (mTNBC) has a poor prognosis. Sacituzumab govitecan (SG) is a novel antibody-drug conjugate, targeting human trophoblast cell-surface antigen 2 (Trop-2). This is the first report of SG's efficacy and safety in Chinese patients with mTNBC. EVER-132-001 (NCT04454437) was a multicenter, single-arm, Phase IIb study in Chinese patients with mTNBC who failed ≥2 prior chemotherapy regimens. Eligible patients received 10 mg/kg SG on Days 1 and 8 of each 21-day treatment cycle, until disease progression/unacceptable toxicity. The primary endpoint was objective response rate (ORR) assessed by the Independent Review Committee. Secondary endpoints included: duration of response (DOR), clinical benefit rate (CBR), progression-free survival (PFS), overall survival (OS) and safety. Eighty female Chinese patients (median age 47.6 years; range 24-69.9 years) received ≥1 SG dose with a median of 8 treatment cycles by the cutoff date (August 6, 2021). Median number of prior systemic cancer treatments was 4.0 (range 2.0-8.0). ORR and CBR were reported 38.8% (95% confidence interval [CI]: 28.06-50.30) and 43.8% (95% CI, 32.68-55.30) of patients, respectively. The median PFS was 5.55 months (95% CI, 4.14-N/A). SG-related Grade ≥3 treatment-emergent adverse events (TEAEs) were reported in 71.3%, the most common were neutrophil count decreased (62.5%), white blood cell count decreased (48.8%) and anemia (21.3%); 6.3% discontinued SG because of TEAEs. SG demonstrated substantial clinical activity in heavily pretreated Chinese patients with mTNBC. The observed safety profile was generally manageable.
Collapse
Affiliation(s)
- Binghe Xu
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Breast Cancer, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shusen Wang
- Department of Medical Oncology, Sun Yet-Sen University Cancer Center, Guangzhou, China
| | - Zhongsheng Tong
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wei Li
- Department of Medical Oncology, The First Hospital of Jilin University, Changchun, China
| | - Xinhong Wu
- Department of Breast Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Xiaojia Wang
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Tao Sun
- Department of Medical Oncology, Liaoning Cancer Hospital &Institute, Shenyang, China
| | - Yueyin Pan
- Department of Medical Oncology, Anhui Provincial Hospital, Hefei, China
| | - Herui Yao
- Department of Medical Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Ting Luo
- Department of Head, Neck and Mammary Gland Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Yang
- Department of Medical Oncology, First Affiliated Hospital of Xian Jiaotong University, Xi'an, China
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Weihong Zhao
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | | | | |
Collapse
|
41
|
Popović M, Silovski T, Križić M, Dedić Plavetić N. HER2 Low Breast Cancer: A New Subtype or a Trojan for Cytotoxic Drug Delivery? Int J Mol Sci 2023; 24:ijms24098206. [PMID: 37175916 PMCID: PMC10179462 DOI: 10.3390/ijms24098206] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the great progress made in the understanding of the biological behavior of certain types of invasive breast cancer, there is still no single histological or molecular classification that encompasses such diversity and accurately predicts the clinical course of distinct breast cancer subtypes. The long-lasting classification of breast cancer as HER2-positive vs. HER2-negative has recently come into question with the discovery of new antibody drug conjugates (ADC), which are proven to be remarkably efficient in treating HER2-low breast cancer. The HER2-low paradigm has challenged the traditional understanding of HER2 overexpression and emphasized the need for more robust HER2 testing in order to encompass HER2 intratumoral heterogeneity and spatial distribution more accurately. It is yet to be seen if low HER2 will remain merely a marker of HER2-equipped tumors targetable with ADCs or if distinctive molecular and phenotypic groups within HER2-low tumors will eventually be discerned.
Collapse
Affiliation(s)
- Marina Popović
- Department of Oncology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tajana Silovski
- Department of Oncology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Marija Križić
- Department of Oncology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Natalija Dedić Plavetić
- Department of Oncology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
42
|
Giugliano F, Curigliano G, Tarantino P. HER2-low expression in breast oncology: treatment implications in the smart chemotherapy era. Eur J Cancer Prev 2023; 32:149-154. [PMID: 36693209 DOI: 10.1097/cej.0000000000000781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human epidermal growth factor 2 (HER2)-low breast cancers, defined as tumors exhibiting a HER2 IHC score of 1+ or 2+ nonamplified, represent an emerging targetable entity in the clinicopathologic landscape of breast cancer. Traditionally considered as not sensitive to HER2-targeting agents, these tumors have shown to be susceptible to a new class of drugs, namely antibody-drug conjugates (ADCs). Indeed, the DESTINY-Breast04 phase 3 trial demonstrated the remarkable activity of trastuzumab deruxtecan for treating both hormone-receptor (HR)-positive and triple-negative metastatic breast cancers that show HER2-low expression, reshaping treatment algorithms for these diseases. Concomitantly, the TROPiCS-02 and the ASCENT phase 3 trials have established the role of the anti-Trop-2 ADC sacituzumab govitecan for HR-positive and triple-negative breast cancer, respectively. A careful evaluation of these trials, with their inclusion/exclusion criteria, efficacy and toxicity results, is required in order to understand how best to treat HER2-low metastatic breast cancer in the context of a rapidly evolving therapeutic landscape. The purpose of this narrative review is to recapitulate the available evidence on the use of ADCs in the treatment of HER2-low breast cancer, providing a perspective on their current role in clinical practice.
Collapse
Affiliation(s)
- Federica Giugliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paolo Tarantino
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Dana-Farber Cancer Institute
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Unlocking the Resistance to Anti-HER2 Treatments in Breast Cancer: The Issue of HER2 Spatial Distribution. Cancers (Basel) 2023; 15:cancers15051385. [PMID: 36900178 PMCID: PMC10000152 DOI: 10.3390/cancers15051385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Approximately 15% of breast cancers are classified as HER2-positive, with an amplification of the ERBB2 gene and/or an overexpression of the HER2 protein. Up to 30% of HER2-positive breast cancers shows heterogeneity in HER2 expression and different patterns of spatial distribution, i.e., the variability in the distribution and expression of the HER2 protein within a single tumour. Spatial heterogeneity may potentially affect treatment, response, assessment of HER2 status and consequently, may impact on the best treatment strategy. Understanding this feature can help clinicians to predict response to HER2-targeted therapies and patient outcomes, and to fine tune treatment decisions. This review summarizes the available evidence on HER2 heterogeneity and spatial distribution and how this may affect current available treatment choices, exploring possible opportunities for overcoming this issue, such as novel pharmacological agents, belonging to the group of antibody-drug conjugates.
Collapse
|
44
|
Nicolò E, Boscolo Bielo L, Curigliano G, Tarantino P. The HER2-low revolution in breast oncology: steps forward and emerging challenges. Ther Adv Med Oncol 2023; 15:17588359231152842. [PMID: 36844387 PMCID: PMC9943960 DOI: 10.1177/17588359231152842] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
Approximately half of breast cancers (BCs), historically categorized as human epidermal growth factor receptor 2 (HER2)-negative, have low expression of HER2 defined as an immunohistochemical (IHC) score of 1+ or 2+ with negative in situ hybridization. Retrospective evidence suggest that HER2-low BC does not represent a distinct subtype from a biological and prognostic perspective. Nonetheless, it currently constitutes an essential biomarker to guide treatment selection and its introduction has led to reconsidering the binary classification of HER2 status according to which only patients with HER2-positive BC were thought to derive benefit from anti-HER2 therapies. Trastuzumab deruxtecan has recently been approved by the U.S. Food and Drug Administration for the treatment of patients with HER2-low metastatic BC based on the results of the DESTINY-Breast04 phase III trial, and other antibody-drug conjugates (ADCs) targeting HER2 are showing promising results. Treatment paradigms for both triple-negative and hormone receptor-positive BCs exhibiting HER2-low expression are thus rapidly evolving. Given its therapeutic implications, it is essential to accurately recognize the level of HER2 expression, and the development of more sensitive and reliable methods for HER2 testing and scoring is warranted, especially since the minimum threshold of HER2 expression required for T-DXd efficacy is currently under investigation. Given the signs of activity of T-DXd even in patients with HER2-0 (IHC 0) disease, an evolution in the way we define HER2-low is anticipated. Considering the expansion of the therapeutic armamentarium for BC patients, with several ADCs approaching the clinic, research efforts are needed to clarify whether the expression level of targets can enrich for responders to a given ADC as well as to understand mechanisms of resistance with the goal of optimizing the sequencing of ADCs.
Collapse
Affiliation(s)
- Eleonora Nicolò
- Division of New Drugs and Early Drug
Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology,
University of Milan, Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug
Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology,
University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug
Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology,
University of Milan, Milan, Italy
| | - Paolo Tarantino
- Division of New Drugs and Early Drug
Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology,
University of Milan, Milan, Italy
- Breast Oncology Center, Dana-Farber Cancer
Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, Boston, USA
| |
Collapse
|
45
|
Nicolò E, Tarantino P, Curigliano G. Biology and Treatment of HER2-Low Breast Cancer. Hematol Oncol Clin North Am 2023; 37:117-132. [PMID: 36435605 DOI: 10.1016/j.hoc.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Current guidelines recommend a dichotomous classification of HER2 as either positive or negative, to guide clinicians in treatment decisions. Until now, only patients with HER2-positive breast cancer (BC) had been demonstrated to derive clinical benefit from anti-HER2 therapies. However, novel ADCs have recently emerged, with activity in the large population of patients with HER2-low-expressing BC. Although it remains unclear whether HER2-low BC represents a distinct entity, given the therapeutic implication its crucial to accurately distinguish HER2-low from HER2-0 BC. Efforts are needed to standardize HER2 testing in BC and to introduce more sensitive assays to better discriminate HER2 levels.
Collapse
Affiliation(s)
- Eleonora Nicolò
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141 Milano MI, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paolo Tarantino
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141 Milano MI, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Breast Oncology Center, Dana-Farber Cancer Institute, Boston, USA; Harvard Medical School, Boston, USA.
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141 Milano MI, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
46
|
Antibody-drug conjugates in lung cancer: dawn of a new era? NPJ Precis Oncol 2023; 7:5. [PMID: 36631624 PMCID: PMC9834242 DOI: 10.1038/s41698-022-00338-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are one of fastest growing classes of oncology drugs in modern drug development. By harnessing the powers of both cytotoxic chemotherapy and targeted therapy, ADCs are unique in offering the potential to deliver highly potent cytotoxic agents to cancer cells which express a pre-defined cell surface target. In lung cancer, the treatment paradigm has shifted dramatically in recent years, and now ADCs are now joining the list as potential options for lung cancer patients. Since 2020, the first ADC for NSCLC patients has been FDA-approved (trastuzumab deruxtecan) and two ADCs have been granted FDA Breakthrough Therapy Designation, currently under evaluation (patritumab deruxtecan, telisotuzumab vedotin). Furthermore, several early-phase trials are assessing various novel ADCs, either as monotherapy or in combinations with advanced lung cancer, and more selective and potent ADCs are expected to become therapeutic options in clinic soon. In this review, we discuss the structure and mechanism of action of ADCs, including insights from pre-clinical work; we summarize the ADCs' recent progress in lung cancer, describe toxicity profiles of ADCs, and explore strategies designed to enhance ADC potency and overcome resistance. In addition, we discuss novel ADC strategies of interest in lung cancer, including non-cytotoxic payloads, such as immunomodulatory and anti-apoptotic agents.
Collapse
|
47
|
Taurelli Salimbeni B, Corvaja C, Valenza C, Zagami P, Curigliano G. The triple negative breast cancer drugs graveyard: a review of failed clinical trials 2017-2022. Expert Opin Investig Drugs 2022; 31:1203-1226. [PMID: 36413823 DOI: 10.1080/13543784.2022.2151433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) accounts for 15-20% of breast cancers (BC) and has the worst prognosis. It is characterized by the absence of both hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2). TNBC has more limited therapeutic options compared to other subtypes, meaning that there is still a long way to go to discover target treatments. AREAS COVERED Our review aims to summarize phase II/III clinical trials enrolling patients with TNBC that have been published between 2017 and 2022 but failed to reach their primary endpoint. We here try to emphasize the limitations and weaknesses noted in negative studies and to point out unexpected results which might be useful to enhance the therapeutic approach to TNBC disease. EXPERT OPINION A deeper understanding of the mechanisms behind TNBC heterogeneity allowed to enhance the knowledge of new prognostic and predictive biomarkers of response. However, it is also through several failed clinical trials that we were able to define new therapeutic approaches which improved TNBC patients' clinical outcomes. Nowadays, we still need to overcome several difficulties to fully recognize different intracellular and extracellular pathways that crosstalk in TNBC and the mechanisms of resistance to identify novel tailored-patients' therapies.
Collapse
Affiliation(s)
- Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Clinical and Molecular Medicine, Oncology Unit, "la Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Carla Corvaja
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - Paola Zagami
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| |
Collapse
|
48
|
Dias e Silva D, Andriatte GM, Pestana RC. Antibody-Drug Conjugates and Tissue-Agnostic Drug Development. Cancer J 2022; 28:462-468. [DOI: 10.1097/ppo.0000000000000633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Matikonda SS, McLaughlin R, Shrestha P, Lipshultz C, Schnermann MJ. Structure-Activity Relationships of Antibody-Drug Conjugates: A Systematic Review of Chemistry on the Trastuzumab Scaffold. Bioconjug Chem 2022; 33:1241-1253. [PMID: 35801843 DOI: 10.1021/acs.bioconjchem.2c00177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) are a rapidly growing class of cancer therapeutics that seek to overcome the low therapeutic index of conventional cytotoxic agents. However, realizing this goal has been a significant challenge. ADCs comprise several independently modifiable components, including the antibody, payload, linker, and bioconjugation method. Many approaches have been developed to improve the physical properties, potency, and selectivity of ADCs. The anti-HER-2 antibody trastuzumab, first approved in 1998, has emerged as an exceptional targeting agent for ADCs, as well as a broadly used platform for testing new technologies. The extensive work in this area enables the comparison of various linker strategies, payloads, drug-to-antibody ratios (DAR), and mode of attachment. In this review, these conjugates, ranging from the first clinically approved trastuzumab ADC, ado-trastuzumab emtansine (Kadcyla), to the latest variants are described with the goal of providing a broad overview, as well as enabling the comparison of existing and emerging conjugate technologies.
Collapse
Affiliation(s)
- Siddharth S Matikonda
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Ryan McLaughlin
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Pradeep Shrestha
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Carol Lipshultz
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| |
Collapse
|
50
|
Corti C, Antonarelli G, Valenza C, Nicolò E, Rugo H, Cortés J, Harbeck N, Carey LA, Criscitiello C, Curigliano G. Histology-agnostic approvals for antibody-drug conjugates in solid tumours: is the time ripe? Eur J Cancer 2022; 171:25-42. [PMID: 35696887 DOI: 10.1016/j.ejca.2022.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022]
Abstract
Several antibody-drug conjugates (ADCs) have been recently approved to treat solid tumours. Since ADCs seem to have activity in multiple malignancies sharing the expression of a specific antigen, they may be mirroring the experience of histology-agnostic-targeted treatments. So, the possibility to interpret the activity of some ADCs across different cancer types in a biomarker-driven perspective arises. However, relevant biological, methodological, and regulatory challenges should be highlighted and addressed, in order to grant ADCs biomarker-driven regulatory approvals in the next future. In this review, we discuss challenges and opportunities posed by the pan-histological expansion of ADCs in solid tumours. In particular, we provide an overview about technological and manufacturing advancements; we offer up-to-date highlights of the current evidence from clinical trials investigating ADCs in solid tumours; we discuss the need for the identification of optimal predictive biomarkers, as well as major methodological, statistical, and regulatory considerations for a biomarker-driven histology-agnostic approach.
Collapse
Affiliation(s)
- Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Hope Rugo
- San Francisco, UCSF Helen Diller Family Comprehensive Cancer Center Precision Medicine Cancer Building, San Francisco, CA, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Quironsalud Group, Barcelona, Spain; Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Spain
| | - Nadia Harbeck
- Breast Center, Dept OB&GYN and CCCMunich, LMU University Hospital, Munich, Germany
| | - Lisa A Carey
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|