1
|
Hanai R, Matsushita H, Minami A, Abe Y, Tachibana R, Watanabe K, Takeuchi H, Wakatsuki A. Effects of 10-Hydroxy-2-decenoic Acid and 10-Hydroxydecanoic Acid in Royal Jelly on Bone Metabolism in Ovariectomized Rats: A Pilot Study. J Clin Med 2023; 12:5309. [PMID: 37629354 PMCID: PMC10456009 DOI: 10.3390/jcm12165309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Although previous studies have demonstrated that royal jelly (RJ) may have estrogenic properties and prevent postmenopausal bone loss, the underlying mechanisms are not fully understood. This animal study aimed to investigate the effects of specific fatty acids of RJ, 10-hydroxy-2-decenoic acid (10H2DA) and 10-hydroxydecanoic acid (10HDAA), in ovariectomized rats. Ten-week-old female Wistar rats were divided into the Baseline, Sham, Ovx, Ovx + 10H2DA, and Ovx + 10HDAA groups. Rats in the Baseline group were sacrificed immediately, whereas those in the other groups were subjected to either a sham operation or bilateral ovariectomy. The animals in the Ovx + 10H2DA and Ovx + 10HDAA groups were fed diets containing 10H2DA and 10HDAA, respectively. Twelve weeks after surgery, the rats were sacrificed, and indices of bone mass and bone mechanics were analyzed. Femoral bone mineral density was significantly lower in the Ovx group than in the Sham group (p < 0.01). Administration of 10H2DA or 10HDAA did not ameliorate bone loss after ovariectomy. In addition, administration of these fatty acids diminished femur bone stiffness in ovariectomized rats (p < 0.01 and p < 0.05, respectively). These findings suggest that the favorable effects of RJ may not be exerted solely by 10H2DA or 10HDAA. However, these effects may be exhibited in combination with other RJ constituents.
Collapse
Affiliation(s)
- Rina Hanai
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Hiroshi Matsushita
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Shizuoka, Japan
| | - Yuki Abe
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Shizuoka, Japan
| | - Rika Tachibana
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Kazushi Watanabe
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Shizuoka, Japan
| | - Akihiko Wakatsuki
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| |
Collapse
|
2
|
Portier H, Benaitreau D, Pallu S. Does Physical Exercise Always Improve Bone Quality in Rats? Life (Basel) 2020; 10:life10100217. [PMID: 32977460 PMCID: PMC7598192 DOI: 10.3390/life10100217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
For decades, the osteogenic effect from different physical activities on bone in rodents remained uncertain. This literature review presents for the first time the effects on five exercise models (treadmill running, wheel running, swimming, resistance training and vibration modes) in three different experimental rat groups (males, females, osteopenic) on bone quality. The bone parameters presented are bone mineral density, micro-architectural and mechanical properties, and osteoblast/osteocyte and osteoclast parameters. This review shows that physical activities have a positive effect (65% of the results) on bone status, but we clearly observed a difference amongst the different protocols. Even if treadmill running is the most used protocol, the resistance training constitutes the first exercise model in term of osteogenic effects (87% of the whole results obtained on this model). The less osteogenic model is the vibration mode procedure (31%). It clearly appears that the gender plays a role on the bone response to swimming and wheel running exercises. Besides, we did not observe negative results in the osteopenic population with impact training, wheel running and vibration activities. Moreover, about osteoblast/osteocyte parameters, we conclude that high impact and resistance exercise (such jumps and tower climbing) seems to increase bone formation more than running or aerobic exercise. Among the different protocols, literature has shown that the treadmill running procedure mainly induces osteogenic effects on the viability of the osteocyte lineage in both males and females or ovariectomized rats; running in voluntary wheels contributes to a negative effect on bone metabolism in older male models; whole-body vertical vibration is not an osteogenic exercise in female and ovariectomized rats; whereas swimming provides controversial results in female models. For osteoclast parameters only, running in a voluntary wheel for old males, the treadmill running program at high intensity in ovariectomized rats, and the swimming program in a specific ovariectomy condition have detrimental consequences.
Collapse
Affiliation(s)
- Hugues Portier
- Laboratoire de Biologie Bioingénierie et Bioimagerie Ostéo-Articulaire (B3OA), Université Paris, UMR CNRS 7052, INSERM U1273, 10 Av de Verdun, 75010 Paris, France;
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
- Correspondence: ; Tel.: +33-782-309-433
| | - Delphine Benaitreau
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
| | - Stéphane Pallu
- Laboratoire de Biologie Bioingénierie et Bioimagerie Ostéo-Articulaire (B3OA), Université Paris, UMR CNRS 7052, INSERM U1273, 10 Av de Verdun, 75010 Paris, France;
- Collegium Science & Technique, 2 allée du château, Université d’Orléans. 45100 Orléans, France;
| |
Collapse
|
3
|
Geraets WG, Jonasson G, Hakeberg M. Changing trabecular patterns in panoramic radiographs of Swedish women during 25 years of follow-up. Dentomaxillofac Radiol 2020; 49:20190494. [PMID: 32207990 DOI: 10.1259/dmfr.20190494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The radiographic trabecular pattern on dental radiographs may be used to predict fractures. The aim of this study was to analyze longitudinal changes in the mandibles of 145 females between 1980 and 2005. METHODS Panoramic radiographs were obtained in 1980 and 2005. On 290 radiographs, regions of interest (ROIs) were selected in the ramus, angle and body. In all ROIs, the orientation was measured in 36 directions with the line frequency deviation method. The effects of ageing were analyzed for the fracture and the non-fracture groups separately. RESULTS During the follow-up, 61 females suffered fractures of the hip, wrist, spine, leg or arm. The fracture and non-fracture groups displayed dissimilar age changes in each investigated ROI. All significant changes pertained to increasing values of line frequency deviation. With increasing age, the trabecular network in the mandible lost details and the trabeculae became more aligned in their main direction. In the "ramus", the alignment was to the 110-120˚ axis, parallel to the posterior and anterior ramus border. In the "angle", the alignment was to the 135-150˚ axis, parallel to the oblique line, and in the "body" ROI to the 150-175˚ direction, approximately parallel to the occlusal plane and inferior cortex. CONCLUSION Most changes were consistent with the notion that the bone aged less severely in the non-fracture group. In the fracture group, the findings indicate that bone loss leads to redistribution of the remaining bone tissue in such a way that the trabeculae are accentuated perpendicular to the principal loading.
Collapse
Affiliation(s)
- Wil Gm Geraets
- Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Grethe Jonasson
- Research & Development Unit in Southern Ӓlvsborg County, Sven Eriksonplatsen 4, SE-50338 Borås, Sweden.,Department of Behavioral and Community Dentistry, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Box 450, 405 30 Gothenburg, Sweden
| | - Magnus Hakeberg
- Department of Behavioral and Community Dentistry, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Box 450, 405 30 Gothenburg, Sweden
| |
Collapse
|
4
|
Ferretti M, Cavani F, Roli L, Checchi M, Magarò MS, Bertacchini J, Palumbo C. Interaction among Calcium Diet Content, PTH (1-34) Treatment and Balance of Bone Homeostasis in Rat Model: The Trabecular Bone as Keystone. Int J Mol Sci 2019; 20:ijms20030753. [PMID: 30754633 PMCID: PMC6387065 DOI: 10.3390/ijms20030753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
The present study is the second step (concerning normal diet restoration) of the our previous study (concerning the calcium-free diet) to determine whether normal diet restoration, with/without concomitant PTH (1-34) administration, can influence amounts and deposition sites of the total bone mass. Histomorphometric evaluations and immunohistochemical analysis for Sclerostin expression were conducted on the vertebral bodies and femurs in the rat model. The final goals are (i) to define timing and manners of bone mass changes when calcium is restored to the diet, (ii) to analyze the different involvement of the two bony architectures having different metabolism (i.e., trabecular versus cortical bone), and (iii) to verify the eventual role of PTH (1-34) administration. Results evidenced the greater involvement of the trabecular bone with respect to the cortical bone, in response to different levels of calcium content in the diet, and the effect of PTH, mostly in the recovery of trabecular bony architecture. The main findings emerged from the present study are (i) the importance of the interplay between mineral homeostasis and skeletal homeostasis in modulating and guiding bone's response to dietary/metabolic alterations and (ii) the evidence that the more involved bony architecture is the trabecular bone, the most susceptible to the dynamical balance of the two homeostases.
Collapse
Affiliation(s)
- Marzia Ferretti
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Francesco Cavani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Laura Roli
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL of Modena, 41126 Modena, Italy.
| | - Marta Checchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Maria Sara Magarò
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Jessika Bertacchini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
| |
Collapse
|
5
|
Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur. BIOMED RESEARCH INTERNATIONAL 2015; 2015:304178. [PMID: 26064895 PMCID: PMC4434225 DOI: 10.1155/2015/304178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 12/30/2022]
Abstract
Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1) baseline, (2) normal diet for 4 weeks, (3) calcium-deprived diet for 4 weeks, and (4) calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34) 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis), an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis). Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.
Collapse
|
6
|
Bhagat YA, Rajapakse CS, Magland JF, Wald MJ, Song HK, Leonard MB, Wehrli FW. On the significance of motion degradation in high-resolution 3D μMRI of trabecular bone. Acad Radiol 2011; 18:1205-16. [PMID: 21816638 DOI: 10.1016/j.acra.2011.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/26/2011] [Accepted: 06/22/2011] [Indexed: 11/17/2022]
Abstract
RATIONALE AND OBJECTIVES Subtle subject movement during high-resolution three-dimensional micro-magnetic resonance imaging of trabecular bone (TB) causes blurring, thereby rendering the data unreliable for quantitative analysis. In this work, the effects of translational and rotational motion displacements were evaluated qualitatively and quantitatively. MATERIALS AND METHODS In experiment 1, motion was induced by applying various simulated and previously observed in vivo trajectories as phase shifts to k-space or rotation angles to k-space segments of a virtually motion-free data set. In experiment 2, images that were visually free of motion artifacts from two groups of 10 healthy individuals, differing in age, were selected to probe the effects of motion on TB parameters. In both experiments, images were rated for motion severity, and the scores were compared to a focus criterion, the normalized gradient squared. RESULTS Strong correlations were observed between the motion quality scores and the corresponding normalized gradient squared values (R(2) = 0.52-0.64, P < .01). The results from experiment 1 demonstrated consistently lower image quality and alterations in structural parameters of 9% to 45% with increased amplitude of displacements. In experiment 2, the significant differences in structural parameter group means of the motion-free images were lost upon motion degradation. Autofocusing, a postprocessing correction method, partially recovered the sharpness of the original motion-free images in 13 of 20 subjects. CONCLUSIONS Quantitative TB structural measures are highly sensitive to subtle motion-induced degradation, which adversely affects precision and statistical power. The results underscore the influence of subject movement in high-resolution three-dimensional micro-magnetic resonance imaging and its correction for TB structure analysis.
Collapse
Affiliation(s)
- Yusuf A Bhagat
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Mirsaidi A, Kleinhans KN, Rimann M, Tiaden AN, Stauber M, Rudolph KL, Richards PJ. Telomere length, telomerase activity and osteogenic differentiation are maintained in adipose-derived stromal cells from senile osteoporotic SAMP6 mice. J Tissue Eng Regen Med 2011; 6:378-90. [DOI: 10.1002/term.440] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
|
8
|
Ribeiro-Rotta RF, Lindh C, Pereira AC, Rohlin M. Ambiguity in bone tissue characteristics as presented in studies on dental implant planning and placement: a systematic review. Clin Oral Implants Res 2010; 22:789-801. [PMID: 21121957 DOI: 10.1111/j.1600-0501.2010.02041.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To survey definitions of bone tissue characteristics and methods of assessing them in studies of dental implant planning and placement. MATERIAL AND METHODOLOGY Three databases were searched using specified indexing terms. Three reviewers selected from the titles and retrieved abstracts in accordance with inclusion and exclusion criteria. Descriptions of bone tissue characteristics (bone quality, density and quantity) used before or during dental implant placement were searched for and categorized. RESULTS The search yielded 488 titles. One hundred and fort-nine publications were selected and read in full text. One hundred and eight were considered relevant. There were many different definitions and classification systems for bone tissue characteristics and examination protocols. Approximately two-third of the included publications reported the Lekholm & Zarb classification system for bone quality and quantity. However, only four studies implemented the Lekholm & Zarb system as originally proposed. A few publications described bone quality in accordance with the Misch or Trisi and Rao classifications systems. Assessment methods were often described only briefly (or not at all in one-fifth of the publications). Only one study presented the diagnostic accuracy of the assessment method, while only two presented observer performance. CONCLUSION The differing definitions and classification systems applied to dental implant planning and placement make it impossible to compare the results of various studies, particularly with respect to whether bone quality or quantity affect treatment outcomes. A consistent classification system for bone tissue characteristics is needed, as well as an appropriate description of bone tissue assessment methods, their diagnostic accuracy and observer performance.
Collapse
|
9
|
Wehrli FW, Rajapakse CS, Magland JF, Snyder PJ. Mechanical implications of estrogen supplementation in early postmenopausal women. J Bone Miner Res 2010; 25:1406-14. [PMID: 20200948 PMCID: PMC3153138 DOI: 10.1002/jbmr.33] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Whereas the structural implications of drug intervention are well established, there are few data on the possible mechanical consequences of treatment. In this work we examined the changes in elastic and shear moduli (EM and SM) in a region of trabecular bone in the distal radius and distal tibia of early postmenopausal women on the basis of MRI-based micro-finite-element (microFE) analysis. Whole-section axial stiffness (AS) encompassing both trabecular and cortical compartments was evaluated as well. The study was conducted on previously acquired high-resolution images at the two anatomic sites. Images were processed to yield a 3D voxel array of bone-volume fraction (BVF), which was converted to a microFE model of hexahedral elements in which tissue modulus was set proportional to voxel BVF. The study comprised 65 early postmenopausal women (age range 45 to 55 years), of whom 32 had chosen estrogen supplementation (estradiol group); the remainder had not (control group). Subjects had been scanned at baseline and 12 and 24 months thereafter. At the distal tibia, EM and SM were reduced by 2.9% to 5.5% in the control group (p < .05 to <.005), but there was no change in the estradiol subjects. AS decreased 3.9% (4.0%) in controls (p < .005) and increased by 5.8% (6.2%) in estradiol group subjects (p < .05) at 12 (24) months. At the distal radius, EM and SM changes from baseline were not significant, but at both time points AS was increased in estradiol group subjects and decreased in controls (p < .005 to <.05), albeit by a smaller margin than at the tibia. EM and SM were strongly correlated with BV/TV (r(2) = 0.44 to 0.92) as well as with topologic parameters expressing the ratio of plates to rods (r(2) = 0.45 to 0.82), jointly explaining up to 96% of the variation in the mechanical parameters. Finally, baseline AS was strongly correlated between the two anatomic sites (r(2) = 0.58), suggesting that intersubject variations in the bone's mechanical competence follows similar mechanisms. In conclusion, the results demonstrate that micro-MRI-based microFE models are suited for the study of the mechanical implications of antiresorptive treatment. The data further highlight the anabolic effect of short-term estrogen supplementation.
Collapse
Affiliation(s)
- Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
10
|
|
11
|
Sosa Henríquez M, Gómez de Tejada Romero M. La medicina basada en la evidencia y los fármacos aprobados para el tratamiento de la osteoporosis. Papel del calcio y la vitamina D. Rev Clin Esp 2009; 209:25-36. [DOI: 10.1016/s0014-2565(09)70355-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Vokes TJ, Pham A, Wilkie J, Kocherginsky M, Ma SL, Chinander M, Karrison T, Bris O, Giger ML. Reproducibility and sources of variability in radiographic texture analysis of densitometric calcaneal images. J Clin Densitom 2008; 11:211-20. [PMID: 18158263 PMCID: PMC2587361 DOI: 10.1016/j.jocd.2007.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 09/11/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
Radiographic texture analysis (RTA) is a computerized analysis of the spatial pattern of radiographic images used as a way of evaluating bone structure. We have shown that RTA performed on high-resolution heel images obtained using a portable densitometer differentiates subjects with and without osteoporotic fractures. In the present study, short-term precision of RTA was examined on densitometric heel images obtained from 33 subjects scanned 8 times each, with 3 observers placing a region of interest (ROI) 3 times on each image. The long-term precision was examined on images obtained from 10 subjects 3 times on each of 3 days separated by 1 week, with 2 observers placing an ROI on each image. The RTA features examined included the root mean square (RMS) variation, a measure of the contrast between the light and dark areas of the image, the first moment of the power spectrum, a measure of the spatial frequency of the trabecular pattern, and Minkowski fractal (MINK), a measure of roughness/smoothness of the trabecular pattern. The precision of the RTA features expressed as coefficient of variation ranged between the lowest of 0.5-0.7% for MINK and the highest of 14-16% for RMS. The short- and long-term precision was similar, and was not significantly influenced by repositioning and rescanning, or by ROI placement by the same or different observers. Significant sources of variability of RTA were the between-subject differences and differences between regions of the heel, but not differences due to repositioning, rescanning in the same position, or ROI placement by the same or different observers. We conclude that technical aspects of image acquisition and processing are adequate to allow further development of RTA of the densitometric images for clinical application as a method for noninvasive assessment of bone structure.
Collapse
Affiliation(s)
- Tamara J Vokes
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The use of visual assessment of dental radiographs for identifying women at risk of having osteoporosis: the OSTEODENT project. ACTA ACUST UNITED AC 2008; 106:285-93. [PMID: 18299223 DOI: 10.1016/j.tripleo.2007.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 07/20/2007] [Accepted: 09/04/2007] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the diagnostic accuracy of visual assessment of the trabecular pattern in intraoral periapical radiographs to identify female subjects at risk of having osteoporosis. STUDY DESIGN Six hundred female subjects underwent intraoral periapical radiography of the maxillary and mandibular premolar region. Five observers assessed the trabecular pattern as dense, heterogeneous, or sparse, with the aid of reference images. All patients received a central dual energy x-ray absorptiometry (DXA) examination of the hip and lumbar spine. RESULTS With sparse trabecular pattern as indicative of osteoporosis, mean specificity was high (91.6 for the upper jaw and 90.8 for the lower jaw) while the sensitivity was low (28.2 for the upper and lower jaw). The mean intraobserver agreement was comparable for radiographs of the upper and lower jaw (median kappa(w) 0.53 and 0.57, respectively). CONCLUSION Visual assessment of the trabecular pattern in intraoral periapical radiographs of premolar regions is a potential method to identify women at risk of having osteoporosis.
Collapse
|
14
|
Ladinsky GA, Vasilic B, Popescu AM, Wald M, Zemel BS, Snyder PJ, Loh L, Song HK, Saha PK, Wright AC, Wehrli FW. Trabecular structure quantified with the MRI-based virtual bone biopsy in postmenopausal women contributes to vertebral deformity burden independent of areal vertebral BMD. J Bone Miner Res 2008; 23:64-74. [PMID: 17784842 PMCID: PMC2663589 DOI: 10.1359/jbmr.070815] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED In postmenopausal women with a wide range of vertebral deformities, MRI-based structural measures of topology and scale at the distal radius are shown to account for as much as 30% of vertebral deformity, independent of integral vertebral BMD. INTRODUCTION Trabecular bone architecture has been postulated to contribute to overall bone strength independent of vertebral BMD measured by DXA. However, there has thus far been only sparse in vivo evidence to support this hypothesis. MATERIALS AND METHODS Postmenopausal women, 60-80 yr of age, were screened by DXA, and those with T-scores at either the hip or spine falling within the range of -2.5 +/- 1.0 were studied with the MRI-based virtual bone biopsy, along with heel broadband ultrasound absorption and pQCT of the tibia. The data from 98 subjects meeting the enrollment criteria were subjected to microMRI at the distal tibia and radius, and measures of topology and scale of the trabecular bone network were computed. A spinal deformity index (SDI) was obtained from morphometric measurements in midline sagittal MR images of the thoracic and lumbar spine to evaluate associations between structure and deformity burden. RESULTS A number of structural indices obtained at the distal radius were correlated with the SDI. Among these were the topological surface density (a measure of trabecular plates) and trabecular bone volume fraction, which were inversely correlated with SDI (p < 0.0001). Combinations of two structural parameters accounted for up to 30% of the variation in SDI (p < 0.0001) independent of spinal BMD, which was not significantly correlated. pQCT trabecular BMD was also weakly associated, whereas broadband ultrasound absorption was not. No significant association between SDI and structural indices were found at the tibia. CONCLUSIONS Structural measures at the distal radius obtained in vivo by microMRI explained a significant portion of the variation in total spinal deformity burden in postmenopausal women independent of areal BMD.
Collapse
Affiliation(s)
- Glenn A Ladinsky
- Division of Renal, Electrolytes and Hypertension, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Branimir Vasilic
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Andra M Popescu
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael Wald
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Babette S Zemel
- Division of Gastroenterology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peter J Snyder
- Division of Endocrinology, Diabetes and Metabolism, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Louise Loh
- Division of Endocrinology, Diabetes and Metabolism, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Hee Kwon Song
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Punam K Saha
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Alexander C Wright
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Leder BZ, Araujo AB, Travison TG, McKinlay JB. Racial and ethnic differences in bone turnover markers in men. J Clin Endocrinol Metab 2007; 92:3453-7. [PMID: 17579203 DOI: 10.1210/jc.2006-2695] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Whereas racial and ethnic differences in fracture risk and bone mineral density (BMD) in men have been well described, the influence of race and ethnicity on biochemical markers of bone turnover is less clear. METHODS To examine the relationship between bone turnover, BMD, and race and ethnicity in men, we measured BMD, serum intact osteocalcin (OC), and serum C-terminal telopeptides of type 1 collagen (CTx) in 1029 men (aged 30-79 yr) enrolled in the Boston Area Community Health/Bone Survey, a population-based random sample of Black, Hispanic, and White. Men with diseases or on medications known to affect bone metabolism were excluded from the analysis. Mean serum levels of OC and CTx were adjusted for age, month and time of blood sample, and 25-hydroxyvitamin D. RESULTS Compared with Black men, adjusted mean OC levels were 17.6 and 20.5% higher in Hispanic (P = 0.02) and White men (P < 0.01), respectively. There was no significant difference between White and Hispanic men. Adjusted mean CTx levels were 14.3% higher in White men, compared with Black men (P = 0.04), but no other differences were significant. OC declined by 0.4%/yr from age 30 to 65 yr and increased thereafter by 2.1%/yr. The age trend in CTx appeared to follow a pattern consistent with a quadratic function of age. Model-estimated annual percent changes within age decade were as follows: 30-39 yr, -2.5%; 40-49 yr, -1.4%; 50-59 yr, -0.3%; 60-69 yr, +0.9%; 70-79 yr, +1.7%. There was no variation in the shape of the age trend in OC or CTx by race or ethnic group. Correlations between bone turnover markers and BMD (adjusted for age, height, weight, serum 25-hydroxyvitamin D, and PTH and month and time of blood sample) were generally weak. CONCLUSIONS Bone turnover markers are lower in Black men, compared with White and Hispanic men. Age trends in bone turnover markers are not influenced by race or ethnicity. Future studies in this cohort and others are needed to explore further these reported differences in bone metabolism among Black, Hispanic, and White men.
Collapse
Affiliation(s)
- Benjamin Z Leder
- Endocrine Unit, Massachusetts General Hospital, Thier 1047, 50 Blossom Street, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
16
|
|
17
|
Schreiweis MA, Butler JP, Kulkarni NH, Knierman MD, Higgs RE, Halladay DL, Onyia JE, Hale JE. A proteomic analysis of adult rat bone reveals the presence of cartilage/chondrocyte markers. J Cell Biochem 2007; 101:466-76. [PMID: 17205546 DOI: 10.1002/jcb.21196] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The non-mineral component of bone matrix consists of 90% collagenous, 10% non-collagenous proteins. These proteins regulate mineralization, growth, cell signaling and differentiation, and provide bone with its tensile strength. Expression of bone matrix proteins have historically been studied individually or in small numbers owing to limitations in analytical technologies. Current mass-spectrometric and separations technologies allow a global view of protein expression patterns in complex samples. To our knowledge, no proteome profile of bone matrix has yet been reported. Therefore, we have used mass spectrometry as a tool to generate a profile of proteins present in the extracellular matrix of adult rat bone. Overall, 108 and 25 proteins were identified with high confidence in the metaphysis and diaphysis, respectively, using a bottom up proteomic technique. Twenty-one of these proteins were present in both the metaphysis and diaphysis including the bone specific proteins, osteocalcin, type I collagen, osteopontin, osteoregulin, and bone sialoprotein. Interestingly, type II collagen, a protein thought to be exclusively expressed in cartilage, was identified in both the metaphysis and diaphysis. This observation was validated by Western blot. Additionally, the presence of aggrecan, another protein expressed in cartilage was identified in the bone matrix extracts by Western blot. The proteome profile generated using this technology represents an initial survey of the acid soluble proteins of bone matrix which provides a reference for the analysis of deviations from the normal composition due to perturbations or disease states.
Collapse
|
18
|
Wehrli FW. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging 2007; 25:390-409. [PMID: 17260403 DOI: 10.1002/jmri.20807] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Osteoporosis is a multifactorial disorder of bone mineral homeostasis affecting the elderly. It is a major public health issue with significant socioeconomic consequences. Recent findings suggest that bone loss-the key manifestation of the disease-is accompanied by architectural deterioration, both affecting the bone's mechanical competence and susceptibility to fracture. This article reviews the potential of quantitative micro MRI (mu-MRI), including a discussion of the technical requirements for image acquisition, processing, and analysis for assessing the architectural implications of osteoporosis and as a means to monitor the response to treatment. With current technology, the resolution achievable in clinically acceptable scan times and necessary signal-to-noise ratio (SNR) is comparable to trabecular thickness. This limited spatial resolution regime demands processing and analysis algorithms designed to operate under such limiting conditions. It is shown that three different classes of structural parameters can be distinguished, characterizing scale, topology, and orientation. There is considerable evidence that osteoporotic bone loss affects all three classes but that topological changes, resulting from conversion of trabecular plates to rods, with the latter's eventual disconnection, are particularly prominent. Clinical applications discussed can be divided into those dealing with assessment of osteoporotic fracture risk as opposed to the study of the effect of disease progression and regression in response to treatment. Current data suggest that noninvasive assessment of cortical and trabecular bone (TB) architecture by mu-MRI may provide new surrogate endpoints to assess the efficacy of intervention in osteoporosis treatment and prevention.
Collapse
Affiliation(s)
- Felix W Wehrli
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Siffert RS, Kaufman JJ. Ultrasonic bone assessment: "the time has come". Bone 2007; 40:5-8. [PMID: 16949900 PMCID: PMC2380261 DOI: 10.1016/j.bone.2006.07.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/26/2006] [Accepted: 07/19/2006] [Indexed: 11/20/2022]
|
20
|
Abstract
In determining fracture risk, it has become apparent that bone mineral density accounts for only a portion of bone strength, with the remainder being determined by the material and structural properties of the bone tissue. Over the past 15 years, high-resolution MRI has provided a window into the structural nature of bone disease. Cross-sectional studies imaging the trabecular bone in patients with conditions ranging from postmenopausal osteoporosis to organ transplantation to renal osteodystrophy have all demonstrated a correlation of microarchitecture with fracture burden and have done so at a variety of anatomic sites. Recently, the utility of longitudinal studies for monitoring treatment in vivo has been demonstrated. This technique is noninvasive, involving no contrast or ionizing radiation, and provides useful clinical information independent of bone mineral density, thereby allowing for better classification of those at high risk for fracture.
Collapse
Affiliation(s)
- Glenn A Ladinsky
- Division of Renal, Electrolytes & Hypertension, University of Pennsylvania, 700 Clinical Research Bldg., 415 Curie Blvd., Philadelphia, PA 19104-4218, USA.
| | | |
Collapse
|
21
|
Ma YL, Zeng Q, Donley DW, Ste-Marie LG, Gallagher JC, Dalsky GP, Marcus R, Eriksen EF. Teriparatide increases bone formation in modeling and remodeling osteons and enhances IGF-II immunoreactivity in postmenopausal women with osteoporosis. J Bone Miner Res 2006; 21:855-64. [PMID: 16753016 DOI: 10.1359/jbmr.060314] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Transiliac bone biopsies were obtained from 55 women treated with teriparatide or placebo for 12-24 months. We report direct evidence that modeling bone formation at quiescent surfaces was present only in teriparatide-treated patients and bone formation at remodeling sites was higher with teriparatide than placebo. INTRODUCTION Recombinant teriparatide [human PTH(1-34)], a bone formation agent for the treatment of osteoporosis when given once daily subcutaneously, increases biochemical markers of bone turnover and activation frequency in histomorphometry studies. MATERIALS AND METHODS We studied the mechanisms underlying this bone-forming action of teriparatide at the basic multicellular unit by the appearance of cement lines, a method used to directly classify surfaces as modeling or remodeling osteons, and by the immunolocalization of IGF-I and IGF-II. Transiliac bone biopsies were obtained from 55 postmenopausal women treated with teriparatide 20 or 40 microg or placebo for 12-24 months (median, 19.8 months) in the Fracture Prevention Trial. RESULTS A dose-dependent relationship was observed in modeling and mixed remodeling/modeling trabecular hemiosteons. Trabecular and endosteal hemiosteon mean wall thicknesses were significantly higher in both teriparatide groups than in placebo. There was a dose-dependent relationship in IGF-II immunoreactive staining at all bone envelopes studied. The greater local IGF-II presence after treatment with teriparatide may play a key role in stimulating bone formation. CONCLUSIONS Direct evidence is presented that 12-24 months of teriparatide treatment induced modeling bone formation at quiescent surfaces and resulted in greater bone formation at remodeling sites, relative to placebo.
Collapse
Affiliation(s)
- Yanfei L Ma
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Recker RR, Barger-Lux J. Risedronate for prevention and treatment of osteoporosis in postmenopausal women. Expert Opin Pharmacother 2006; 6:465-77. [PMID: 15794737 DOI: 10.1517/14656566.6.3.465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Risedronate sodium is an N-containing bisphosphonate that has been approved for the prevention and treatment of osteoporosis in postmenopausal women. An increase in the rate of bone remodelling is a regular feature of oestrogen withdrawal during the menopausal transition, but excessive remodelling leads to bone fragility. Risedronate and similar compounds reduce the rate of bone remodelling by suppressing the action of osteoclasts. The antifracture efficacy of risedronate is impressive. In large clinical trials of postmenopausal women with osteoporosis-related fracture(s) at entry, the risk of incident vertebral and non-vertebral fractures was reduced by approximately 40%. In older women at risk for hip fracture, incident hip fractures were also reduced by approximately 40%. Antifracture efficacy develops within the first 6 months, and treatment has been followed for as long as 5 years without deleterious effects on bone. We await reports of experience with risedronate in 'real-world' cases of greater complexity (i.e., in patients with co-morbidities and medications that would have excluded them from published clinical trials).
Collapse
Affiliation(s)
- Robert R Recker
- Creighton University Medical Center, Osteoporosis Research Center, 601 North 30th Street, Suite 5766, Omaha, NE 68131, USA.
| | | |
Collapse
|