1
|
Zhang B, Zhou Z, Zhang Y, Miu Y, Jin C, Ding W, Zhao G, Xu Y. A sugary solution: Harnessing polysaccharide-based materials for osteoporosis treatment. Carbohydr Polym 2024; 345:122549. [PMID: 39227093 DOI: 10.1016/j.carbpol.2024.122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024]
Abstract
Osteoporosis, a prevalent skeletal disorder characterized by diminished bone density, compromised microstructure, and heightened fracture susceptibility, poses a growing public health concern exacerbated by aging demographics. Polysaccharides-based materials, derived from a diverse range of sources, exhibit exceptional biocompatibility. They possess a structure similar to the extracellular matrix, which can enhance cell adhesion in vivo, and demonstrate superior biological activity compared to artificial materials. This study delved into an in-depth examination of the various biomaterials and polysaccharide families associated with the treatment of osteoporosis. This article elucidates the benefits and attributes of polysaccharide-based materials in contrast to current clinical treatment modalities, delineating how these materials address prevalent challenges in the clinical management of osteoporosis. An overview of the prospective applications of polysaccharide-based materials in the future is also provided, as well as outlines the challenges that should be addressed prior to the clinical implementation of such materials.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Zhiyi Zhou
- Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214061, China
| | - Yige Zhang
- Department of Orthopaedics, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yan Miu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Chenyang Jin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Wenge Ding
- Department of Orthopaedics, Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Gang Zhao
- Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214061, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| |
Collapse
|
2
|
Zhao G, Wang Q, Duan N, Zhang K, Li Z, Sun L, Lu Y. Potential drug targets for osteoporosis identified: A Mendelian randomization study. Heliyon 2024; 10:e36566. [PMID: 39253131 PMCID: PMC11382026 DOI: 10.1016/j.heliyon.2024.e36566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Background Osteoporosis is a prevalent global health condition, primarily affecting the aging population, and several therapies for osteoporosis have been widely used. However, available drugs for osteoporosis are far from satisfactory because they cannot alleviate disease progression. This study aimed to explore potential drug targets for osteoporosis through Mendelian randomization analysis. Methods Using cis-expression quantitative trait loci (cis-eQTL) data of druggable genes and two genome-wide association studies (GWAS) datasets related to osteoporosis (UK Biobank and FinnGen cohorts), we employed mendelian randomization (MR) analysis to identify the druggable genes with causal relationships with osteoporosis. Subsequently, a series of follow-up analyses were conducted, such as colocalization analysis, cell-type specificity analysis, and correlation analysis with risk factors. The association between potential drug targets and osteoporosis was validated by qRT-PCR. Results Six druggable genes with causal relationships with osteoporosis were identified and successfully replicated, including ACPP, DNASE1L3, IL32, PPOX, ST6GAL1, and TGM3. Cell-type specificity analysis revealed that PPOX and ST6GAL1 were expressed in all cell types in the bone samples, while IL32, ACPP, DNASE1L3, and TGM3 were expressed in specific cell types. The GWAS data showed there were seven risk factors for osteoporosis, including vitamin D deficiency, COPD, physical activity, BMI, MMP-9, ALP and PTH. Furthermore, ACPP was associated with vitamin D deficiency and COPD; DNASE1L3 was linked to physical activity; IL32 correlated with BMI and MMP-9; and ST6GAL1 was related to ALP, physical activity, and MMP-9. Among these risk factors, only MMP-9 had a high genetic correlation with osteoporosis. The results of qRT-PCR demonstrated that IL32 was upregulated while ST6GAL1 was downregulated in peripheral blood of osteoporosis patients. Conclusion Our findings suggested that those six druggable genes offer potential drug targets for osteoporosis and require further clinical investigation, especially IL32 and ST6GAL1.
Collapse
Affiliation(s)
- Guolong Zhao
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Qian Wang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Ning Duan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Kun Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Zhong Li
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Liang Sun
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Yao Lu
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| |
Collapse
|
3
|
Choi JH, Sung SE, Kang KK, Lee S, Sung M, Park WT, Kim YI, Seo MS, Lee GW. Extracellular Vesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells Suppress RANKL-Induced Osteoclast Differentiation via miR122-5p. Biochem Genet 2024; 62:2830-2852. [PMID: 38017286 DOI: 10.1007/s10528-023-10569-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
Researchers are increasingly interested in cell therapy using mesenchymal stem cells (MSCs) as an alternative remedy for osteoporosis, with fewer side effects. Thus, we isolated and characterized extracellular vesicles (EVs) from human adipose tissue-derived MSCs (hMSCs) and investigated their inhibitory effects on RANKL-induced osteoclast differentiation. Purified EVs were collected from the supernatant of hMSCs by tangential flow filtration. Characterization of EVs included typical evaluation of the size and concentration of EVs by nanoparticle tracking analysis and morphology analysis using transmission electron microscopy. hMSC-EVs inhibited RANKL-induced differentiation of bone marrow-derived macrophages (BMDMs) into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by EV treatment of osteoclasts. In addition, EVs decreased RANKL-induced phosphorylation of p38 and JNK and expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. To elucidate which part of the hMSC-EVs plays a role in the inhibition of osteoclast differentiation, we analyzed miRNA profiles in hMSC-EVs. The results showed that has-miR122-5p was present at significantly high read counts. Overexpression of miR122-5p in BMDMs significantly inhibited RANKL-induced osteoclast differentiation and induced defects in F-actin ring formation and bone resorption. Our results also revealed that RANKL-induced phosphorylation of p38 and JNK and osteoclast-specific gene expression was decreased by miR122-5p transfection, which was consistent with the results of hMSC-EVs. These findings suggest that hMSC-EVs containing miR122-5p inhibit RANKL-induced osteoclast differentiation via the downregulation of molecular mechanisms and could be a preventive candidate for destructive bone diseases.
Collapse
Affiliation(s)
- Joo-Hee Choi
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Soo-Eun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Kyung-Ku Kang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sijoon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Minkyoung Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu, 42415, Republic of Korea
| | | | - Min-Soo Seo
- Department of Veterinary Tissue Engineering, Laboratory of Veterinary Tissue Engineering, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
4
|
Liu ZH, Xia Y, Ai S, Wang HL. Health risks of Bisphenol-A exposure: From Wnt signaling perspective. ENVIRONMENTAL RESEARCH 2024; 251:118752. [PMID: 38513750 DOI: 10.1016/j.envres.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17β-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
5
|
Li S, Liu G, Hu S. Osteoporosis: interferon-gamma-mediated bone remodeling in osteoimmunology. Front Immunol 2024; 15:1396122. [PMID: 38817601 PMCID: PMC11137183 DOI: 10.3389/fimmu.2024.1396122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
As the world population ages, osteoporosis, the most common disease of bone metabolism, affects more than 200 million people worldwide. The etiology is an imbalance in bone remodeling process resulting in more significant bone resorption than bone remodeling. With the advent of the osteoimmunology field, the immune system's role in skeletal pathologies is gradually being discovered. The cytokine interferon-gamma (IFN-γ), a member of the interferon family, is an important factor in the etiology and treatment of osteoporosis because it mediates bone remodeling. This review starts with bone remodeling process and includes the cellular and key signaling pathways of bone remodeling. The effects of IFN-γ on osteoblasts, osteoclasts, and bone mass are discussed separately, while the overall effects of IFN-γ on primary and secondary osteoporosis are summarized. The net effect of IFN-γ on bone appears to be highly dependent on the environment, dose, concentration, and stage of cellular differentiation. This review focuses on the mechanisms of bone remodeling and bone immunology, with a comprehensive discussion of the relationship between IFN-γ and osteoporosis. Finding the paradoxical balance of IFN-γ in bone immunology and exploring the potential of its clinical application provide new ideas for the clinical treatment of osteoporosis and drug development.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
| |
Collapse
|
6
|
Wang Y, Wen J, Lu T, Han W, Jiao K, Li H. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Bone-Related Diseases: Intercellular Communication Messengers and Therapeutic Engineering Protagonists. Int J Nanomedicine 2024; 19:3233-3257. [PMID: 38601346 PMCID: PMC11005933 DOI: 10.2147/ijn.s441467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024] Open
Abstract
Extracellular vesicles (EVs) can deliver various bioactive molecules among cells, making them promising diagnostic and therapeutic alternatives in diseases. Mesenchymal stem cell-derived EVs (MSC-EVs) have shown therapeutic potential similar to MSCs but with drawbacks such as lower yield, reduced biological activities, off-target effects, and shorter half-lives. Improving strategies utilizing biotechniques to pretreat MSCs and enhance the properties of released EVs, as well as modifying MSC-EVs to enhance targeting abilities and achieve controlled release, shows potential for overcoming application limitations and enhancing therapeutic effects in treating bone-related diseases. This review focuses on recent advances in functionalizing MSC-EVs to treat bone-related diseases. Firstly, we underscore the significance of MSC-EVs in facilitating crosstalk between cells within the skeletal environment. Secondly, we highlight strategies of functional-modified EVs for treating bone-related diseases. We explore the pretreatment of stem cells using various biotechniques to enhance the properties of resulting EVs, as well as diverse approaches to modify MSC-EVs for targeted delivery and controlled release. Finally, we address the challenges and opportunities for further research on MSC-EVs in bone-related diseases.
Collapse
Affiliation(s)
- Yanyi Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Juan Wen
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Tong Lu
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Wei Han
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
7
|
Jang HY, Kim JM, Kim JS, Kim BS, Lee YR, Bae JS. Protaetia brevitarsis Extract Attenuates RANKL-Induced Osteoclastogenesis by Inhibiting the JNK/NF-κB/PLCγ2 Signaling Pathway. Nutrients 2023; 15:3193. [PMID: 37513611 PMCID: PMC10383183 DOI: 10.3390/nu15143193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Protaetia brevitarsis (PB)-derived bioactive substances have been used as food and medicine in many Asian countries because of their antioxidant, antidiabetic, anti-cancer, and hepatoprotective properties. However, the effect of PB extracts (PBE) on osteoclast differentiation is unclear. In this study, we investigated the effect of PBE on RANKL-induced osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs). To investigate the cytotoxicity of PBE, the viability of BMMs was confirmed via MTT assay. Tartrate-resistant acid phosphatase (TRAP) staining and pit assays were performed to confirm the inhibitory effect of PBE on osteoclast differentiation and bone resorption. The expression levels of osteoclast differentiation-related genes and proteins were evaluated using quantitative real-time PCR and Western blotting. PBE attenuated osteoclastogenesis in BMMs in TRAP and pit assays without cytotoxicity. The expression levels of osteoclast marker genes and proteins induced by RANKL were decreased after PBE treatment. PBE suppressed osteoclastogenesis by inhibiting the RANKL-induced activated JNK/NF-κB/PLCγ2 signaling pathway and the expression of NFATc1 and c-Fos. Collectively, these results suggest that PBE could be a potential therapeutic strategy or functional product for osteoclast-related bone disease.
Collapse
Affiliation(s)
- Hye-Yeon Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jeong-Mi Kim
- Department of Biochemistry, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin, Jeonju 54907, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin, Jeonju 54907, Republic of Korea
- BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju 54896, Republic of Korea
| | - Byeong-Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry, Institute of Biomaterials-Implant, School of Dentistry, Wonkwang University, 460, Iksan 54538, Republic of Korea
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan 54538, Republic of Korea
| |
Collapse
|
8
|
Wang R, Luo H, Yang D, Yu B, Guo J, Shao L, Okamura H, Qiu L. Osteoblast Jmjd3 regulates osteoclastogenesis via EphB4 and RANKL signalling. Oral Dis 2023; 29:1613-1621. [PMID: 35181970 DOI: 10.1111/odi.14160] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Osteoblasts suppress osteoclastogenesis during the reversal phase of bone remodelling and the mechanism needs to be further investigated. Here, we investigated the role of histone demethylase Jumonji domain-containing 3 (Jmjd3) in osteoblasts on regulating osteoclastogenesis. METHODS Jmjd3 expression was silenced in osteoblasts. Osteoblasts and osteoclasts were co-cultured in direct or indirect contact ways, and osteoclastogenesis was determined by tartrate-resistant acid phosphatase (TRAP) staining and Western blotting. Additionally, Ephrin receptor B4 (EphB4) and receptor activator of nuclear factor-kappa Β ligand (RANKL) expression were quantified in osteoblasts via real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. Subsequently, EphB4 was overexpressed in osteoblasts and RANKL expression and osteoclastogenesis was quantified. RESULTS Osteoclastogenesis and marker protein expression levels was promoted when osteoclasts were co-cultured with Jmjd3-silenced osteoblasts. Silencing of Jmjd3 expression in osteoblasts decreased EphB4 expression, owing to suppression of demethylation of H3K27me3 on the promoter region of EphB4. Whereas RANKL expression was upregulated in Jmjd3-silenced osteoblasts. Overexpression of EphB4 in osteoblasts inhibited osteoclastogenesis and RANKL expression. CONCLUSION Jmjd3 in osteoblasts is a crucial regulator of osteoblast-to-osteoclast communication through EphB4-EphrinB2, RANKL-RANK and EphB4-RANKL signalling axes, suggesting the pivotal role of Jmjd3 in bone remodelling process in bone destruction disease such as chronic apical periodontitis.
Collapse
Affiliation(s)
- Rui Wang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Huikun Luo
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Di Yang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jiajie Guo
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lina Shao
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Lihong Qiu
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Lin Z, Xiong S, Lin Y, Li Z, Xie D, Lin X, Chen X, Lin X. Impact of leptin or melatonin on Sema4D overexpression-related bone metabolism. J Orthop Surg Res 2023; 18:285. [PMID: 37031174 PMCID: PMC10082985 DOI: 10.1186/s13018-023-03740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/21/2023] [Indexed: 04/10/2023] Open
Abstract
PURPOSE The current study aims to investigate the regulatory impact of leptin or melatonin on bone metabolism as well as the underlying mechanism in conjunction with Sema4D (monoclonal antibody to semaphorin 4D). METHODS Rats were used to create the osteoporosis model utilizing the OVX (OVariectomize) technique. Rat tibial specimens from each side were collected for three-dimensional reconstruction and Micro-CT scanning examination. The Hematoxylin-osinstaining (HE) staining technique was used to determine the pathological condition of bone tissues. The ELISA (Enzyme-Linked Immunosorbent Assay) assay was used to measure the amount of estradiol present in the serum. In the current study, there were six groups: control, OVX, OVX + NL (no load group), OVX + Sema4D, OVX + Sema4D + leptin, and OVX + Sema4D + MT (melatonin). Rats were given injections of the Sema4D or leptin overexpressing vectors via the tail vein in accordance with the aforementioned classification. By using a high-resolution micro-CT technology, 3D bone structure was discovered. The activity of tartrate-resistant acid phosphatase-5b (TRAP-5b) and bone-derived alkaline phosphatase (BALP) in serum was assessed using an ELISA. The number of osteoclasts in the metaphysis of the upper tibia was determined using TRAP (tartrate-resistant acid phosphatase) staining. Immunohistochemistry was used to find leptin and bone morphogenetic protein-2 (BMP-2) expressions in bone tissue. RESULTS The BV/TV (Bone volume/Tissue volume), Tb.N (Trabecular number), BMD (Bone Mineral Density), and BMC (Bone Mineral Content) levels were significantly higher in the OVX + Sema4D + leptin and OVX + Sema4D + MT groups compared to OVX + NL, while Tb.Sp (Trabecular separation) levels were significantly lower. In contrast to the OVX group, the bone trabeculae in the OVX + Sema4D + leptin and OVX + Sema4D + MT groups had a relatively complete structure and tended to be organized closely. The amount of bone trabeculae grew drastically, whereas the proportion of TRAP-positive osteoclasts declined dramatically. BMP-2 and leptin were also elevated, while BALP and TRAP-5b activity was reduced. CONCLUSION Leptin or melatonin improved Sema4d's role in trabecular bone microstructure, bone production, and repairment of trabecular bone loss in osteoporosis rats.
Collapse
Affiliation(s)
- Zhenen Lin
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China.
| | - Shengren Xiong
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Yu Lin
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Zhaohui Li
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Dan Xie
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Xuchao Lin
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Xuesheng Chen
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| | - Xueyi Lin
- Department of Orthopaedics, Fuzhou Second Hospital, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, China
| |
Collapse
|
10
|
Cell surface-bound La protein regulates the cell fusion stage of osteoclastogenesis. Nat Commun 2023; 14:616. [PMID: 36739273 PMCID: PMC9899215 DOI: 10.1038/s41467-023-36168-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/16/2023] [Indexed: 02/06/2023] Open
Abstract
Multinucleated osteoclasts, essential for skeletal remodeling in health and disease, are formed by the fusion of osteoclast precursors, where each fusion event raises their bone-resorbing activity. Here we show that the nuclear RNA chaperone, La protein has an additional function as an osteoclast fusion regulator. Monocyte-to-osteoclast differentiation starts with a drastic decrease in La levels. As fusion begins, La reappears as a low molecular weight species at the osteoclast surface, where it promotes fusion. La's role in promoting osteoclast fusion is independent of canonical La-RNA interactions and involves direct interactions between La and Annexin A5, which anchors La to transiently exposed phosphatidylserine at the surface of fusing osteoclasts. Disappearance of cell-surface La, and the return of full length La to the nuclei of mature, multinucleated osteoclasts, acts as an off switch of their fusion activity. Targeting surface La in a novel explant model of fibrous dysplasia inhibits excessive osteoclast formation characteristic of this disease, highlighting La's potential as a therapeutic target.
Collapse
|
11
|
Gehlen J, Qiu W, Schädli GN, Müller R, Qin XH. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds. Acta Biomater 2023; 156:49-60. [PMID: 35718102 DOI: 10.1016/j.actbio.2022.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023]
Abstract
Tomographic volumetric bioprinting (VBP) has recently emerged as a powerful tool for rapid solidification of cell-laden hydrogel constructs within seconds. However, its practical applications in tissue engineering requires a detailed understanding of how different printing parameters (concentration of resins, laser dose) affect cell activity and tissue formation. Herein, we explore a new application of VBP in bone tissue engineering by merging a soft gelatin methacryloyl (GelMA) bioresin (<5 kPa) with 3D endothelial co-culture to generate heterocellular bone-like constructs with enhanced functionality. To this, a series of bioresins with varying concentrations of GelMA and lithium Phenyl(2,4,6-trimethylbenzoyl)phosphinate (LAP) photoinitiator were formulated and characterized in terms of photo-reactivity, printability and cell-compatibility. A bioresin with 5% GelMA and 0.05% LAP was identified as the optimal formulation for VBP of complex perfusable constructs within 30 s at high cell viability (>90%). The fidelity was validated by micro-computed tomography and confocal microscopy. Compared to 10% GelMA, this bioresin provided a softer and more permissive environment for osteogenic differentiation of human mesenchymal stem cells (hMSCs). The expression of osteoblastic markers (collagen-I, ALP, osteocalcin) and osteocytic markers (podoplanin, Dmp1) was monitored for 42 days. After 21 days, early osteocytic markers were significantly increased in 3D co-cultures of hMSCs with human umbilical vein endothelial cells (HUVECs). Additionally, we demonstrate VBP of a perfusable, pre-vascularized model where HUVECs self-organized into an endothelium-lined channel. Altogether, this work leverages the benefits of VBP and 3D co-culture, offering a promising platform for fast scaled biofabrication of 3D bone-like tissues with unprecedented functionality. STATEMENT OF SIGNIFICANCE: This study explores new strategies for ultrafast bio-manufacturing of bone tissue models by leveraging the advantages of tomographic volumetric bioprinting (VBP) and endothelial co-culture. After screening the properties of a series of photocurable gelatin methacryloyl (GelMA) bioresins, a formulation with 5% GelMA was identified with optimal printability and permissiveness for osteogenic differentiation of human mesenchymal stem cells (hMSC). We then established 3D endothelial co-cultures to test if the heterocellular interactions may enhance the osteogenic differentiation in the printed environments. This hypothesis was evidenced by increased gene expression of early osteocytic markers in 3D co-cultures after 21 days. Finally, VBP of a perfusable cell-laden tissue construct is demonstrated for future applications in vascularized tissue engineering.
Collapse
Affiliation(s)
- Jenny Gehlen
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | - Wanwan Qiu
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | - Gian Nutal Schädli
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland.
| |
Collapse
|
12
|
Cho E, Che X, Ang MJ, Cheon S, Lee J, Kim KS, Lee CH, Lee SY, Yang HY, Moon C, Park C, Choi JY, Lee TH. Peroxiredoxin 5 regulates osteogenic differentiation through interaction with hnRNPK during bone regeneration. eLife 2023; 12:80122. [PMID: 36735291 PMCID: PMC9897727 DOI: 10.7554/elife.80122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Peroxiredoxin 5 (Prdx5) is involved in pathophysiological regulation via the stress-induced cellular response. However, its function in the bone remains largely unknown. Here, we show that Prdx5 is involved in osteoclast and osteoblast differentiation, resulting in osteoporotic phenotypes in Prdx5 knockout (Prdx5Ko) male mice. To investigate the function of Prdx5 in the bone, osteoblasts were analyzed through immunoprecipitation (IP) and liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) methods, while osteoclasts were analyzed through RNA-sequencing. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as a potential binding partner of Prdx5 during osteoblast differentiation in vitro. Prdx5 acts as a negative regulator of hnRNPK-mediated osteocalcin (Bglap) expression. In addition, transcriptomic analysis revealed that in vitro differentiated osteoclasts from the bone marrow-derived macrophages of Prdx5Ko mice showed enhanced expression of several osteoclast-related genes. These findings indicate that Prdx5 might contribute to the maintenance of bone homeostasis by regulating osteoblast differentiation. This study proposes a new function of Prdx5 in bone remodeling that may be used in developing therapeutic strategies for bone diseases.
Collapse
Affiliation(s)
- Eunjin Cho
- Department of Oral Biochemistry, Korea Mouse Phenotype Center (KMPC), Dental Science Research Institute, School of Dentistry, Chonnam National UniversityGwangjuRepublic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, Skeletal Diseases Analysis Center, Korea Mouse Phenotyping Center (KMPC), School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Mary Jasmin Ang
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los BañosLos BañosPhilippines
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National UniversityGwangjuRepublic of Korea,Proteomics Core Facility, Biomedical Research Institute, Seoul National University HospitalSeoulRepublic of Korea
| | - Jinkyung Lee
- Department of Oral Biochemistry, Korea Mouse Phenotype Center (KMPC), Dental Science Research Institute, School of Dentistry, Chonnam National UniversityGwangjuRepublic of Korea
| | - Kwang Soo Kim
- Department of Microbiology, Department of Molecular Medicine (BK21plus), Chonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Chang Hoon Lee
- Therapeutic & Biotechnology Division, Drug Discovery Platform Research Center, Research Institute of Chemical Technology (KRICT)DaejeonRepublic of Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science InstituteOchangRepublic of Korea
| | - Hee-Young Yang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation FoundationDaeguRepublic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National UniversityGwangjuRepublic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National UniversityGwangjuRepublic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, BK21 Plus KNU Biomedical Convergence Program, Skeletal Diseases Analysis Center, Korea Mouse Phenotyping Center (KMPC), School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Korea Mouse Phenotype Center (KMPC), Dental Science Research Institute, School of Dentistry, Chonnam National UniversityGwangjuRepublic of Korea
| |
Collapse
|
13
|
Wang Y, Wang Q, Xu Q, Li J, Zhao F. Single-cell RNA sequencing analysis dissected the osteo-immunology microenvironment and revealed key regulators in osteoporosis. Int Immunopharmacol 2022; 113:109302. [DOI: 10.1016/j.intimp.2022.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
14
|
Abraham DM, Herman C, Witek L, Cronstein BN, Flores RL, Coelho PG. Self-assembling human skeletal organoids for disease modeling and drug testing. J Biomed Mater Res B Appl Biomater 2021; 110:871-884. [PMID: 34837719 DOI: 10.1002/jbm.b.34968] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 01/09/2023]
Abstract
Skeletal conditions represent a considerable challenge to health systems globally. Barriers to effective therapeutic development include a lack of accurate preclinical tissue and disease models. Most recently, work was attempted to present a novel whole organ approach to modeling human bone and cartilage tissues. These self-assembling skeletal organoids mimic the cellular milieu and extracellular organization present in native tissues. Bone organoids demonstrated osteogenesis and micro vessel formation, and cartilage organoids showed evidence of cartilage development and maturation. Skeletal organoids derived from both bone and cartilage tissues yielded spontaneous polarization of their cartilaginous and bone components. Using these hybrid skeletal organoids, we successfully generated "mini joint" cultures, which we used to model inflammatory disease and test Adenosine (A2A ) receptor agonists as a therapeutic agent. The work and respective results indicated that skeletal organoids can be an effective biological model for tissue development and disease as well as to test therapeutic agents.
Collapse
Affiliation(s)
- Diana M Abraham
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA
| | - Calvin Herman
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA
| | - Lukasz Witek
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Bruce N Cronstein
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Paulo G Coelho
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
15
|
Effects of Six-Week Resistance Training with or without Vibration on Metabolic Markers of Bone Metabolism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189860. [PMID: 34574778 PMCID: PMC8466580 DOI: 10.3390/ijerph18189860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Acute and protracted effects of resistive exercise (RE) and resistive exercise with whole-body vibration (RVE) on metabolic markers of bone metabolism were investigated. Twenty-six men participated in a randomized training program including RE (n = 13; age = 23.4 ± 1.4 years) or RVE (n = 13; age = 24.3 ± 3.3 years). During the first session, acute C-terminal telopeptide of type I collagen (CTX) responses decreased by 12.9% (standard deviation, SD 13.7%) after 2 min, followed by a 15.5% (SD 36.0%) increase at 75 min after exercise (both p < 0.001). Procollagen type I amino terminal propeptide (P1NP) increased by 12.9% (SD 9.1%) at 2 min (p < 0.001) but no change occurred at 75 min. Sclerostin showed prolonged responses from 2 to 75 min post-exercise in the first session (p < 0.001). Acute responses at the first session were comparable between groups for CTX and P1NP, acute sclerostin responses were substantially greater in RE than in RVE (p = 0.003). No significant differences were noted in the resting baseline levels of CTX, P1NP, or sclerostin from the beginning to the end of the six-week progressive training. The present study therefore did not demonstrate any sizeable enhancement of bone turnover that could match the effects that have been repeatably made in response to countermeasure exercise during bed rest.
Collapse
|
16
|
Buckels EJ, Bolam SM, Tay ML, Matthews BG. The Impact of Maternal High-Fat Diet on Bone Microarchitecture in Offspring. Front Nutr 2021; 8:730037. [PMID: 34527691 PMCID: PMC8435578 DOI: 10.3389/fnut.2021.730037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
The incidence of obesity in women of reproductive age has significantly increased over the past 100 years. There is a well-established connection between maternal obesity during pregnancy and an increased risk of developing non-communicable cardiometabolic diseases in her offspring. This mini-review focuses on evidence examining the effect of maternal high-fat diet (HFD) on skeletal development and bone health in later life in offspring. The majority of rodent studies indicate that maternal HFD generally negatively affects both embryonic bone development and bone volume in adult animals. Details surrounding the mechanisms of action that drive changes in the skeleton in offspring remain unclear, although numerous studies suggest that some effects are sex-specific. Human studies in this area are limited but also suggest that HFD during pregnancy may impair bone formation and increase fracture risk during childhood. Given the consequences of low bone mass and deranged bone microarchitecture for offspring, advances in our understanding of the developmental origins of bone health is critical in the battle against osteoporosis.
Collapse
Affiliation(s)
- Emma J Buckels
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Scott M Bolam
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand.,Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Mei Lin Tay
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Qiu X, Liu Y, Shen H, Wang Z, Gong Y, Yang J, Li X, Zhang H, Chen Y, Zhou C, Lv W, Cheng L, Hu Y, Li B, Shen W, Zhu X, Tan LJ, Xiao HM, Deng HW. Single-cell RNA sequencing of human femoral head in vivo. Aging (Albany NY) 2021; 13:15595-15619. [PMID: 34111027 PMCID: PMC8221309 DOI: 10.18632/aging.203124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/13/2021] [Indexed: 11/25/2022]
Abstract
The homeostasis of bone metabolism depends on the coupling and precise regulation of various types of cells in bone tissue. However, the communication and interaction between bone tissue cells at the single-cell level remains poorly understood. Thus, we performed single-cell RNA sequencing (scRNA-seq) on the primary human femoral head tissue cells (FHTCs). Nine cell types were identified in 26,574 primary human FHTCs, including granulocytes, T cells, monocytes, B cells, red blood cells, osteoblastic lineage cells, endothelial cells, endothelial progenitor cells (EPCs) and plasmacytoid dendritic cells. We identified serine protease 23 (PRSS23) and matrix remodeling associated protein 8 (MXRA8) as novel bone metabolism-related genes. Additionally, we found that several subtypes of monocytes, T cells and B cells were related to bone metabolism. Cell-cell communication analysis showed that collagen, chemokine, transforming growth factor and their ligands have significant roles in the crosstalks between FHTCs. In particular, EPCs communicated with osteoblastic lineage cells closely via the "COL2A1-ITGB1" interaction pair. Collectively, this study provided an initial characterization of the cellular composition of the human FHTCs and the complex crosstalks between them at the single-cell level. It is a unique starting resource for in-depth insights into bone metabolism.
Collapse
Affiliation(s)
- Xiang Qiu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zun Wang
- Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Junxiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaohua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Huixi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Wanqiang Lv
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Boyang Li
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Wendi Shen
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Xuezhen Zhu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Hong-Wen Deng
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
18
|
Chen X, Liu Y, Meng B, Wu D, Wu Y, Cao Y. Interleukin-20 inhibits the osteogenic differentiation of MC3T3-E1 cells via the GSK3β/β-catenin signalling pathway. Arch Oral Biol 2021; 125:105111. [PMID: 33798924 DOI: 10.1016/j.archoralbio.2021.105111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the effects of interleukin-20 (IL-20) on the osteogenic differentiation of MC3T3-E1 cells. METHODS The pre-osteoblast line MC3T3-E1 was treated with different concentrations of IL-20 (0, 2, 20 and 100 ng/mL), and the cell viability was detected by the CCK8 assay. To assess the influence of IL-20 on osteogenic differentiation, alkaline phosphatase (ALP) activity and Alizarin red staining were performed at predetermined times. The expression levels of Runt-related transcription factor 2 (RUNX2), Osterix (Osx), glycogen synthase kinase-3β (GSK-3β) and β-catenin were detected by qRT-PCR and Western blotting analyses. 5 nmol/L lithium chloride (LiCl) was used as GSK-3β inhibitor. RESULTS IL-20 promoted cell proliferation but decreased ALP activity and mineralization. Moreover, IL-20 downregulated the expression of RUNX2, Osx and β-catenin but upregulated the level of GSK-3β. CONCLUSIONS The results suggest that IL-20 could inhibit the osteogenic differentiation of MC3T3-E1 cells via the GSK3β/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yuanbo Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bowen Meng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dongle Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yilin Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
19
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
20
|
Oka S, Li X, Taguchi C, Wang C, Tewari N, Arikawa K, Liu Y, Bhawal UK. Treatment with 50 μM Sodium Fluoride Suppresses Aging-Induced Alveolar Bone Resorption in Mice. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shunichi Oka
- Department of Anesthesiology, Nihon University School of Dentistry
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology
| | - Chieko Taguchi
- Department of Oral Health, Nihon University School of Dentistry at Matsudo
| | - Chen Wang
- Department of Histology and Embryology, Nihon University School of Dentistry at Matsudo
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences
| | - Kazumune Arikawa
- Department of Oral Health, Nihon University School of Dentistry at Matsudo
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology
| | - Ujjal K. Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
21
|
Jang HY, Lee HS, Noh EM, Kim JM, You YO, Lee G, Koo JH, Lim H, Ko S, Kim JS, Lee JH, Lee YR. Aqueous extract of Chrysanthemum morifolium Ramat. inhibits RANKL-induced osteoclast differentiation by suppressing the c-fos/NFATc1 pathway. Arch Oral Biol 2020; 122:105029. [PMID: 33387850 DOI: 10.1016/j.archoralbio.2020.105029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/08/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The flower of chrysanthemum, used worldwide as a medicinal and edible product, has shown various bioactivities, such as anti-inflammatory, antioxidant, anti-tumorigenic, and hepatoprotective activities, as well as cardiovascular protection. However, the effect of Chrysanthemum morifolium Ramat. on the regulation of osteoclast differentiation has not yet been reported. In this study, we aimed to investigate the inhibitory effect of Chrysanthemum morifolium Ramat. water extract (CME) on RANKL-induced osteoclast differentiation in mouse bone marrow-derived macrophages (BMMs). STUDY DESIGN Bone marrow-derived macrophages (BMMs) isolated from the C57BL/6 J mice. The viability of BMMs was detected with MTT assays. Inhibitory effects of CME on osteoclast differentiation and bone resorption was measured by TRAP staining and Pit assay. Osteoclast differentiation-associated gene expression were assessed by Real-time quantitative polymerase chain reaction. Intracellular signaling molecules was assessed by western blot. RESULTS CME significantly inhibited osteoclast differentiation in BMMs without cytotoxicity, besides inhibiting MAPK/c-fos and PLCγ2/CREB activation. The inhibitory effects of CME on differentiation-related signaling molecules resulted in significant repression of NFATc1 expression, which is a key transcription factor in osteoclast differentiation, fusion, and activation. CONCLUSION Our results confirmed the inhibition of RANKL-induced PLCγ2/CREB/c-fos/NFATc1 activation by CME during osteoclast differentiation. The findings collectively suggested CME as a traditional therapeutic agent for osteoporosis, RA, and periodontitis.
Collapse
Affiliation(s)
- Hye-Yeon Jang
- Department of Biochemistry, Institute of Medical Science, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Hwa-Suk Lee
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry, Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, 460, Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jeong-Mi Kim
- Department of Oral Biochemistry, Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, 460, Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yong-Ouk You
- Department of Oral Biochemistry, Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, 460, Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Guemsan Lee
- Department of Herbology, Wonkwang University School of Korean Medicine, Wonkwang University, 460, Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jeung-Hyun Koo
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Hyungsun Lim
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Seonghoon Ko
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute of Medical Science, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Jun Ho Lee
- Department of Anesthesiology and Pain Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk 54896, Republic of Korea.
| | - Young-Rae Lee
- Department of Oral Biochemistry, Institute of Biomaterial-Implant, College of Dentistry, Wonkwang University, 460, Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|
22
|
Pantoprazole (PPZ) Inhibits RANKL-Induced Osteoclast Formation and Function In Vitro and Prevents Lipopolysaccharide- (LPS-) Induced Inflammatory Calvarial Bone Loss In Vivo. Stem Cells Int 2020; 2020:8829212. [PMID: 33354217 PMCID: PMC7737473 DOI: 10.1155/2020/8829212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Bone remodeling is a process delicately balanced between osteoclastic bone resorption and osteoblastic bone formation. Osteoclasts (OCs) are multinucleated giant cells formed through the fusion of monocytic precursors of the hematopoietic stem cells lineage. OCs are the exclusive cells responsible for the resorption and degradation of the mineralized bone matrix. Pantoprazole (PPZ), a proton pump inhibitor (PPI), is commonly prescribed to reduce excess gastric acid production for conditions such as gastroesophageal reflux disease and peptic ulcer disease. Studies have found contradictory effects of PPI therapy on bone metabolism due to the lack of understanding of the exact underlying mechanism. In this study, we found that PPZ inhibits receptor activator of nuclear factor-κB (NF-κB) ligand- (RANKL-) induced osteoclastogenesis from bone marrow monocytic/macrophage (BMMs) precursors and the bone-resorbing activity of mature OCs. Correspondingly, the expression of OC marker genes was also attenuated. At the molecular level, PPZ treatment was associated with reduced activation of the ERK MAPK signaling pathways crucial to OC differentiation. Additionally, the in vivo administration of PPZ protected mice against lipopolysaccharide- (LPS-) induced inflammatory calvarial bone erosion, as a result of the reduced number and activity of OCs on the calvarial bone surface. Although PPI use is associated with increased risk of osteoporosis and bone fractures, our study provides evidence for the direct inhibitory effect of PPZ on OC formation and bone resorption in vitro and in vivo, suggesting a potential therapeutic use of PPZ in the treatment of osteolytic disease with localized bone destruction.
Collapse
|
23
|
Ferreira MR, Zambuzzi WF. Platelet microparticles load a repertory of miRNAs programmed to drive osteogenic phenotype. J Biomed Mater Res A 2020; 109:1502-1511. [PMID: 33258548 DOI: 10.1002/jbm.a.37140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/12/2020] [Accepted: 11/28/2020] [Indexed: 12/28/2022]
Abstract
Autologous platelet-rich plasma accelerates bone healing by releasing biomolecules during their degranulation process, which are transported by vesicle-like structures called platelet microparticles (PMPs). However, the underlying mechanisms regulating the osteogenic differentiation by PMP-released miRs remain poorly understood and this prompted us to better address this issue. Thus, miRNAseq expression profiles (E-GEOD-76789) were downloaded from ArrayExpress database. GEO2R was performed to evaluate the differential expression, and mirnatap R package was used to find targets for differentially expressed miRNAs. An extend protein-protein (ePPI) network for osteogenic marker proteins was generated using String, and DAVID tools were used to perform gene ontology and KEGG pathway analysis from ePPI and miRNAs targets. Our data show that ePPI network was composed by 232 nodes and 2,175 edges, with a clustering coefficient of 0.546. MCODE was able to identify seven clusters contained in the ePPI network, and the two that presented a score above 10 were used in further analysis. Conversely, 15,944 different targets were found as down-expressed while 5,715 different targets were up-expressed. Among the downregulated 75 miRNAs, 70 have predicted targets present in the ePPI network, while the 21 upregulated miRNAs have 19 predicted targets in the ePPI network. Our study provides a registry of miRNAs that play a central role in regulating osteogenic phenotype, which might have potential therapeutic applications in bone regeneration and bone tissue engineering.
Collapse
Affiliation(s)
- Marcel Rodrigues Ferreira
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, campus Botucatu, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, campus Botucatu, São Paulo, Brazil
| |
Collapse
|
24
|
Teng Z, Zhu Y, Zhang X, Teng Y, Lu S. Osteoporosis Is Characterized by Altered Expression of Exosomal Long Non-coding RNAs. Front Genet 2020; 11:566959. [PMID: 33281871 PMCID: PMC7689021 DOI: 10.3389/fgene.2020.566959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by a decrease in bone mass and degradation of the bone microstructure, which increases bone fragility and risk of fracture. However, the molecular mechanisms of osteoporosis remain unclear. The current study attempts to elucidate the role of exosomal long non-coding RNA in the pathology of osteoporosis. Peripheral blood was collected from persons with (OP) or without (NC) osteoporosis, and the serum exosomes were extracted using ultra centrifugation process. Total RNA of exosomes was isolated, and the lncRNAs profiling was done using RNA-Seq experiments. In silico analysis resulted in identification of 393 differentially expressed (DE) lncRNAs in OP vs. NC, with 296 that were up-regulated and 97 were down-regulated. Bioinformatics analysis of potential target mRNAs of lncRNAs with cis-acting mechanism showed that mRNAs co-located with DE lncRNAs were highly enriched in osteoporosis-related pathways, including regulation of insulin secretion, activation of MAPK activity, cellular response to metal ions, fucosylation and proteolysis. Together these results suggest that lncRNAs of serum exosomes could play a significant role in development of osteoporosis and such information may be helpful in developing diagnostic markers and therapeutic modules for osteoporosis.
Collapse
Affiliation(s)
- Zhaowei Teng
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China.,Yunnan Key Laboratory of Digital Orthopedics, The First People's Hospital of Yunnan Province, Kunming, China.,The 920 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun Zhu
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Xiguang Zhang
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yirong Teng
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Sheng Lu
- Yunnan Key Laboratory of Digital Orthopedics, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
25
|
Molecular Mechanisms and Emerging Therapeutics for Osteoporosis. Int J Mol Sci 2020; 21:ijms21207623. [PMID: 33076329 PMCID: PMC7589419 DOI: 10.3390/ijms21207623] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is the most common chronic metabolic bone disease. It has been estimated that more than 10 million people in the United States and 200 million men and women worldwide have osteoporosis. Given that the aging population is rapidly increasing in many countries, osteoporosis could become a global challenge with an impact on the quality of life of the affected individuals. Osteoporosis can be defined as a condition characterized by low bone density and increased risk of fractures due to the deterioration of the bone architecture. Thus, the major goal of treatment is to reduce the risk for fractures. There are several treatment options, mostly medications that can control disease progression in risk groups, such as postmenopausal women and elderly men. Recent studies on the basic molecular mechanisms and clinical implications of osteoporosis have identified novel therapeutic targets. Emerging therapies targeting novel disease mechanisms could provide powerful approaches for osteoporosis management in the future. Here, we review the etiology of osteoporosis and the molecular mechanism of bone remodeling, present current pharmacological options, and discuss emerging therapies targeting novel mechanisms, investigational treatments, and new promising therapeutic approaches.
Collapse
|
26
|
Arteaga-Blanco LA, Mojoli A, Monteiro RQ, Sandim V, Menna-Barreto RFS, Pereira-Dutra FS, Bozza PT, Resende RDO, Bou-Habib DC. Characterization and internalization of small extracellular vesicles released by human primary macrophages derived from circulating monocytes. PLoS One 2020; 15:e0237795. [PMID: 32833989 PMCID: PMC7444811 DOI: 10.1371/journal.pone.0237795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane-limited structures derived from outward budding of the plasma membrane or endosomal system that participate in cellular communication processes through the transport of bioactive molecules to recipient cells. To date, there are no published methodological works showing step-by-step the isolation, characterization and internalization of small EVs secreted by human primary macrophages derived from circulating monocytes (MDM-derived sEVs). Thus, here we aimed to provide an alternative protocol based on differential ultracentrifugation (dUC) to describe small EVs (sEVs) from these cells. Monocyte-derived macrophages were cultured in EV-free medium during 24, 48 or 72 h and, then, EVs were isolated from culture supernatants by (dUC). Macrophages secreted a large amount of sEVs in the first 24 h, with size ranging from 40-150 nm, peaking at 105 nm, as evaluated by nanoparticle tracking analysis and scanning electron microscopy. The markers Alix, CD63 and CD81 were detected by immunoblotting in EV samples, and the co-localization of CD63 and CD81 after sucrose density gradient ultracentrifugation (S-DGUC) indicated the presence of sEVs from late endosomal origin. Confocal fluorescence revealed that the sEVs were internalized by primary macrophages after three hours of co-culture. The methodology here applied aims to contribute for enhancing reproducibility between the limited number of available protocols for the isolation and characterization of MDM-derived sEVs, thus providing basic knowledge in the area of EV methods that can be useful for those investigators working with sEVs released by human primary macrophages derived from circulating monocytes.
Collapse
Affiliation(s)
| | - Andrés Mojoli
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Sandim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | | | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Smargiassi A, Bertacchini J, Checchi M, Potì F, Tenedini E, Montosi G, Magarò MS, Amore E, Cavani F, Ferretti M, Grisendi G, Maurel DB, Palumbo C. WISP-2 expression induced by Teriparatide treatment affects in vitro osteoblast differentiation and improves in vivo osteogenesis. Mol Cell Endocrinol 2020; 513:110817. [PMID: 32439416 DOI: 10.1016/j.mce.2020.110817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/24/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023]
Abstract
The Osteocyte, recognized as a major orchestrator of osteoblast and osteoclast activity, is the most important key player during bone remodeling processes. Imbalances occurring during bone remodeling, caused by hormone perturbations or by mechanical loading alterations, can induce bone pathologies such as osteoporosis. Recently, the active fraction of parathormone, PTH (1-34) or Teriparatide (TPTD), was chosen as election treatment for osteoporosis. The effect of such therapy is dependent on the temporal manner of administration. The molecular reasons why the type of administration regimen is so critical for the fate of bone remodeling are numerous and not yet well known. Our study attempts to analyze diverse signaling pathways directly activated in osteocytes upon TPTD treatment. By means of gene array analysis, we found many molecules upregulated or downregulated in osteocytes. Later, we paid attention to Wisp-2, a protein involved in the Wnt pathway, that is secreted by MLO-Y4 cells and increases upon TPTD treatment and that is able to positively influence the early phases of osteogenic differentiation. We also confirmed the pro osteogenic property of Wisp-2 during mesenchymal stem cell differentiation into the preliminary osteoblast phenotype. The same results were confirmed with an in vivo approach confirming a remarkable Wisp-2 expression in metaphyseal trabecular bone. These results highlighted the anabolic roles unrolled by osteocytes in controlling the action of neighboring cells, suggesting that the perturbation of certain signaling cascades, such as the Wnt pathway, is crucial for the positive regulation of bone formation.
Collapse
Affiliation(s)
- Alberto Smargiassi
- Indiana Center for Musculoskeletal Health (ICMH), University Building, Indianapolis, IN, USA
| | - Jessika Bertacchini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy.
| | - Marta Checchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Potì
- Department of Medicine and Surgery, Unit of Neurosciences, University of Parma, Parma, Italy
| | - Elena Tenedini
- Center for Genome Research, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuliana Montosi
- Center for Hemochromatosis, Department of Internal Medicine II, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Sara Magarò
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Emanuela Amore
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Cavani
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marzia Ferretti
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Delphine B Maurel
- Pharmaceutical Sciences Department, University of Bordeaux, BioTis, INSERM Unit 1026, Bordeaux, France
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
28
|
Liu Z, Liang W, Kang D, Chen Q, Ouyang Z, Yan H, Huang B, Jin D, Chen Y, Li Q. Increased Osteoblastic Cxcl9 Contributes to the Uncoupled Bone Formation and Resorption in Postmenopausal Osteoporosis. Clin Interv Aging 2020; 15:1201-1212. [PMID: 32764906 PMCID: PMC7381095 DOI: 10.2147/cia.s254885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Estrogen deficiency leads to bone loss in postmenopausal osteoporosis, because bone formation, albeit enhanced, fails to keep pace with the stimulated osteoclastic bone resorption. The mechanism driving this uncoupling is central to the pathogenesis of postmenopausal osteoporosis, which, however, remains poorly understood. We previously found that Cxcl9 secreted by osteoblasts inhibited osteogenesis in bone, while the roles of Cxcl9 on osteoclastic bone resorption and osteoporosis are unclear. Materials and Methods Postmenopausal osteoporosis mouse model was established by bilateral surgical ovariectomy (OVX). In situ hybridization was performed to detect Cxcl9 mRNA expression in bone. ELISA assay was conducted to assess Cxcl9 concentrations in bone and serum. Cxcl9 activity was blocked by its neutralizing antibody. Micro-CT was performed to determine the effects of Cxcl9 neutralization on bone structure. Cell Migration and adhesion assay were conducted to evaluate the effects of Cxcl9 on osteoclast activity. TRAP staining and Western blot were performed to assess osteoclast differentiation. CXCR3 antagonist NBI-74,330 or ERK antagonist SCH772984 was administered to osteoclast to study the effects of Cxcl9 on CXCR3/ERK signaling. Results Cxcl9 was expressed and secreted increasingly in OVX mice bone. Neutralizing Cxcl9 in bone marrow prevented bone loss in the mice by facilitating bone formation as well as inhibiting bone resorption. In vitro, Cxcl9 secreted from osteoblasts facilitated osteoclast precursors adhesion, migration and their differentiation into mature osteoclasts. The positive role of osteoblastic Cxcl9 on osteoclasts was eliminated by blocking CXCR3/ERK signaling in osteoclasts. Estrogen negatively regulated Cxcl9 expression and secretion in osteoblasts, explaining the increased Cxcl9 concentration in OVX mice bone. Conclusion Our study illustrates the roles of Cxcl9 in inhibiting bone formation and stimulating bone resorption in osteoporotic bone, therefore providing a possible therapeutic target to the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Wenquan Liang
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Dawei Kang
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Qingjing Chen
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Zhicong Ouyang
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Huibo Yan
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Dadi Jin
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Yinkui Chen
- Department of Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Kim JH, Kim N. Bone Cell Communication Factors Provide a New Therapeutic Strategy for Osteoporosis. Chonnam Med J 2020; 56:94-98. [PMID: 32509555 PMCID: PMC7250673 DOI: 10.4068/cmj.2020.56.2.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Bone homeostasis is strictly regulated by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Many studies have shown that osteoclasts affect osteoblasts, and vice versa, through diffusible paracrine factors, cell-cell contact, and cell-bone matrix interactions to achieve the correct balance between osteoclastic and osteoblastic activities in the basic multicellular unit (BMU). The strict regulation that occurs during bone remodeling hinders the long-term use of the currently available antiresorptive agents and anabolic agents for the treatment of osteoporosis. To overcome these limitations, it is necessary to develop novel agents that simultaneously inhibit bone resorption, promote bone formation, and decouple resorption from formation. Therefore, a more detailed understanding of the mechanisms involved in osteoclast-osteoblast communication during bone remodeling is necessary.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
30
|
Sun X, Li X, Qi H, Hou X, Zhao J, Yuan X, Ma X. MiR-21 nanocapsules promote early bone repair of osteoporotic fractures by stimulating the osteogenic differentiation of bone marrow mesenchymal stem cells. J Orthop Translat 2020; 24:76-87. [PMID: 32695607 PMCID: PMC7349941 DOI: 10.1016/j.jot.2020.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Objective The healing of osteoporotic fractures in the elderly patients is a difficult clinical problem. Currently, based on the internal fixation of fractures, the available drug treatments mainly focus on either inhibiting osteoclast function, such as bisphosphonate, calcitonin, oestrogen or promoting osteogenesis, such as parathyroid hormones. However, the availability of current antiosteoporotic drugs in promoting osteoporotic fracture healing is limited. The objective of the present study was to investigate the ability of the MiR-21/nanocapsule to enhance the early bone repair of osteoporotic fractures. Methods Based on the presence of matrix metalloproteinases that are overexpressed at the fracture site, we designed the matrix metalloproteinase–sensitive nanocapsules which were formed by in situ free radical polymerisation on the surface of MiR-21 with 2-(methacryloyloxy) ethyl phosphorylcholine and the bisacryloylated VPLGVRTK peptide. The MiR-21/nanocapsule [n (miR-21)] and O-carboxymethyl chitosan (CMCS) were mixed until they formed a gel-like material [CMCS/n (miR-21)] with good fluidity and injectability. Thirty elderly Sprague Dawley (SD) rats (female, 14-month-old, 380 ± 10 g) were subjected to bilateral removal of the ovaries (ovariectomised). All rats were subjected to bilateral bone defects (2 mm diameter) of the proximal tibia and randomly divided into three groups (groups A, B, and C): separately injected with CMCS/n (miR-21), CMCS/n (NC-miR), and saline. Micro-computed tomography (CT) imaging was performed to evaluate newly formed bone volume and connectivity. Nondecalcified histology and toluidine blue staining were performed to measure the effects of CMCS/n (miR-21) on bone repair. In vitro, the effect of n (miR-21) on osteogenic differentiation to bone marrow mesenchymal stem cells (BMSCs) which derived from the ovariectomised rat model was observed. Results The morphology of n (miR-21) was a regular spherical nanocapsule with a uniform small size (25–35 nm). The results confirmed that n (miR-21) could be efficiently phagocytosed by BMSCs and released in the cytoplasm to promote osteogenesis. The expression level of alkaline phosphatase and Runt-related transcription factor 2 mRNA in the n (miR-21) group was higher than that in the n (NC-miR) group. Animal experiments proved that CMCS/n (miR-21) produced better bone repair compared with the CMCS/n (NC-miR) group in the early stages of fracture healing at 4 weeks. In the late stage of fracture healing (8 weeks), micro-CT quantitative analysis showed that the new bone trabeculae in the CMCS/n (miR-21) group has decreased compared with the CMCS/n (NC-miR) group. In the CMCS/n (miR-21) group, the new cancellous bone had been absorbed, and the process of bone healing was almost completed. In contrast, the new bone in the CMCS/n (NC-miR) and the control groups was still in the healing process. Conclusion The cytological tests confirmed that n (miR-21) can promote osteogenic differentiation of BMSCs derived from the osteoporosis rat model. Furthermore, the results of animal tests demonstrated that local injection of CMCS/n (miR-21) promoted the early healing of osteoporotic bone defects. Consequently CMCS/n (miR-21) promoted the bone repair process to enter the moulding phase earlier. The translational potential of this article CMCS/n (miR-21) can be widely applied to elderly patients with osteoporotic fractures. This method can help patients with osteoporotic fractures recover earlier and avoid serious complications. It provides a potential approach for the clinical treatment of osteoporotic fractures in the elderly.
Collapse
Affiliation(s)
- Xiaolei Sun
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.,Department of Orthopaedics, Tianjin Hospital, Tianjin, 300211, China
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Hongzhao Qi
- Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinlong Ma
- Department of Orthopaedics, Tianjin Hospital, Tianjin, 300211, China
| |
Collapse
|
31
|
Chiu PY, HuangFu WC, Liu IH, Chang YP. Topical application of Heparanase-1 facilitates bone remodeling during the healing of bone defects in a mouse model. J Chin Med Assoc 2020; 83:272-279. [PMID: 31985568 DOI: 10.1097/jcma.0000000000000261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Although previous studies have suggested a stimulatory role of heparanase in physiological bone turnover, the potential therapeutic role of heparanase in bone healing has not been elucidated. The purpose of this study was to assess the effect of topical application of heparanase-1 on bone healing. METHODS Two different dosages of recombinant mouse heparanase-1 and vehicle control were prepared and delivered via an osmotic pump to provide continuous topical infusion of the therapeutic reagent in a mouse bone defect model at the distal femoral metaphysis. The bone healing progress was evaluated by micro-computed tomography and histological examination at 7, 14, and 21 days after the bone defect was created. RESULTS The peak of trabecular bone generation was achieved earlier than anticipated with the use of heparanase as measured by medullary bone volume fraction and trabecular number observed in micro-computed tomography, while the remodeling of trabecular bone to cortical bone was also achieved earlier than anticipated with the use of heparanase as measured by connectivity density. Histopathological observation revealed a higher frequency of the presence of cartilaginous tissue in the heparanase-treated groups. Both bone mineral density and cortical bone volume fraction showed the best healing outcome with low-dose heparanase, implying a biphasic effect of its mode of action. CONCLUSION These results indicated that with the appropriate dose of topical heparanase-1, the progress of bone healing could be accelerated in vivo.
Collapse
Affiliation(s)
- Po-Yu Chiu
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Chun HuangFu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Ya-Pei Chang
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
32
|
Yang TL, Shen H, Liu A, Dong SS, Zhang L, Deng FY, Zhao Q, Deng HW. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol 2020; 16:91-103. [PMID: 31792439 PMCID: PMC6980376 DOI: 10.1038/s41574-019-0282-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Osteoporosis is a highly prevalent disorder characterized by low bone mineral density and an increased risk of fracture, termed osteoporotic fracture. Notably, bone mineral density, osteoporosis and osteoporotic fracture are highly heritable; however, determining the genetic architecture, and especially the underlying genomic and molecular mechanisms, of osteoporosis in vivo in humans is still challenging. In addition to susceptibility loci identified in genome-wide association studies, advances in various omics technologies, including genomics, transcriptomics, epigenomics, proteomics and metabolomics, have all been applied to dissect the pathogenesis of osteoporosis. However, each technology individually cannot capture the entire view of the disease pathology and thus fails to comprehensively identify the underlying pathological molecular mechanisms, especially the regulatory and signalling mechanisms. A change to the status quo calls for integrative multi-omics and inter-omics analyses with approaches in 'systems genetics and genomics'. In this Review, we highlight findings from genome-wide association studies and studies using various omics technologies individually to identify mechanisms of osteoporosis. Furthermore, we summarize current studies of data integration to understand, diagnose and inform the treatment of osteoporosis. The integration of multiple technologies will provide a road map to illuminate the complex pathogenesis of osteoporosis, especially from molecular functional aspects, in vivo in humans.
Collapse
Affiliation(s)
- Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hui Shen
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Anqi Liu
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hong-Wen Deng
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA.
- School of Basic Medical Science, Central South University, Changsha, China.
| |
Collapse
|
33
|
Choi JH, Jang AR, Jeong HN, Kim K, Kim YM, Cho JY, Park JH. Water extract of tendril of Cucurbita Moschata Duch. suppresses RANKL-induced osteoclastogenesis by down-regulating p38 and ERK signaling. Int J Med Sci 2020; 17:632-639. [PMID: 32210713 PMCID: PMC7085206 DOI: 10.7150/ijms.39622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Pumpkin (Curcubita sp.) is a natural product that is commonly used in folk medicine. However, the inhibitory effect and molecular mechanisms of tendril of Cucurbita Moschata Duch. (TCMD) on osteoclast differentiation have yet to be clearly elucidated. Thus, the present study aimed to investigate the effect and underlying mechanism of water extract of TCMD on osteoclast differentiation. Methods: Bone marrow-derived macrophages (BMDMs), osteoclast precursors, were cultured with macrophage colony stimulating factor (M-CSF) 30 ng/ml and receptor activator of nuclear factor-kappa B ligand (RANKL) 100 ng/ml for four days. We investigated the effect of TCMD on RANKL-induced osteoclast differentiation, tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring formation, and bone resorption assay. RANKL signaling pathways were determined through Western blotting, and osteoclast differentiation marker genes were confirmed by Real-time PCR. Results: TCMD inhibited the RANKL-induced osteoclast differentiation in a dose-dependent manner without cytotoxicity. Further, F-actin ring formation and bone resorption were reduced by TCMD in RANKL-treated BMDMs. In addition, TCMD decreased the phosphorylation of p38 and ERK as well as the expression of osteoclast-related genes in BMDMs treated with RANKL. Conclusion: These findings suggest that TCMD may have preventive and therapeutic effects for destructive bone diseases.
Collapse
Affiliation(s)
- Joo-Hee Choi
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea.,Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Ha-Na Jeong
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Kiok Kim
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Min Kim
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Yong Cho
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
34
|
Shiozawa Y. The Roles of Bone Marrow-Resident Cells as a Microenvironment for Bone Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1226:57-72. [PMID: 32030676 DOI: 10.1007/978-3-030-36214-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has been appreciated that the cross talk between bone metastatic cancer cells and bone marrow microenvironment influence one another to worsen bone metastatic disease progression. Bone marrow contains various cell types, including (1) cells of mesenchymal origin (e.g., osteoblasts, osteocytes, and adipocytes), (2) cells of hematopoietic origin (e.g., osteoclast and immune cells), and (3) others (e.g., endothelial cells and nerves). The recent studies have enabled us to discover many important cancer-derived factors responsible for the development of bone metastasis. However, many critical questions regarding the roles of bone microenvironment in bone metastatic progression remain elusive. To answer these questions, a deeper understanding of the cross talk between bone metastatic cancer and bone marrow microenvironment is clearly warranted.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| |
Collapse
|
35
|
Yan DY, Tang J, Chen L, Wang B, Weng S, Xie Z, Wu ZY, Shen Z, Bai B, Yang L. Imperatorin promotes osteogenesis and suppresses osteoclast by activating AKT/GSK3 β/β-catenin pathways. J Cell Mol Med 2019; 24:2330-2341. [PMID: 31883297 PMCID: PMC7011130 DOI: 10.1111/jcmm.14915] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is caused by disturbance in the dynamic balance of bone remodelling, a physiological process, vital for maintenance of healthy bone tissue in adult humans. In this process, a new bone is formed by osteoblasts and the pre‐existing bone matrix is resorbed by osteoclasts. Imperatorin, a widely available and inexpensive plant extract with antioxidative and apoptotic effects, is reported to treat osteoporosis. However, the underlying mechanism and specific effects on bone metabolism have not been elucidated. In this study, we used rat bone marrow‐derived mesenchymal stem cells and found that imperatorin can activate RUNX2, COL1A1 and osteocalcin by promoting the Ser9 phosphorylation of GSK3β and entry of β‐catenin into the nucleus. Imperatorin also enhanced the production of phospho‐AKT (Ser473), an upstream factor that promotes the Ser9 phosphorylation of GSK3β. We used ipatasertib, a pan‐AKT inhibitor, to inhibit the osteogenic effect of imperatorin, and found that imperatorin promotes osteogenesis via AKT/GSK3β/β‐catenin pathway. Next, we used rat bone marrow‐derived monocytes, to check whether imperatorin inhibits osteoclast differentiation via AKT/GSK3β/β‐catenin pathway. Further, we removed the bilateral ovaries of rats to establish an osteoporotic model. Intragastric administration of imperatorin promoted osteogenesis and inhibited osteoclast in vivo. Our experiments showed that imperatorin is a potential drug for osteoporosis treatment.
Collapse
Affiliation(s)
- De-Yi Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahao Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingzhang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sheji Weng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongjie Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zong-Yi Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zijian Shen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingli Bai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Pourakbari R, Khodadadi M, Aghebati-Maleki A, Aghebati-Maleki L, Yousefi M. The potential of exosomes in the therapy of the cartilage and bone complications; emphasis on osteoarthritis. Life Sci 2019; 236:116861. [PMID: 31513815 DOI: 10.1016/j.lfs.2019.116861] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022]
Abstract
Osteoarthritis is a prevalent worldwide joint disease, which demonstrates a remarkable adverse effect on the patients' life modality. Medicinal agents, exclusively nonsteroidal anti-inflammatory drugs (NSAIDs), have been routinely applied in the clinic. But, their effects are restricted to pain control with insignificant effects on cartilage renovation, which would finally lead to cartilage destruction. In the field of regenerative medicine, many researchers have tried to use stem cells to repair tissues and other human organs. However, in recent years, with the discovery of extracellular microvesicles, especially exosomes, researchers have been able to offer more exciting alternatives on the subject. Exosomes and microvesicles are derived from different types of bone cells such as mesenchymal stem cells, osteoblasts, and osteoclasts. They are also recognized to play substantial roles in bone remodeling processes including osteogenesis, osteoclastogenesis, and angiogenesis. Specifically, exosomes derived from a mesenchymal stem cell have shown a great potential for the desired purpose. Exosomal products include miRNA, DNA, proteins, and other factors. At present, if it is possible to extract exosomes from various stem cells effectively and load certain products or drugs into them, they can be used in diseases, such as rheumatoid arthritis, osteoarthritis, bone fractures, and other diseases. Of course, to achieve proper clinical use, advances have to be made to establish a promising regenerative ability for microvesicles for treatment purposes in the orthopedic disorders. In this review, we describe the exosomes biogenesis and bone cell derived exosomes in the regenerate process of bone and cartilage remodeling.
Collapse
Affiliation(s)
- Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Khodadadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Jiang M, Peng L, Yang K, Wang T, Yan X, Jiang T, Xu J, Qi J, Zhou H, Qian N, Zhou Q, Chen B, Xu X, Deng L, Yang C. Development of Small-Molecules Targeting Receptor Activator of Nuclear Factor-κB Ligand (RANKL)—Receptor Activator of Nuclear Factor-κB (RANK) Protein–Protein Interaction by Structure-Based Virtual Screening and Hit Optimization. J Med Chem 2019; 62:5370-5381. [PMID: 31082234 DOI: 10.1021/acs.jmedchem.8b02027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Min Jiang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Lei Peng
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kai Yang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Tianqi Wang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Xueming Yan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Tao Jiang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Niandong Qian
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Bo Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Second Ruijin Road, Shanghai 200025, China
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
38
|
Kim BJ, Koh JM. Coupling factors involved in preserving bone balance. Cell Mol Life Sci 2019; 76:1243-1253. [PMID: 30515522 PMCID: PMC11105749 DOI: 10.1007/s00018-018-2981-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Coupling during bone remodeling refers to the spatial and temporal coordination of bone resorption with bone formation. Studies have assessed the subtle interactions between osteoclasts and osteoblasts to preserve bone balance. Traditionally, coupling research related to osteoclast function has focused on bone resorption activity causing the release of growth factors embedded in the bone matrix. However, considerable evidence from in vitro, animal, and human studies indicates the importance of the osteoclasts themselves in coupling phenomena, and many osteoclast-derived coupling factors have been identified. These include sphingosine-1-phosphate, vesicular-receptor activator of nuclear factor-κB, collagen triple helix repeat containing 1, and cardiotrophin-1. Interestingly, neuronal guidance molecules, such as slit guidance ligand 3, semaphorin (SEMA) 3A, SEMA4D, and netrin-1, originally identified as instructive cues allowing the navigation of growing axons to their targets, have been shown to be involved in the intercellular cross-talk among bone cells. This review discusses osteoclast-osteoblast coupling signals, including recent advances and the potential roles of these signals as therapeutic targets for osteoporosis and as biomarkers predicting human bone health.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
39
|
Saito H, Gasser A, Bolamperti S, Maeda M, Matthies L, Jähn K, Long CL, Schlüter H, Kwiatkowski M, Saini V, Pajevic PD, Bellido T, van Wijnen AJ, Mohammad KS, Guise TA, Taipaleenmäki H, Hesse E. TG-interacting factor 1 (Tgif1)-deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone. Nat Commun 2019; 10:1354. [PMID: 30902975 PMCID: PMC6430773 DOI: 10.1038/s41467-019-08778-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/29/2019] [Indexed: 01/29/2023] Open
Abstract
Osteoporosis is caused by increased bone resorption and decreased bone formation. Intermittent administration of a fragment of Parathyroid hormone (PTH) activates osteoblast-mediated bone formation and is used in patients with severe osteoporosis. However, the mechanisms by which PTH elicits its anabolic effect are not fully elucidated. Here we show that the absence of the homeodomain protein TG-interacting factor 1 (Tgif1) impairs osteoblast differentiation and activity, leading to a reduced bone formation. Deletion of Tgif1 in osteoblasts and osteocytes decreases bone resorption due to an increased secretion of Semaphorin 3E (Sema3E), an osteoclast-inhibiting factor. Tgif1 is a PTH target gene and PTH treatment failed to increase bone formation and bone mass in Tgif1-deficient mice. Thus, our study identifies Tgif1 as a novel regulator of bone remodeling and an essential component of the PTH anabolic action. These insights contribute to a better understanding of bone metabolism and the anabolic function of PTH.
Collapse
Affiliation(s)
- Hiroaki Saito
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Andreas Gasser
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Simona Bolamperti
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Miki Maeda
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Levi Matthies
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Katharina Jähn
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Courtney L Long
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Laboratory, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Marcel Kwiatkowski
- Mass Spectrometric Proteomics Laboratory, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Vaibhav Saini
- Endocrine Unit, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
| | - Paola Divieti Pajevic
- Endocrine Unit, Massachusetts General Hospital, 55 Fruit St., Boston, MA, 02114, USA
- Department of Molecular and Cell Biology, Boston University, School of Dental Medicine, 72 East Concord St., Boston, MA, 02118, USA
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Khalid S Mohammad
- Division of Endocrinology, Department of Medicine, Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Theresa A Guise
- Division of Endocrinology, Department of Medicine, Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN, 46202, USA
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany
| | - Eric Hesse
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246, Hamburg, Germany.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN, 46202, USA.
| |
Collapse
|
40
|
Sun Q, Zhang B, Zhu W, Wei W, Ma J, Tay FR. A potential therapeutic target for regulating osteoporosis via suppression of osteoclast differentiation. J Dent 2019; 82:91-97. [PMID: 30716449 DOI: 10.1016/j.jdent.2019.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Osteoclast differentiation is regulated by transcriptional, post-transcriptional and post-translational mechanisms. Micro-ribonucleic acids (miRNAs) are 20-24 nucleotides long non-coding RNAs involved in post-translational regulation of gene expressions during osteoclast differentiation. The objective of the present study was to investigate the role played by the miRNA, miR-338-3p, in osteoclastogenesis. METHODS Osteoclastogenesis was induced in murine RAW264.7 cells using M-CSF and RANKL. The differentiated cells were harvested at designated times for TRAP staining and detection of designated gene expressions. A synthetic miR-338-3p mimic or its inhibitor was transfected into RAW264.7 cells prior to the induction of osteoclastogenesis. The effects of mimic or inhibitor on osteoclastogenesis were examined by qRT-PCR and TRAP staining. Bioinformatic analysis and luciferase activity were performed to identify the relationship between miR-338-3p and the transcription factor MafB. The miR-338-3p mimic and MafB siRNA were co-transfected into RAW264.7 cells to evaluate the cross-talk between miR-338-3p and MafB. RESULTS miR-338-3p was increased significantly during osteoclast differentiation. Overexpression of miR-338-3p promoted osteoclastogenesis while its inhibition had the opposite effect. Bioinformatic analysis and dual luciferase assays indicated that miR-338-3p targeted MafB to repress its gene expression. MafB knockdown by RNA silencing blocked the promotional effect of miR-338-3p on osteoclast differentiation. CONCLUSION Because miR-338-3p is crucial for osteoclastic differentiation via targeting of the transcription factor MafB, inhibition of this miRNA represents a potential strategy for modulating osteoporosis in an aging population. CLINICAL SIGNIfiCANCE: Understanding the role played by miR-338-3p in osteoclast differentiation bridges the gap between the pathogenesis of osteoporosis and the quest for novel therapeutics to reduce the risk of bone fracture associated with this global disease.
Collapse
Affiliation(s)
- Qin Sun
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boran Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, USA.
| |
Collapse
|
41
|
Zhou Z, Lu Y, Wang Y, Du L, Zhang Y, Tao J. Let-7c regulates proliferation and osteodifferentiation of human adipose-derived mesenchymal stem cells under oxidative stress by targeting SCD-1. Am J Physiol Cell Physiol 2018; 316:C57-C69. [PMID: 30379578 DOI: 10.1152/ajpcell.00211.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a progressive bone disease characterized by decreased bone mass and density, which usually parallels a reduced antioxidative capacity and increased reactive oxygen species formation. Adipose-derived mesenchymal stem cells (ADMSCs), a population of self-renewing multipotent cells, are a well-recognized source of potential bone precursors with significant clinical potential for tissue regeneration. We previously showed that overexpressing stearoyl-CoA desaturase 1 (SCD-1) promotes osteogenic differentiation of mesenchymal stem cells. Micro-RNAs (miRNAs) are noncoding RNAs recently recognized to play key roles in many developmental processes, and miRNA let-7c is downregulated during osteoinduction. We found that let-7c was upregulated in the serum of patients with postmenopausal osteoporosis compared with healthy controls. Levels of let-7c during osteogenic differentiation of ADMSCs were examined under oxidative stress in vitro and found to be upregulated. Overexpression of let-7c inhibited osteogenic differentiation, whereas inhibition of let-7c function promoted this process, evidenced by increased expression of osteoblast-specific genes, alkaline phosphatase activity, and matrix mineralization. The luciferase reporter assay was used to validate SCD-1 as a target of let-7c. Further experiments showed that silencing of SCD-1 significantly attenuated the effect of let-7c inhibitor on osteoblast markers, providing strong evidence that let-7c modulates osteogenic differentiation by targeting SCD-1. Inhibition of let-7c promoted the translocation of β-catenin into nuclei, thus activating Wnt/β-catenin signaling. Collectively, these data suggest that let-7c is induced under oxidative stress conditions and in osteoporosis, reducing SCD-1 protein levels, switching off Wnt/β-catenin signaling, and inhibiting osteogenic differentiation. Thus, let-7c may be a potential therapeutic target in the treatment of osteoporosis and especially postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zihui Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Yuanshan Lu
- Department of Blood Transfusion, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Yao Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Lin Du
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Yunpeng Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Jie Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
42
|
Zhang T, Zhao K, Han W, Yang W, Lu X, Liu Q, Li X, Qian Y. Deguelin inhibits RANKL‐induced osteoclastogenesis in vitro and prevents inflammation‐mediated bone loss in vivo. J Cell Physiol 2018; 234:2719-2729. [PMID: 30078209 DOI: 10.1002/jcp.27087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Tan Zhang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| | - Kangxian Zhao
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Weiqi Han
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| | - Wanlei Yang
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| | - Xuanyuan Lu
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| | - Qian Liu
- Orthopaedic DepartmentResearch Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Xiucheng Li
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| | - Yu Qian
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| |
Collapse
|
43
|
Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience 2018; 5:181-195. [PMID: 30035185 PMCID: PMC6049320 DOI: 10.18632/oncoscience.421] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Bone remodeling is a continuous lifelong process in the repair of micro-damage to bone architecture and replacement of aging tissue in bone. A failure to such process leads to pathological destructive bone diseases such as osteoporosis, rheumatoid arthritis, and osteoarthritis. However, this active process is regulated by; osteoclasts, which are involved in the bone resorption process; osteoblasts, with involvement in the bone formation process and bone-derived endothelial cells, which promote angiogenesis. In the bone micro-environment, these cellular interactions are mediated by a complex interplay between cell types via direct interaction of cell secreted growth factors, such as cytokines. Recently, the discovery of exosomes (∼ 40–100 nm in size), has attracted more attention in the field of the bone remodeling process. Exosomes and microvesicles are derived from different types of bone cells such as mesenchymal stem cells, osteoblasts, osteoclasts and their precursors. They are also recognized to play pivotal roles in bone remodeling processes including osteogenesis, osteoclastogenesis, and angiogenesis. In this review, we especially emphasize the origin and biogenesis of exosomes and bone cell derived exosomes in the regulatory process of bone remodeling. Moreover, this review article also focuses on exosomal secreted proteins and microRNAs and their involvement in the regulation of bone remodeling.
Collapse
|
44
|
Xie Y, Gao Y, Zhang L, Chen Y, Ge W, Tang P. Involvement of serum-derived exosomes of elderly patients with bone loss in failure of bone remodeling via alteration of exosomal bone-related proteins. Aging Cell 2018; 17:e12758. [PMID: 29603567 PMCID: PMC5946082 DOI: 10.1111/acel.12758] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 12/31/2022] Open
Abstract
Exosomes are secreted into the blood by various types of cells. These extracellular vesicles are involved in the contribution of exosomal proteins to osteoblastic or osteoclastic regulatory networks during the failure of bone remodeling, which results in age-related bone loss. However, the molecular changes in serum-derived exosomes (SDEs) from aged patients with low bone density and their functions in bone remodeling remain to be fully elucidated. We present a quantitative proteomics analysis of exosomes purified from the serum of the elderly patients with osteoporosis/osteopenia and normal volunteers; these data are available via Proteome Xchange with the identifier PXD006463. Overall, 1,371 proteins were identified with an overlap of 1,160 Gene IDs among the ExoCarta proteins. Bioinformatics analysis and in vitro studies suggested that protein changes in SDEs of osteoporosis patients are not only involved in suppressing the integrin-mediated mechanosensation and activation of osteoblastic cells, but also trigger the differentiation and resorption of osteoclasts. In contrast, the main changes in SDEs of osteopenia patients facilitated both activation of osteoclasts and formation of new bone mass, which could result in a compensatory elevation in bone remodeling. While the SDEs from aged normal volunteers might play a protective role in bone health through facilitating adhesion of bone cells and suppressing aging-associated oxidative stress. This information will be helpful in elucidating the pathophysiological functions of SDEs and aid in the development of senile osteoporosis diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yong Xie
- Department of Orthopedics; Chinese PLA General Hospital; Beijing China
| | - Yanpan Gao
- State Key Laboratory of Medical Molecular Biology; Department of Immunology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - Licheng Zhang
- Department of Orthopedics; Chinese PLA General Hospital; Beijing China
| | - Yanyu Chen
- State Key Laboratory of Medical Molecular Biology; Department of Immunology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology; Department of Immunology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - Peifu Tang
- Department of Orthopedics; Chinese PLA General Hospital; Beijing China
| |
Collapse
|
45
|
Lang J, Zhao Q, He Y, Yu X. Bone turnover markers and novel biomarkers in lung cancer bone metastases. Biomarkers 2018; 23:518-526. [PMID: 29683727 DOI: 10.1080/1354750x.2018.1463566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Lung cancer still remains the leading cause of cancer-related mortality worldwide. Bone is one of preferred metastatic sites for lung cancer cells. So far, both accurate diagnosis and effective treatment of lung cancer bone metastases are difficult. OBJECTIVE This review aimed to evaluate roles of bone turnover markers (BTMs), microRNAs (miRNAs), dickkopf1 (DKK1) and insulin like growth factor binding protein 3 (IGFBP-3) in lung cancer bone metastases. METHODS We searched articles about these four biomarkers in lung cancer bone metastases mainly in PubMed. RESULT The levels of bone specific alkaline phosphatase (BALP), cross-linked carboxy-terminal telopeptide of type-I collagen (ICTP) and N-terminal telopeptides of type-I collagen (NTX) were reported to be significantly increased in lung cancer patients with bone metastases. ALP, NTX and bone sialoprotein were thought to be associated with prognosis of lung cancer patients with bone metastases. MiRNA-335, miRNA-33a, miRNA-21, DKK1 and IGFBP-3 were revealed to be novel biomarkers in lung cancer bone metastases. DISCUSSION AND CONCLUSION Current researches have revealed that BTMs, miRNAs, DKK1 and IGFBP-3 may be useful in diagnosis, prognosis evaluation or treatment of lung cancer bone metastases. More studies about these biomarkers in lung cancer bone metastases are needed.
Collapse
Affiliation(s)
- Jiangli Lang
- a Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism , State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| | - Qian Zhao
- b Department of General practice , West China Hospital, Sichuan University , Chengdu , China
| | - Yuedong He
- c Department of Gynecology , West China Second University Hospital, Sichuan University , Chengdu , China
| | - Xijie Yu
- a Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism , State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| |
Collapse
|
46
|
Thent ZC, Froemming GRA, Muid S. Bisphenol A exposure disturbs the bone metabolism: An evolving interest towards an old culprit. Life Sci 2018; 198:1-7. [DOI: 10.1016/j.lfs.2018.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
|
47
|
Xie Z, Yu H, Sun X, Tang P, Jie Z, Chen S, Wang J, Qin A, Fan S. A Novel Diterpenoid Suppresses Osteoclastogenesis and Promotes Osteogenesis by Inhibiting Ifrd1-Mediated and IκBα-Mediated p65 Nuclear Translocation. J Bone Miner Res 2018; 33:667-678. [PMID: 29091322 DOI: 10.1002/jbmr.3334] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/22/2017] [Accepted: 10/31/2017] [Indexed: 11/05/2022]
Abstract
Osteoporosis develops because of impaired bone formation and/or excessive bone resorption. Although the pharmacological treatment of osteoporosis has been extensively developed, alternative treatments are still needed. Here, we showed that oridonin (ORI), a diterpenoid isolated from Rabdosia rubescens, can suppress osteoclastogenesis and enhance osteogenesis. ORI inhibited the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation and bone resorption through the inhibition of p65 nuclear translocation. ORI-induced inhibition of this translocation led to an increase in osteoblast differentiation and mineralization through the promotion of Smad1/Smad5 phosphorylation. Further analyses demonstrated that the inhibition of p65 nuclear translocation is due to the suppression of IκBα phosphorylation and the induced proteasomal degradation of interferon-related development regulator 1 (Ifrd1), a transcriptional corepressor that is involved in the suppression of NF-κB nuclear translocation. Moreover, mice treated with ORI at catabolic and anabolic windows showed a considerable attenuation of ovariectomy (OVX)-induced osteoporosis. Taken together, our findings reveal that ORI protects against OVX-induced bone loss via inhibiting osteoclastic bone resorption but enhancing osteoblastic bone formation through abolishing both Ifrd1-mediating and IκBα-mediated p65 nuclear translocation. These results show the potential of ORI for treatment of osteoporosis and highlight Ifrd1 as a another novel promising target for anti-osteoporotic drugs. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zi'ang Xie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Hejun Yu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuewu Sun
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Pan Tang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Shuai Chen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiying Wang
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Mediero A, Wilder T, Shah L, Cronstein BN. Adenosine A 2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis. FASEB J 2018; 32:3487-3501. [PMID: 29394106 DOI: 10.1096/fj.201700217r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The axonal guidance proteins semaphorin (Sema)4D and Sema3A play important roles in communication between osteoclasts and osteoblasts. As stimulation of adenosine A2A receptors (A2AR) regulates both osteoclast and osteoblast function, we asked whether A2AR regulates both osteoclast and osteoblast expression of Semas. In vivo bone formation and Sema3A/PlexinA1/Neuropilin-1, Sema4D/PlexinB1 protein expression were studied in a murine model of wear particle-induced osteolysis. Osteoclast/osteoblast differentiation were studied in vitro as the number of tartrate-resistant acid phosphatase+/Alizarin Red+ cells after challenge with CGS21680 (A2AR agonist, 1 µM) or ZM241385 (A2AR antagonist, 1 µM), with or without Sema4D or Sema3A (10 ng/ml). Sema3A/PlexinA1/Neuropilin-1, Sema4D/PlexinB1, and receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) expression was studied by RT-PCR and Western blot. β-Catenin activation and cytoskeleton changes were studied by fluorescence microscopy and Western blot. In mice with wear particles implanted over the calvaria, CGS21680 treatment increased bone formation in vivo, reduced Sema4D, and increased Sema3A expression compared with mice with wear particle-induced osteolysis treated with vehicle alone. During osteoclast differentiation, CGS21680 abrogated RANKL-induced Sema4D mRNA expression (1.3 ± 0.3- vs. 2.5 ± 0.1-fold change, P < 0.001, n = 4). PlexinA1, but not Neuropilin-1, mRNA was enhanced by CGS21680 treatment. CGS21680 enhanced Sema3A mRNA expression during osteoblast differentiation (8.7 ± 0.2-fold increase, P < 0.001, n = 4); PlexinB1 mRNA was increased 2-fold during osteoblast differentiation and was not altered by CGS21680. Similar changes were observed at the protein level. CGS21680 decreased RANKL, increased OPG, and increased total/nuclear β-catenin expression in osteoblasts. Sema4D increased Ras homolog gene family, member A phosphorylation and focal adhesion kinase activation in osteoclast precursors, and CGS21680 abrogated these effects. In summary, A2AR activation diminishes secretion of Sema4D by osteoclasts, inhibits Sema4D-mediated osteoclast activation, and enhances secretion of Sema3A by osteoblasts, increasing osteoblast differentiation and diminishing inflammatory osteolysis.-Mediero, A., Wilder, T., Shah, L., Cronstein, B. N. Adenosine A2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis.
Collapse
Affiliation(s)
- Aránzazu Mediero
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and.,Bone and Joint Research Unit, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Tuere Wilder
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| | - Lopa Shah
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| |
Collapse
|
49
|
Marie PJ, Cohen-Solal M. The Expanding Life and Functions of Osteogenic Cells: From Simple Bone-Making Cells to Multifunctional Cells and Beyond. J Bone Miner Res 2018; 33:199-210. [PMID: 29206311 DOI: 10.1002/jbmr.3356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
During the last three decades, important progress in bone cell biology and in human and mouse genetics led to major advances in our understanding of the life and functions of cells of the osteoblast lineage. Previously unrecognized sources of osteogenic cells have been identified. Novel cellular and molecular mechanisms controlling osteoblast differentiation and senescence have been determined. New mechanisms of communications between osteogenic cells, osteocytes, osteoclasts, and chondrocytes, as well as novel links between osteogenic cells and blood vessels have been identified. Additionally, cells of the osteoblast lineage were shown to be important components of the hematopoietic niche and to be implicated in hematologic dysfunctions and malignancy. Lastly, unexpected interactions were found between osteogenic cells and several soft tissues, including the central nervous system, gut, muscle, fat, and testis through the release of paracrine factors, making osteogenic cells multifunctional regulatory cells, in addition to their bone-making function. These discoveries considerably enlarged our vision of the life and functions of osteogenic cells, which may lead to the development of novel therapeutics with immediate applications in bone disorders. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martine Cohen-Solal
- Inserm UMR-1132, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
50
|
Li Q, Huang QP, Wang YL, Huang QS. Extracellular vesicle-mediated bone metabolism in the bone microenvironment. J Bone Miner Metab 2018; 36:1-11. [PMID: 28766139 DOI: 10.1007/s00774-017-0860-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/04/2017] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are phospholipid membrane-enclosed entities containing specific proteins, RNA, miRNA, and lncRNA. EVs are released by various cells and play a vital role in cell communication by transferring their contents from the host cells to the recipient cells. The role of EVs has been characterized in a wide range of physiological and pathophysiological processes. In this context, we highlight recent advances in our understanding of the regulatory effects of EVs, with a focus on bone metabolism and the bone microenvironment. The roles of EVs in cell communication among bone-related cells, stem cells, tumor cells, and other cells under physiological or pathological conditions are also discussed. In addition, promising applications for EVs in treating bone-related diseases are proposed.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Qiu-Ping Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Yi-Lin Wang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qing-Sheng Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 YouyiXilu, Xi'an, 710072, Shaanxi, People's Republic of China
| |
Collapse
|