1
|
Yin H, Lin W, Zheng G, Yang R, Xie F, Yuan W, Chen T, Mao R, Wang X, Wang Z. Value of different preoperative bone evaluation methods in predicting intraoperative screw insertion torque: a prospective clinical comparative trial. Spine J 2024; 24:1833-1843. [PMID: 38838855 DOI: 10.1016/j.spinee.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/06/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND CONTEXT Establishing good screw-bone structural stability is conducive to reducing the risk of postoperative screw loosening. Screw insertion torque is an objective index for evaluating screw-bone structural stability. Therefore, accurate prediction of screw insertion torque can improve the preoperative evaluation of patients, optimize the surgical plan, and improve the surgical effect. At present, the correlation between different bone assessment methods and screw insertion torque is unclear. PURPOSE The aim of this study was to evaluate the correlation between different bone assessment methods and screw insertion torque and to optimize the predictive performance of screw insertion torque through mathematical modeling combined with different radiology methods. DESIGN Prospective cross-sectional study. PATIENT SAMPLES Seventy-seven patients with preoperatively available DXA, CT and MRI data who underwent spinal fixation surgeries between October 2022 and September 2023 and 357 sets of screw data were included in this analysis. OUTCOME MEASURES Spinal, vertebrae-specific and screw trajectory's BMD were measured preoperatively by different imaging modalities. Intraoperative screw insertion torque was measured using an electronic torque wrench. METHODS Pearson linear correlation, scatter plots and univariate linear regression were used to evaluate the correlation between different bone evaluation methods and screw insertion torque. Different bone evaluation methods were fitted into the prediction model of screw torque and the related equations were obtained. RESULTS Screw insertion torque had the strongest positive correlation with the volumetric bone mineral density (vBMD) of the screw trajectory (Pedicle screw insertion torque (PSIT): R = 0.618, p<.001; Terminal screw insertion torque (TSIT): R = 0.735, p<.001). A weak negative correlation was found between the screw insertion torque and level specific vertebral bone quality (VBQ) (PSIT: R = -0.178, p=.001; TSIT: R = -0.147, p=.006). We also found that the PSIT was strongly correlated with the TSIT (R = 0.812, p<.001). CONCLUSIONS Compared to other bone quality assessment methods, screw trajectory vBMD may be better predict the magnitude of screw insertion torque. In addition, we further optimized preoperative assessments by constructing a mathematical model to better predict screw insertion torque. In conclusion, clinicians should select appropriate preoperative bone quality assessment methods, identify potential low-torque patients, optimize surgical plans, and ultimately improve screw insertion accuracy and reduce postoperative screw loosening rate.
Collapse
Affiliation(s)
- Houjie Yin
- Department of Spine Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China; The Second Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, China
| | - Wentao Lin
- Department of Spine Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Guanghao Zheng
- Department of Spine Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China; The Second Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, China
| | - Ruobing Yang
- Department of Spine Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Faqin Xie
- Department of Spine Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Weiquan Yuan
- Department of Spine Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Tao Chen
- Department of Spine Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China; The Second Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, China
| | - Raobing Mao
- Department of Spine Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China; The Second Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqian Wang
- Department of Spine Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China; The Second Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiyun Wang
- Department of Spine Surgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China.
| |
Collapse
|
2
|
Glorieux FH, Langdahl B, Chapurlat R, De Beur SJ, Sutton VR, Poole KES, Dahir KM, Orwoll ES, Willie BM, Mikolajewicz N, Zimmermann E, Hosseinitabatabaei S, Ominsky MS, Saville C, Clancy J, MacKinnon A, Mistry A, Javaid MK. Setrusumab for the treatment of osteogenesis imperfecta: 12-month results from the phase 2b asteroid study. J Bone Miner Res 2024; 39:1215-1228. [PMID: 39012717 PMCID: PMC11371902 DOI: 10.1093/jbmr/zjae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 07/18/2024]
Abstract
Osteogenesis imperfecta (OI) is a rare genetic disorder commonly caused by variants of the type I collagen genes COL1A1 and COL1A2. OI is associated with increased bone fragility, bone deformities, bone pain, and reduced growth. Setrusumab, a neutralizing antibody to sclerostin, increased areal bone mineral density (aBMD) in a 21-week phase 2a dose escalation study. The phase 2b Asteroid (NCT03118570) study evaluated the efficacy and safety of setrusumab in adults. Adults with a clinical diagnosis of OI type I, III, or IV, a pathogenic variant in COL1A1/A2, and a recent fragility fracture were randomized 1:1:1:1 to receive 2, 8, or 20 mg/kg setrusumab doses or placebo by monthly intravenous infusion during a 12-mo treatment period. Participants initially randomized to the placebo group were subsequently reassigned to receive setrusumab 20 mg/kg open label. Therefore, only results from the 2, 8, and 20 mg/kg double-blind groups are presented herein. The primary endpoint of Asteroid was change in distal radial trabecular volumetric bone mineral density (vBMD) from baseline at month 12, supported by changes in high-resolution peripheral quantitative computed tomography micro-finite element (microFE)-derived bone strength. A total of 110 adults were enrolled with similar baseline characteristics across treatment groups. At 12 mo, there was a significant increase in mean (SE) failure load in the 20 mg/kg group (3.17% [1.26%]) and stiffness in the 8 (3.06% [1.70%]) and 20 mg/kg (3.19% [1.29%]) groups from baseline. There were no changes in radial trabecula vBMD (p>05). Gains in failure load and stiffness were similar across OI types. There were no significant differences in annualized fracture rates between doses. Two adults in the 20 mg/kg group experienced related serious adverse reactions. Asteroid demonstrated a beneficial effect of setrusumab on estimates of bone strength across the different types of OI and provides the basis for additional phase 3 evaluation.
Collapse
Affiliation(s)
- Francis H Glorieux
- Departments of Surgery, Pediatrics and Human Genetics, Shriners Hospitals for Children, McGill University, Montreal, Quebec H4A 0A9, Canada
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Middle Jutland 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Middle Jutland 8200, Denmark
| | - Roland Chapurlat
- Inserm UMR 1033, Edouard Herriot Hospital, 69372 Lyon cedex 08, France
| | - Suzanne Jan De Beur
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Vernon Reid Sutton
- Department of Molecular & Human Genetics, Baylor College of Medicine & Texas Children’s Hospital, Houston, TX 77030, United States
| | - Kenneth E S Poole
- Department of Medicine & Cambridge NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Kathryn M Dahir
- Division of Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Eric S Orwoll
- Division of Endocrinology, Diabetes and Clinical Nutrition, School of Medicine, Oregon Health & Sciences University, Portland, OR 97239, United States
| | - Bettina M Willie
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H3A 2T5, Canada
- Shriners Hospitals for Children, Montreal, Quebec H4A 0A9, Canada
| | - Nicholas Mikolajewicz
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H3A 2T5, Canada
- Shriners Hospitals for Children, Montreal, Quebec H4A 0A9, Canada
| | - Elizabeth Zimmermann
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H3A 2T5, Canada
- Shriners Hospitals for Children, Montreal, Quebec H4A 0A9, Canada
| | - Seyedmahdi Hosseinitabatabaei
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H3A 2T5, Canada
- Shriners Hospitals for Children, Montreal, Quebec H4A 0A9, Canada
| | | | | | | | | | - Arun Mistry
- Mereo BioPharma, London W16 0QF, United Kingdom
| | - Muhammad K Javaid
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Wellington Square, Oxford OX1 2JD, United Kingdom
| |
Collapse
|
3
|
Azimi Manavi B, Corney KB, Mohebbi M, Quirk SE, Stuart AL, Pasco JA, Hodge JM, Berk M, Williams LJ. The neglected association between schizophrenia and bone fragility: a systematic review and meta-analyses. Transl Psychiatry 2024; 14:225. [PMID: 38816361 PMCID: PMC11139985 DOI: 10.1038/s41398-024-02884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 06/01/2024] Open
Abstract
Schizophrenia is associated with increased risk of medical comorbidity, possibly including osteoporosis, which is a public health concern due to its significant social and health consequences. In this systematic review and meta-analysis, we aimed to determine whether schizophrenia is associated with bone fragility. The protocol for this review has been registered with PROSPERO (CRD42020171959). The research question and inclusion/exclusion criteria were developed and presented according to the PECO (Population, Exposure, Comparison, Outcome) framework. Schizophrenia was identified from medical records, DSM-IV/5 or the ICD. The outcomes for this review were bone fragility [i.e., bone mineral density (BMD), fracture, bone turnover markers, bone quality]. A search strategy was developed and implemented for the electronic databases. A narrative synthesis was undertaken for all included studies; the results from eligible studies reporting on BMD and fracture were pooled using a random effects model to complete a meta-analysis. The conduct of the review and reporting of results adhered to PRISMA guidelines. Our search yielded 3103 studies, of which 29 met the predetermined eligibility criteria. Thirty-seven reports from 29 studies constituted 17 studies investigating BMD, eight investigating fracture, three investigating bone quality and nine investigating bone turnover markers. The meta-analyses revealed that people with schizophrenia had lower BMD at the lumbar spine [standardised mean difference (SMD) -0.74, 95% CI -1.27, -0.20; Z = -2.71, p = 0.01] and at the femoral neck (SMD -0.78, 95% CI -1.03, -0.53; Z = -6.18, p ≤ 0.001). Also observed was a higher risk of fracture (OR 1.43, 95% CI 1.27, 1.61; Z = 5.88, p ≤ 0.001). Following adjustment for publication bias, the association between schizophrenia and femoral neck BMD (SMD -0.63, 95% CI -0.97, -0.29) and fracture (OR 1.32, 95% CI 1.28, 1.35) remained. Significantly increased risk of bone fragility was observed in people with schizophrenia. This association was independent of sex, participant number, methodological quality and year of publication.
Collapse
Affiliation(s)
- Behnaz Azimi Manavi
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia.
| | - Kayla B Corney
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
| | - Mohammadreza Mohebbi
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Deakin University, Faculty of Health, Biostatistics unit, Geelong, Australia
| | - Shae E Quirk
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Institute of Clinical Medicine, Psychiatry, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Kuopio Musculoskeletal Research Unit (KMRU), University of Eastern, Kuopio, Finland
| | - Amanda L Stuart
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
| | - Julie A Pasco
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Medicine-Western Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Jason M Hodge
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Parkville, VIC, Australia
| | - Lana J Williams
- Deakin University, Institute for Mental and Physical Health and Clinical Translation-IMPACT, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| |
Collapse
|
4
|
Simion G, Eckardt N, Ullrich BW, Senft C, Schwarz F. Bone density of the cervical, thoracic and lumbar spine measured using Hounsfield units of computed tomography - results of 4350 vertebras. BMC Musculoskelet Disord 2024; 25:200. [PMID: 38443864 PMCID: PMC10916010 DOI: 10.1186/s12891-024-07324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
INTRODUCTION The assessment of bone density has gained significance in recent years due to the aging population. Accurate assessment of bone density is crucial when deciding on the appropriate treatment plan for spinal stabilization surgery. The objective of this work was to determine the trabecular bone density values of the subaxial cervical, thoracic and lumbar spine using Hounsfield units. MATERIAL AND METHODS Data from 200 patients who underwent contrast-enhanced polytrauma computed tomography at a maximum care hospital over a two-year period were retrospectively analyzed. HUs were measured with an elliptical measurement field in three different locations within the vertebral body: below the upper plate, in the middle of the vertebral body, and above the base plate. The measured Hounsfield units were converted into bone density values using a validated formula. RESULTS The mean age of the patient collective was 47.05 years. Mean spinal bone density values decreased from cranial to caudal (C3: 231.79 mg/cm3; L5: 155.13 mg/cm3; p < 0.001), with the highest values in the upper cervical spine. Bone density values generally decreased with age in all spinal segments. There was a clear decrease in values after age 50 years (p < 0.001). CONCLUSIONS In our study, bone density decreased from cranial to caudal with higher values in the cervical spine. These data from the individual spinal segments may be helpful to comprehensively evaluate the status of the spine and to design a better preoperative plan before instrumentation.
Collapse
Affiliation(s)
- George Simion
- Department of Neurosurgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | - Niklas Eckardt
- Department of Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Bernhard W Ullrich
- Department of Orthopedics and Traumatology, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Senft
- Department of Neurosurgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Falko Schwarz
- Department of Neurosurgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Requist MR, Mills MK, Carroll KL, Lenz AL. Quantitative Skeletal Imaging and Image-Based Modeling in Pediatric Orthopaedics. Curr Osteoporos Rep 2024; 22:44-55. [PMID: 38243151 DOI: 10.1007/s11914-023-00845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE OF REVIEW Musculoskeletal imaging serves a critical role in clinical care and orthopaedic research. Image-based modeling is also gaining traction as a useful tool in understanding skeletal morphology and mechanics. However, there are fewer studies on advanced imaging and modeling in pediatric populations. The purpose of this review is to provide an overview of recent literature on skeletal imaging modalities and modeling techniques with a special emphasis on current and future uses in pediatric research and clinical care. RECENT FINDINGS While many principles of imaging and 3D modeling are relevant across the lifespan, there are special considerations for pediatric musculoskeletal imaging and fewer studies of 3D skeletal modeling in pediatric populations. Improved understanding of bone morphology and growth during childhood in healthy and pathologic patients may provide new insight into the pathophysiology of pediatric-onset skeletal diseases and the biomechanics of bone development. Clinical translation of 3D modeling tools developed in orthopaedic research is limited by the requirement for manual image segmentation and the resources needed for segmentation, modeling, and analysis. This paper highlights the current and future uses of common musculoskeletal imaging modalities and 3D modeling techniques in pediatric orthopaedic clinical care and research.
Collapse
Affiliation(s)
- Melissa R Requist
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Megan K Mills
- Department of Radiology and Imaging Sciences, University of Utah, 30 N Mario Capecchi Dr. 2 South, Salt Lake City, UT, 84112, USA
| | - Kristen L Carroll
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
- Shriners Hospital for Children, 1275 E Fairfax Rd, Salt Lake City, UT, 84103, USA
| | - Amy L Lenz
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA.
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr., Salt Lake City, UT, 84112, USA.
| |
Collapse
|
6
|
A review on prediction of bone fracture using LEFM. FORCES IN MECHANICS 2022. [DOI: 10.1016/j.finmec.2022.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Augmented reality (AR) and fracture mapping model on middle-aged femoral neck fracture: A proof-of-concept towards interactive visualization. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Liu Q, Mei H, Zhu G, Liu Z, Guo H, Wang M, Liang J, Zhang Y. Early Pixel Value Ratios to Assess Bone Healing During Distraction Osteogenesis. Front Bioeng Biotechnol 2022; 10:929699. [PMID: 35903796 PMCID: PMC9315284 DOI: 10.3389/fbioe.2022.929699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Distraction osteogenesis (DO) is an approach for bone lengthening and reconstruction. The pixel value ratio (PVR), an indicator calculated from X-ray images, is reported to assess the final timing for the external fixator removal. However, the early PVR and its potential influencing factors and the relationship between the early PVR and clinical outcomes are rarely discussed. Therefore, this study was employed to address these issues.Methods: A total of 125 patients with bone lengthening were investigated retrospectively. The early PVR of regenerated bone was monitored in the first 3 months after osteotomy. The potential effect of sex, chronological age, BMI, lengthening site, and involvement of internal fixation during the consolidation period was analyzed. Moreover, the associations of the healing index (HI) and lengthening index (LI) with early PVR were also investigated.Results: The early PVRs were 0.78 ± 0.10, 0.87 ± 0.06, and 0.93 ± 0.06 in the first 3 months after osteotomy, respectively. Moreover, the PVR in juvenile was significantly higher than that in adults in the first 3 months after osteotomy (0.80 ± 0.09 vs. 0.74 ± 0.10; p = 0.008), (0.89 ± 0.06 vs. 0.83 ± 0.06; p = 0.018), and (0.94 ± 0.05 vs. 0.87 ± 0.05; p = 0.003). In addition, the PVR in males was significantly higher than that in females in the first month after osteotomy (0.80 ± 0.09 vs. 0.76 ± 0.10; p = 0.015), and the PVR in femur site was significantly higher than that in the tibia site in the second and third months after osteotomy (0.88 ± 0.07 vs. 0.87 ± 0.06; p = 0.015) and (0.93 ± 0.06 vs. 0.92 ± 0.06, p = 0.037). However, the BMI and involvement of the internal fixator during the consolidation period seem to not influence the early PVR of regenerated callus during DO. Interestingly, the early PVR seems to be moderately inversely associated with HI (mean = 44.98 ± 49.44, r = -0.211, and p = 0.029) and LI (mean = 0.78 ± 0.77, r = -0.210, and p = 0.029), respectively.Conclusion: The early PVR is gradually increasing in the first 3 months after osteotomy, which may be significantly influenced by chronological age, sex, and the lengthening site. Moreover, the early PVR of callus may reflect the potential clinical outcome for DO. Our results may be beneficial to the clinical management of the subjects with bone lengthening.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haibo Mei
- Department of Pediatric Orthopedics, Hunan Children’s Hospital, Pediatric Academy of University of South China, Changsha, China
| | - Guanghui Zhu
- Department of Pediatric Orthopedics, Hunan Children’s Hospital, Pediatric Academy of University of South China, Changsha, China
| | - Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi Zhang, ; Jieyu Liang,
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi Zhang, ; Jieyu Liang,
| |
Collapse
|
9
|
Liu Q, Liu Z, Guo H, Liang J, Zhang Y. The progress in quantitative evaluation of callus during distraction osteogenesis. BMC Musculoskelet Disord 2022; 23:490. [PMID: 35610718 PMCID: PMC9128294 DOI: 10.1186/s12891-022-05458-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
The manual monitoring of callus with digital radiography (X-ray) is the primary bone healing evaluation, assessing the number of bridged callus formations. However, this method is subjective and nonquantitative. Recently, several quantitative monitoring methods, which could assess the recovery of the structure and biomechanical properties of the callus at different stages and the process of bone healing, have been extensively investigated. These methods could reflect the bone mineral content (BMC), bone mineral density (BMD), stiffness, callus and bone metabolism at the site of bone lengthening. In this review, we comprehensively summarized the latest techniques for evaluating bone healing during distraction osteogenesis (DO): 1) digital radiography; 2) dual-energy X-ray scanning; 3) ultrasound; 4) quantitative computed tomography; 5) biomechanical evaluation; and 6) biochemical markers. This evidence will provide novel and significant information for evaluating bone healing during DO in the future.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongbin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Liang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Hunan Province, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Celikkin N, Mastrogiacomo S, Dou W, Heerschap A, Oosterwijk E, Walboomers XF, Święszkowski W. In vitro and in vivo assessment of a 3D printable gelatin methacrylate hydrogel for bone regeneration applications. J Biomed Mater Res B Appl Biomater 2022; 110:2133-2145. [PMID: 35388573 DOI: 10.1002/jbm.b.35067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering (BTE) has made significant progress in developing and assessing different types of bio-substitutes. However, scaffolds production through standardized methods, as required for good manufacturing process (GMP), and post-transplant in vivo monitoring still limit their translation into the clinic. 3D printed 5% GelMA scaffolds have been prepared through an optimized and reproducible process in this work. Mesenchymal stem cells (MSC) were encapsulated in the 3D printable GelMA ink, and their biological properties were assessed in vitro to evaluate their potential for cell delivery application. Moreover, in vivo implantation of the pristine 3D printed GelMA has been performed in a rat condyle defect model. Whereas optimal tissue integration was observed via histology, no signs of fibrotic encapsulation or inhibited bone formation were attained. A multimodal imaging workflow based on computed tomography (CT) and magnetic resonance imaging (MRI) allowed the simultaneous monitoring of both new bone formation and scaffold degradation. These outcomes point out the direction to undertake in developing 3D printed-based hydrogels for BTE that can allow a faster transition into clinical use.
Collapse
Affiliation(s)
- Nehar Celikkin
- Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Simone Mastrogiacomo
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands.,Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Weiqiang Dou
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wojciech Święszkowski
- Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
11
|
Leuliet T, Maxim V, Peyrin F, Sixou B. Impact of the training loss in deep learning based CT reconstruction of bone microarchitecture. Med Phys 2022; 49:2952-2964. [PMID: 35218039 DOI: 10.1002/mp.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/23/2021] [Accepted: 02/13/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Computed tomography (CT) is a technique of choice to image bone structure at different scales. Methods to enhance the quality of degraded reconstructions obtained from low-dose CT data have shown impressive results recently, especially in the realm of supervised deep learning. As the choice of the loss function affects the reconstruction quality, it is necessary to focus on the way neural networks evaluate the correspondence between predicted and target images during the training stage. This is even more true in the case of bone microarchitecture imaging at high spatial resolution where both the quantitative analysis of Bone Mineral Density (BMD) and bone microstructure are essential for assessing diseases such as osteoporosis. Our aim is thus to evaluate the quality of reconstruction on key metrics for diagnosis depending on the loss function that has been used for training the neural network. METHODS We compare and analyze volumes that are reconstructed with neural networks trained with pixelwise, structural and adversarial loss functions or with a combination of them. We perform realistic simulations of various low-dose acquisitions of bone microarchitecture. Our comparative study is performed with metrics that have an interest regarding the diagnosis of bone diseases. We therefore focus on bone-specific metrics such as BV/TV, resolution, connectivity assessed with the Euler number and quantitative analysis of BMD to evaluate the quality of reconstruction obtained with networks trained with the different loss functions. RESULTS We find that using L1 norm as the pixelwise loss is the best choice compared to L2 or no pixelwise loss since it improves resolution without deteriorating other metrics. VGG perceptual loss, especially when combined with an adversarial loss, allows to better retrieve topological and morphological parameters of bone microarchitecture compared to SSIM. This however leads to a decreased resolution performance. The adversarial loss enchances the reconstruction performance in terms of BMD distribution accuracy. CONCLUSIONS In order to retrieve the quantitative and structural characteristics of bone microarchitecture that are essential for post-reconstruction diagnosis, our results suggest to use L1 norm as part of the loss function. Then, trade-offs should be made depending on the application: VGG perceptual loss improves accuracy in terms of connectivity at the cost of a deteriorated resolution, and adversarial losses help better retrieve BMD distribution while significantly increasing the training time. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Théo Leuliet
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Voichiţa Maxim
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Françoise Peyrin
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| | - Bruno Sixou
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, LYON, F-69621, France
| |
Collapse
|
12
|
Wang X, Shen Y, Zhuang X, Wang N, Zhang Q, Zhu L, Liu Y, Lu X, Qin L, Zhang Q. Jintiange Capsule Alleviates Rheumatoid Arthritis and Reverses Changes of Serum Metabolic Profile in Collagen-Induced Arthritic Rats. J Inflamm Res 2021; 14:6685-6706. [PMID: 34949931 PMCID: PMC8688834 DOI: 10.2147/jir.s338107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Jintiange capsule (JTG), an approved drug developed as a substitute for tiger bone (TB), has been clinically applied for osteoporosis therapy since 2003. The drug is composed of bionic TB powder, in which peptides and proteins are primarily enriched from other bone extracts. However, as a precious material of traditional Chinese medicine (TCM), TB has been mainly understood and used in TCM to relieve osteoporosis, rheumatoid arthritis and bone injury. Inspired by those, the purpose of this study was to investigate whether JTG also had an effect on relieving rheumatoid arthritis in collagen-induced arthritic (CIA) rats and explore potential mechanism from the perspective of serum metabolic profile changes. Methods JTG was analyzed using Nano LC-MS/MS and orally administered in CIA rats for 6 weeks. After administration, intervention effects of JTG on synovial inflammation, bone micro-architecture and bone metabolism were studied, and the impact of JTG on serum metabolic profiles in CIA rats was investigated by metabolomics. Results Nine bioactive peptides were identified in JTG. In animal treatments, JTG alleviated paw swelling (P < 0.01), arthritic severity (P < 0.01) and synovial tissue proliferation, as well as inflammatory cell infiltration of ankle joint, decreased bone loss, improved microstructure of bone in CIA rats by regulating bone absorption and formation, specifically increasing bone mineral density (BMD) (P < 0.05), bone volume fraction (BVF) (P < 0.05), trabecular number (Tb.N) (P < 0.05) and decreasing trabecular separation (Tb.Sp) (P < 0.05). Besides, serum IL-6 was down-regulated remarkably in CIA rats (P < 0.05). Furthermore, metabolomics analysis revealed that 32 metabolites were regulated significantly (P < 0.05) by comparison between CIA model and JTG in 360 mg/kg dose. The pathway analysis implied that JTG was involved in regulation of biosynthesis of phenylalanine. Conclusion JTG alleviates rheumatoid arthritis and reverses changes in serum metabolic profile in CIA rats. ![]()
Point your SmartPhone at the code above. If you have a QR code reader, the video abstract will appear. Or use: https://youtu.be/fgIlcSWmw_Y
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yi Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Xinying Zhuang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Na Wang
- Ginwa Enterprise (Group) INC, Xi'an, 710069, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Lulin Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yuling Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Xinyu Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| |
Collapse
|
13
|
Driessen JHM, van Dort MJ, Romme EAPM, Wouters EFM, Smeenk FWJM, van Rietbergen B, van den Bergh JPW, Geusens P. Associations between bone attenuation and prevalent vertebral fractures on chest CT scans differ with vertebral fracture locations. Osteoporos Int 2021; 32:1869-1877. [PMID: 33594489 PMCID: PMC8387252 DOI: 10.1007/s00198-020-05719-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 10/27/2020] [Indexed: 01/31/2023]
Abstract
UNLABELLED Vertebral fracture (VF) locations are bimodally distributed in the spine. The association between VF and bone attenuation (BA) measured on chest CT scans varied according to the location of VFs, indicating that other factors than only BA play a role in the bimodal distribution of VFs. INTRODUCTION Vertebral fractures (VFs) are associated with low bone mineral density but are not equally distributed throughout the spine and occur most commonly at T7-T8 and T11-T12 ("cVFs") and less commonly at T4-T6 and T9-T10 ("lcVF"). We aimed to determine whether associations between bone attenuation (BA) and VFs vary between subjects with cVFs only, with lcVFs only and with both cVFs and lcVFs. METHODS Chest CT images of T4-T12 in 1237 smokers with and without COPD were analysed for prevalent VFs according to the method described by Genant (11,133 vertebrae). BA (expressed in Hounsfield units) was measured in all non-fractured vertebrae (available for 10,489 vertebrae). Linear regression was used to compare mean BA, and logistic regression was used to estimate the association of BA with prevalent VFs (adjusted for age and sex). RESULTS On vertebral level, the proportion of cVFs was significantly higher than of lcVF (5.6% vs 2.0%). Compared to subjects without VFs, BA was 15% lower in subjects with cVFs (p < 0.0001), 25% lower in subjects with lcVFs (p < 0.0001) and lowest in subjects with cVFs and lcVFs (- 32%, p < 0.0001). The highest ORs for presence of VFs per - 1SD BA per vertebra were found in subjects with both cVFs and lcVFs (3.8 to 4.6). CONCLUSIONS The association between VFs and BA differed according to VF location. ORs increased from subjects with cVFs to subjects with lcVFs and were highest in subjects with cVFs and lcVFs, indicating that other factors than only BA play a role in the bimodal VF distribution. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT00292552.
Collapse
Affiliation(s)
- J H M Driessen
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Postbus 5800, 6202, AZ, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre+ (MUMC+), Postbus 5800, 6202, AZ, Maastricht, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+ (MUMC+), Postbus 5800, 6202, AZ, Maastricht, The Netherlands
| | - M J van Dort
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Postbus 5800, 6202, AZ, Maastricht, The Netherlands.
| | - E A P M Romme
- Department of Respiratory Medicine, Rijnstate Hospital, Postbus 9555, 6800, TA, Arnhem, The Netherlands
| | - E F M Wouters
- Department of Respiratory Diseases, Maastricht University Medical Centre+ (MUMC+), Postbus 5800, 6202, AZ, Maastricht, The Netherlands
| | - F W J M Smeenk
- Department of Respiratory Medicine, Catharina Hospital, Postbus 1350, 5602, ZA, Eindhoven, The Netherlands
- School of Health Professions Education, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Centre+ (MUMC+), Postbus 5800, 6202, AZ, Maastricht, The Netherlands
| | - B van Rietbergen
- Faculty of Biomedical Engineering, Section Orthopaedic Biomechanics, Eindhoven University of Technology, Postbus 513, 5600, MB, Eindhoven, The Netherlands
| | - J P W van den Bergh
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Postbus 5800, 6202, AZ, Maastricht, The Netherlands
- Department of Internal Medicine/Rheumatology, Maastricht University Medical Centre+ (MUMC+), Postbus 5800, 6202, AZ, Maastricht, The Netherlands
- Department of Internal Medicine, VieCuri Medical Centre, Venlo, The Netherlands
| | - P Geusens
- Department of Internal Medicine/Rheumatology, Maastricht University Medical Centre+ (MUMC+), Postbus 5800, 6202, AZ, Maastricht, The Netherlands
| |
Collapse
|
14
|
Corona-Castuera J, Rodriguez-Delgado D, Henao J, Castro-Sandoval JC, Poblano-Salas CA. Design and Fabrication of a Customized Partial Hip Prosthesis Employing CT-Scan Data and Lattice Porous Structures. ACS OMEGA 2021; 6:6902-6913. [PMID: 33748604 PMCID: PMC7970571 DOI: 10.1021/acsomega.0c06144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 05/22/2023]
Abstract
As a larger elderly human population is expected worldwide in the next 30 years, the occurrence of aging-associated illnesses will also be increased. The use of prosthetic devices by this population is currently important and will be even more dramatic in the near future. Hence, the design of prosthetic devices able to reduce some of the problems associated with the use of current components, such as stress shielding, reduced mobility, infection, discomfort, etc., becomes relevant. The use of additive manufacturing (AM) and the design fabrication of self-supported cellular structures in the biomedical area have opened up important opportunities for controlling the physical and mechanical properties of hip implants, resulting in specific benefits for the patients. Different studies have reported the development of hip prosthetic designs employing AM, although there are still opportunities for improvement when it comes to customized design and tuning of the physical and mechanical properties of such implants. This work shows the design and manufacture by AM of a personalized stainless-steel partial hip implant using tomography data and self-supported triply periodic minimal surface (TPMS) cell structures; the design considers dimensional criteria established by international standards. By employing tomography data, the external dimensions of the implant were established and the bone density of a specific patient was calculated; the density and mechanical properties in compression of the implant were modulated by employing an internal gyroid-type cell structure. Using such a cell structure, the patient's bone density was emulated; also, the mechanical properties of the implant were fine-tuned in order to make them comparable to those reported for the bone tissue replaced by the prosthesis. The implant design and manufacturing methodology developed in this work considered the clinical condition of a specific patient and can be reproduced and adjusted for different types of bone tissue qualities for specific clinical requirements.
Collapse
Affiliation(s)
- Jorge Corona-Castuera
- CIATEQ
A.C., Av. Manantiales
23-A, Parque Industrial Bernardo Quintana, El Marqués, Querétaro 76246, Mexico
| | - Daniela Rodriguez-Delgado
- CIATEQ
A.C., Av. Manantiales
23-A, Parque Industrial Bernardo Quintana, El Marqués, Querétaro 76246, Mexico
| | - John Henao
- CONACyT-CIATEQ
A.C., Av. Manantiales
23-A, Parque Industrial Bernardo Quintana, El Marqués, Querétaro 76246, Mexico
| | | | - Carlos A. Poblano-Salas
- CIATEQ
A.C., Av. Manantiales
23-A, Parque Industrial Bernardo Quintana, El Marqués, Querétaro 76246, Mexico
| |
Collapse
|
15
|
Sollmann N, Rayudu NM, Yeung LY, Sekuboyina A, Burian E, Dieckmeyer M, Löffler MT, Schwaiger BJ, Gersing AS, Kirschke JS, Baum T, Subburaj K. MDCT-Based Finite Element Analyses: Are Measurements at the Lumbar Spine Associated with the Biomechanical Strength of Functional Spinal Units of Incidental Osteoporotic Fractures along the Thoracolumbar Spine? Diagnostics (Basel) 2021; 11:455. [PMID: 33800876 PMCID: PMC7998199 DOI: 10.3390/diagnostics11030455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Assessment of osteoporosis-associated fracture risk during clinical routine is based on the evaluation of clinical risk factors and T-scores, as derived from measurements of areal bone mineral density (aBMD). However, these parameters are limited in their ability to identify patients at high fracture risk. Finite element models (FEMs) have shown to improve bone strength prediction beyond aBMD. This study aims to investigate whether FEM measurements at the lumbar spine can predict the biomechanical strength of functional spinal units (FSUs) with incidental osteoporotic vertebral fractures (VFs) along the thoracolumbar spine. Multi-detector computed tomography (MDCT) data of 11 patients (5 females and 6 males, median age: 67 years) who underwent MDCT twice (median interval between baseline and follow-up MDCT: 18 months) and sustained an incidental osteoporotic VF between baseline and follow-up scanning were used. Based on baseline MDCT data, two FSUs consisting of vertebral bodies and intervertebral discs (IVDs) were modeled: one standardly capturing L1-IVD-L2-IVD-L3 (FSU_L1-L3) and one modeling the incidentally fractured vertebral body at the center of the FSU (FSU_F). Furthermore, volumetric BMD (vBMD) derived from MDCT, FEM-based displacement, and FEM-based load of the single vertebrae L1 to L3 were determined. Statistically significant correlations (adjusted for a BMD ratio of fracture/L1-L3 segments) were revealed between the FSU_F and mean load of L1 to L3 (r = 0.814, p = 0.004) and the mean vBMD of L1 to L3 (r = 0.745, p = 0.013), whereas there was no statistically significant association between the FSU_F and FSU_L1-L3 or between FSU_F and the mean displacement of L1 to L3 (p > 0.05). In conclusion, FEM measurements of single vertebrae at the lumbar spine may be able to predict the biomechanical strength of incidentally fractured vertebral segments along the thoracolumbar spine, while FSUs seem to predict only segment-specific fracture risk.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (A.S.); (E.B.); (M.D.); (M.T.L.); (B.J.S.); (J.S.K.); (T.B.)
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Nithin Manohar Rayudu
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore; (N.M.R.); (L.Y.Y.)
| | - Long Yu Yeung
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore; (N.M.R.); (L.Y.Y.)
| | - Anjany Sekuboyina
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (A.S.); (E.B.); (M.D.); (M.T.L.); (B.J.S.); (J.S.K.); (T.B.)
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (A.S.); (E.B.); (M.D.); (M.T.L.); (B.J.S.); (J.S.K.); (T.B.)
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (A.S.); (E.B.); (M.D.); (M.T.L.); (B.J.S.); (J.S.K.); (T.B.)
| | - Maximilian T. Löffler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (A.S.); (E.B.); (M.D.); (M.T.L.); (B.J.S.); (J.S.K.); (T.B.)
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Hugstetter Str. 55, 79106 Freiburg im Breisgau, Germany
| | - Benedikt J. Schwaiger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (A.S.); (E.B.); (M.D.); (M.T.L.); (B.J.S.); (J.S.K.); (T.B.)
| | - Alexandra S. Gersing
- Institute of Neuroradiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany;
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (A.S.); (E.B.); (M.D.); (M.T.L.); (B.J.S.); (J.S.K.); (T.B.)
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (N.S.); (A.S.); (E.B.); (M.D.); (M.T.L.); (B.J.S.); (J.S.K.); (T.B.)
| | - Karupppasamy Subburaj
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore; (N.M.R.); (L.Y.Y.)
- Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
| |
Collapse
|
16
|
Winsor C, Li X, Qasim M, Henak CR, Pickhardt PJ, Ploeg H, Viceconti M. Evaluation of patient tissue selection methods for deriving equivalent density calibration for femoral bone quantitative CT analyses. Bone 2021; 143:115759. [PMID: 33212317 DOI: 10.1016/j.bone.2020.115759] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023]
Abstract
Osteoporosis affects an increasing number of people every year and patient specific finite element analysis of the femur has been proposed to identify patients that could benefit from preventative treatment. The aim of this study was to demonstrate, verify, and validate an objective process for selecting tissues for use as the basis of phantomless calibration to enable patient specific finite element analysis derived hip fracture risk prediction. Retrospective reanalysis of patient computed tomography (CT) scans has the potential to yield insights into more accurate prediction of osteoporotic fracture. Bone mineral density (BMD) specific calibration scans are not typically captured during routine clinical practice. Tissue-based BMD calibration can therefore empower the retrospective study of patient CT scans captured during routine clinical practice. Together the method for selecting tissues as the basis for phantomless calibration coupled with the post-processing steps for deriving a calibration equation using the selected tissues provide an estimation of quantitative equivalent density results derived using calibration phantoms. Patient tissues from a retrospective cohort of 211 patients were evaluated. The best phantomless calibration resulted in a femoral strength (FS) [N] bias of 0.069 ± 0.07% over FS derived from inline calibration and a BMD [kg/cm3] bias of 0.038 ± 0.037% over BMD derived from inline calibration. The phantomless calibration slope for the best method presented was within the range of patient specific calibration curves available for comparison and demonstrated a small bias of 0.028 ± 0.054 HU/(mg/cm3), assuming the Mindways Model 3 BMD inline calibration phantom as the gold standard. The presented method of estimating a calibration equation from tissues showed promise for CT-based femoral fracture analyses of retrospective cohorts without readily available calibration data.
Collapse
Affiliation(s)
- C Winsor
- Mechanical Engineering, University of Wisconsin, USA
| | - X Li
- Mechanical Engineering, University of Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, UK.
| | - M Qasim
- Mechanical Engineering, University of Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, UK
| | - C R Henak
- Mechanical Engineering, University of Wisconsin, USA
| | | | - H Ploeg
- Mechanical Engineering, University of Wisconsin, USA; Mechanical and Materials Engineering, Queen's University, Canada
| | - M Viceconti
- Mechanical Engineering, University of Sheffield, UK; INSIGNEO Institute for in silico Medicine, University of Sheffield, UK; Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Italy; Medical Technology Lab, IRCCS Rizzoli Orthopaedic Institute, Italy
| |
Collapse
|
17
|
Yuan T, Zhang H, Liu H, Du J, Yu H, Wang Y, Xu Y. Watertight 2-manifold 3D bone surface model reconstruction from CT images based on visual hyper-spherical mapping. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1280-1313. [PMID: 33757186 DOI: 10.3934/mbe.2021068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper proposes a general algorithm to reconstruct watertight 2-manifold 3D bone surface model from CT images based on visual hyper-spherical mapping. The reconstruction algorithm includes three main steps: two-step thresholding, initial watertight surface reconstruction and shape optimization. Firstly, volume sampling points of the target bone with given narrower threshold range are extracted by thresholding with combination of 3D morphology operation. Secondly, visible points near the bone's outer surface are extracted from its corresponding volume sampling points by hyper-spherical projection mapping method. Thirdly, implicit surface reconstruction algorithm is employed on the extracted visible surface points to obtain an initial watertight 3D bone surface model which is used as the deformation model in the following accurate bone surface model generation stage. Finally, the initial surface model is deformed according to the segmentation data with wider threshold range under given constraints in order to achieve an accurate watertight 3D bone surface model. Experiment and comparison results show that the proposed algorithm can reconstruct watertight 3D bone surface model from CT images, and local details of the bone surface can be restored accurately for the cases used in this paper.
Collapse
Affiliation(s)
- Tianran Yuan
- School of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hongsheng Zhang
- School of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hao Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
| | - Juan Du
- School of Medical Technology, Jiangsu College of Nursing, Huaian, Jiangsu 223005, China
| | - Huiming Yu
- Department of Oral and Maxillofacial Surgery, Huaian First People's Hospital, Huaian, Jiangsu 223300, China
| | - Yimin Wang
- School of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Yabin Xu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China
| |
Collapse
|
18
|
Babel H, Wägeli L, Sonmez B, Thiran JP, Omoumi P, Jolles BM, Favre J. A Registration Method for Three-Dimensional Analysis of Bone Mineral Density in the Proximal Tibia. J Biomech Eng 2021; 143:014502. [PMID: 32879939 DOI: 10.1115/1.4048335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 12/28/2022]
Abstract
Although alterations in bone mineral density (BMD) at the proximal tibia have been suggested to play a role in various musculoskeletal conditions, their pathophysiological implications and their value as markers for diagnosis remain unclear. Improving our understanding of proximal tibial BMD requires novel tools for three-dimensional (3D) analysis of BMD distribution. Three-dimensional imaging is possible with computed tomography (CT), but computational anatomy algorithms are missing to standardize the quantification of 3D proximal tibial BMD, preventing distribution analyses. The objectives of this study were to develop and assess a registration method, suitable with routine knee CT scans, to allow the standardized quantification of 3D BMD distribution in the proximal tibia. Second, as an example of application, the study aimed to characterize the distribution of BMD below the tibial cartilages in healthy knees. A method was proposed to register both the surface (vertices) and the content (voxels) of proximal tibias. The method combines rigid transformations to account for differences in bone size and position in the scanner's field of view and to address inconsistencies in the portion of the tibial shaft included in routine CT scan, with a nonrigid transformation locally matching the proximal tibias. The method proved to be highly reproducible and provided a comprehensive description of the relationship between bone depth and BMD. Specifically it reported significantly higher BMD in the first 6 mm of bone than deeper in the proximal tibia. In conclusion, the proposed method offers promising possibilities to analyze BMD and other properties of the tibia in 3D.
Collapse
Affiliation(s)
- Hugo Babel
- Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| | - Loïc Wägeli
- Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| | - Berke Sonmez
- Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Service of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| | - Patrick Omoumi
- Service of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| | - Brigitte M Jolles
- Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
- Institute of Microengineering, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Julien Favre
- Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne CH-1011, Switzerland
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize recent advances in modeling of bone fracture using fracture mechanics-based approaches at multiple length scales spanning nano- to macroscale. RECENT FINDINGS Despite the additional information that fracture mechanics-based models provide over strength-based ones, the application of this approach to assessing bone fracture is still somewhat limited. Macroscale fracture models of bone have demonstrated the potential of this approach in uncovering the contributions of geometry, material property variation, as well as loading mode and rate on whole bone fracture response. Cortical and cancellous microscale models of bone have advanced the understanding of individual contributions of microstructure, microarchitecture, local material properties, and material distribution on microscale fracture resistance of bone. Nano/submicroscale models have provided additional insight into the effect of specific changes in mineral, collagen, and non-collagenous proteins as well as their interaction on energy dissipation and fracture resistance at small length scales. Advanced modeling approaches based on fracture mechanics provide unique information about the underlying multiscale fracture mechanisms in bone and how these mechanisms are influenced by the structural and material constituents of bone at different length scales. Fracture mechanics-based modeling provides a powerful approach that complements experimental evaluations and advances the understanding of critical determinants of fracture risk.
Collapse
Affiliation(s)
- Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
| |
Collapse
|
20
|
Accuracy, agreement, and reliability of DECT-derived vBMD measurements: an initial ex vivo study. Eur Radiol 2020; 31:191-199. [PMID: 32757052 DOI: 10.1007/s00330-020-07118-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To assess the agreement and reliability of DECT (dual-energy CT)-derived vBMD (volumetric bone mineral density) measurements from excised human femoral heads and to compare DECT-derived BMD with that measured by DXA (dual-energy X-ray absorptiometry) and QCT (quantitative CT) to determine its accuracy. METHODS Twenty patients that underwent total hip arthroplasty were enrolled to this study. Femoral heads were excised to rectangles without cortical bones for scanning. A dual-source DECT scanner generated images under 80/Sn140 kVp and 100/Sn140 kVp scanning conditions. Specimens were subsequently scanned by QCT and DXA to produce QCT-derived vBMD (mg/cm3) and DXA-derived BMM (bone mineral mass, g). DECT images were loaded to a post-processing workstation to calculate DECT-derived vBMD and BMM. RESULTS Higher DECT-derived vBMD and BMM were found under 80/Sn140 and 100/Sn140 kVp compared with those for QCT and DXA (p = 0.005). DECT-derived vBMD was highly correlated with QCT-derived vBMD (r = 0.961 ~ 0.993, p < 0.05). Similarly, DECT-derived BMM was strongly correlated with DXA-derived BMM (r = 0.927 ~ 0.943, p < 0.05). Agreement of the inter- and intra-observation of DECT-derived vBMD was excellent. Linear regression was carried out to calibrate DECT-derived vBMD of 80/Sn140 kVp (14 + 0.7 × DECT-derived vBMD) and 100/Sn140 kVp (74 + 0.4 × DECT-derived vBMD) with the reference of QCT-derived vBMD. After calibration, excellent agreement was found for vBMD and BMM within various imaging modalities. CONCLUSIONS Our study showed that DECT-derived vBMD exhibited high agreement and reliability features, and after calibration, it also displayed a high degree of accuracy. However, in vivo studies are needed to extend its potential utility in clinical settings. KEY POINTS • Measurements of DECT-derived vBMD had high intra- and inter-observer agreement and reliability. • Measurements of DECT-derived vBMD and BMM had a high correlation with those derived from QCT and DXA. • DECT-derived vBMD and BMM were accurate after calibration compared with QCT and DXA.
Collapse
|
21
|
Rhodes S, Batzdorf A, Sorci O, Peng M, Jankelovits A, Hornyak J, An J, Noël PB, Høilund-Carlsen PF, Alavi A, Rajapakse CS. Assessment of femoral neck bone metabolism using 18F-sodium fluoride PET/CT imaging. Bone 2020; 136:115351. [PMID: 32276154 PMCID: PMC7246165 DOI: 10.1016/j.bone.2020.115351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Standard of care metabolic bone disease assessment relies on changes to bone quantity, which can only be detected after structural changes occur. PURPOSE To investigate the usefulness of Bone Metabolism Score (BMS), derived from fluorine 18 labeled sodium fluoride (18F-NaF) PET/CT imaging as a biomarker of localized metabolic changes at the femoral neck. METHODS In this retrospective study, 139 participants (68 females and 71 males, ages 21-75 years) that had undergone 18F-NaF PET/CT were included. BMS was calculated as the ratio of standard uptake value (SUV) in the bone region to that of the total region. Correlations and linear regressions of BMS with age, CT-derived bone mineral density (BMD), body mass index (BMI), height, and weight were conducted. Differences in BMS between women younger and older than the age of 50 years were assessed. Inter- and intra-operator reproducibility was evaluated by coefficient of variation (CV) and intra-class correlation coefficient (ICC). RESULTS Among females, age was negatively correlated with left and right whole BMS (5.61% and 4.90% drop in BMS per decade of life) and left and right cortical BMS (10.50% and 10.09% drop in BMS per decade of life). BMS of women older than 50 years was lower than BMS of women younger than 50 years (P < .0001). Among males, age was negatively correlated with left and right whole BMS (4.29% and 4.25% drop in BMS per decade of life) and left and right cortical BMS (9.13% and 10.30% drop in BMS per decade of life). BMD was positively correlated with whole (r = 0.80, P < .0001) and cortical (r = 0.92, P < .0001) BMS. CONCLUSIONS BMS could provide functional insight regarding bone metabolism in the femoral neck to complement bone health status assessed through conventional structural imaging. The methodology described herein could be potentially useful for assessing hip fracture risk in individuals when BMD tests provide borderline determination of bone disease.
Collapse
Affiliation(s)
- Sylvia Rhodes
- Departments of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra Batzdorf
- Departments of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia Sorci
- Departments of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Peng
- Departments of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Jankelovits
- Departments of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Hornyak
- Departments of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jongyun An
- Departments of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter B Noël
- Departments of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Abass Alavi
- Division of Nuclear Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chamith S Rajapakse
- Departments of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Departments of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Liu Y, Wang L, Su Y, Brown K, Yang R, Zhang Y, Duanmu Y, Guo Z, Zhang W, Yan C, Yan D, Cheng X. CTXA hip: the effect of partial volume correction on volumetric bone mineral density data for cortical and trabecular bone. Arch Osteoporos 2020; 15:50. [PMID: 32193671 DOI: 10.1007/s11657-020-00721-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 02/25/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED This study compares the results of computed tomography X-ray absorptiometry (CTXA) hip volumetric BMD (vBMD) analyses of cortical and trabecular bone with and without partial volume correction. For cortical bone in some circumstances, corrected cortical volumes were negative and corrected vBMD was very high. For trabecular bone, the correction effects are smaller. CTXA volumetric data should be interpreted with caution. PURPOSE Previous studies have reported concerns about the reliability of CTXA hip cortical vBMD measurements generated using partial volume (PV) correction (the "default" analysis, with cortical PV correction). To date, no studies have examined the results of the alternative ("new") analysis (with trabecular PV correction). This study presents in vivo and phantom data comparing the corrected and uncorrected data for cortical and trabecular bone respectively. METHODS We used the commercial QCTPro CTXA software to analyze CT scans of 129 elderly Chinese men and women and an anthropomorphic European Proximal Femur phantom (EPFP) and accessed data for two alternative scan analyses using the database dump utility. The CTXA software gives the user two methods of performing the PV correction: (1) a default analysis in which only cortical bone results are corrected; (2) a new analysis in which only trabecular bone results are corrected. Both methods are based on a numerical recalculation of vBMD values without any change in volume of interest (VOI) placement. RESULT In vivo, the results of the two analyses for integral bone were the same while cortical and trabecular results were different. PV correction of cortical bone led to a decrease of cortical volume for all four VOIs: total hip (TH), femoral neck (FN), trochanter (TR), and intertrochanter (IT) volumes were reduced on average by 7.8 cm3, 0.9 cm3, 2.5 cm3, and 4.3 cm3 respectively. For TR, where cortex was thinnest, average corrected cortical volume was negative (- 0.4± 1.3 cm3). Corrected cortical vBMD values were much larger than uncorrected ones for TH, FN, and IT. Scatter plots of corrected cortical vBMD against cortical bone thickness showed that elevated results correlated with thinner cortices. When trabecular bone was corrected for the PV effect, trabecular volumes of TH, FN, TR, and IT were reduced on average by 7.9 cm3, 0.8 cm3, 2.6 cm3, and 4.4 cm3 respectively, while vBMD measurements were increased correspondingly. The trabecular volume and vBMD measurements of the two datasets both had highly positive correlations. For the EPFP, the PV-corrected FN data deviated from the nominal phantom value, but was closer for the TR and IT VOIs. Both corrected and uncorrected data overestimated trabecular vBMD, with the corrected results showing greater deviation from nominal values. CONCLUSION The default and new CTXA analyses for volumetric data generate different results, both for cortical and trabecular bone. For cortical bone, the uncorrected results are subject to partial volume effects but the correction method of the default analysis overcorrects the effect leading to in part unreasonable results for cortical bone volume and BMD. For trabecular bone, the correction effects are smaller. CTXA volumetric data should be interpreted with caution.
Collapse
Affiliation(s)
- Y Liu
- Department of Radiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Beijing, 100035, China
| | - L Wang
- Department of Radiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Beijing, 100035, China
| | - Y Su
- Department of Radiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Beijing, 100035, China
| | - K Brown
- Mindways Software, Austin, 78704, TX, USA
| | - R Yang
- Department of Radiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Beijing, 100035, China
| | - Y Zhang
- Department of Radiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Beijing, 100035, China
| | - Y Duanmu
- Department of Radiology, The First Affiliated Hospital of USTC South District, Hefei, 230036, China
| | - Z Guo
- Department of Radiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Beijing, 100035, China
| | - W Zhang
- Department of Radiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Beijing, 100035, China
| | - C Yan
- Department of Radiology, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - D Yan
- Department of Radiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Beijing, 100035, China
| | - X Cheng
- Department of Radiology, Beijing Jishuitan Hospital, 31 Xinjiekou East Street, Beijing, 100035, China.
| |
Collapse
|
23
|
Burkhart K, Allaire B, Anderson DE, Lee D, Keaveny TM, Bouxsein ML. Effects of Long-Duration Spaceflight on Vertebral Strength and Risk of Spine Fracture. J Bone Miner Res 2020; 35:269-276. [PMID: 31670861 DOI: 10.1002/jbmr.3881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 12/18/2022]
Abstract
Although the negative impact of long-duration spaceflight on spine BMD has been reported, its impact on vertebral strength and risk of vertebral fracture remains unknown. This study examined 17 crewmembers with long-duration service on the International Space Station in whom computed tomography (CT) scans of the lumbar spine (L1 and L2 ) were collected preflight, immediately postflight and 1 to 4 years after return to Earth. We assessed vertebral strength via CT-based finite element analysis (CT-FEA) and spinal loading during different activities via subject-specific musculoskeletal models. Six months of spaceflight reduced vertebral strength by 6.1% (-2.3%, -8.7%) (median [interquartile range]) compared to preflight (p < 0.05), with 65% of subjects experiencing deficits of greater than 5%, and strengths were not recovered up to 4 years after the mission. This decline in vertebral strength exceeded (p < 0.05) the 2.2% (-1.3%, -6.0%) decline in lumbar spine DXA-BMD. Further, the subject-specific changes in vertebral strength were not correlated with the changes in DXA-BMD. Although spinal loading increased slightly postflight, the ratio of vertebral compressive load to vertebral strength for typical daily activities remained well below a value of 1.0, indicating a low risk of vertebral fracture despite the loss in vertebral strength. However, for more strenuous activity, the postflight load-to-strength ratios ranged from 0.3 to 0.7, indicating a moderate risk of vertebral fracture in some individuals. Our findings suggest persistent deficits in vertebral strength following long-duration spaceflight, and although risk of vertebral fracture remains low for typical activities, the risk of vertebral fracture is notable in some crewmembers for strenuous exercise requiring maximal effort. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Katelyn Burkhart
- Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brett Allaire
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dennis E Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | | | - Tony M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA.,Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Mary L Bouxsein
- Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Association between osteoporotic femoral neck fractures and DXA-derived 3D measurements at lumbar spine: a case-control study. Arch Osteoporos 2020; 15:8. [PMID: 31897775 DOI: 10.1007/s11657-019-0680-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/15/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED A case-control study assessing the association of DXA-derived 3D measurements at lumbar spine with osteoporotic hip fractures was performed. Stronger association was found between transcervical hip fractures and integral (AUC = 0.726), and cortical (AUC = 0.696) measurements at the lumbar spine compared with measurements at the trabecular bone (AUC = 0.617); although femur areal bone mineral density (aBMD) remains the referent measurement for hip fracture risk evaluation (AUC = 0.838). PURPOSE The aim of the present study was to evaluate the association between DXA-derived 3D measurements at lumbar spine and osteoporotic hip fractures. METHODS We analyzed a case-control database composed by 61 women with transcervical hip fractures and 61 age-matched women without any type of fracture. DXA scans at lumbar spine were acquired, and areal bone mineral density (aBMD) was measured. Integral, trabecular and cortical volumetric BMD (vBMD), cortical thickness, and cortical surface BMD (sBMD) at different regions of interest were assessed using a DXA-based 3D modeling software. Descriptive statistics, tests of difference, odds ratio (OR), and area under the receiver operating curve (AUC) were used to compare hip fracture and control groups. RESULTS Integral vBMD, cortical vBMD, cortical sBMD, and cortical thickness were the DXA-derived 3D measurements at lumbar spine that showed the stronger association with transcervical hip fractures, with AUCs in the range of 0.685-0.726, against 0.670 for aBMD. The highest AUC (0.726) and OR (2.610) at the lumbar spine were found for integral vBMD at the posterior vertebral elements. Significantly, lower AUC (0.617) and OR (1.607) were found for trabecular vBMD at the vertebral body. Overall, total femur aBMD remains the DXA-derived measurement showing the highest AUC (0.838) and OR (6.240). CONCLUSION This study showed the association of DXA-derived measurements at lumbar spine with transcervical hip fractures. A strong association between vBMD at the posterior vertebral elements and transcervical hip fractures was observed, probably because of global deterioration of the cortical bone. Further studies should be carried out to investigate on the relative risk of transcervical fracture in patients with long-term cortical structural deterioration.
Collapse
|
25
|
Alcântara ACS, Assis I, Prada D, Mehle K, Schwan S, Costa-Paiva L, Skaf MS, Wrobel LC, Sollero P. Patient-Specific Bone Multiscale Modelling, Fracture Simulation and Risk Analysis-A Survey. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E106. [PMID: 31878356 PMCID: PMC6981613 DOI: 10.3390/ma13010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022]
Abstract
This paper provides a starting point for researchers and practitioners from biology, medicine, physics and engineering who can benefit from an up-to-date literature survey on patient-specific bone fracture modelling, simulation and risk analysis. This survey hints at a framework for devising realistic patient-specific bone fracture simulations. This paper has 18 sections: Section 1 presents the main interested parties; Section 2 explains the organzation of the text; Section 3 motivates further work on patient-specific bone fracture simulation; Section 4 motivates this survey; Section 5 concerns the collection of bibliographical references; Section 6 motivates the physico-mathematical approach to bone fracture; Section 7 presents the modelling of bone as a continuum; Section 8 categorizes the surveyed literature into a continuum mechanics framework; Section 9 concerns the computational modelling of bone geometry; Section 10 concerns the estimation of bone mechanical properties; Section 11 concerns the selection of boundary conditions representative of bone trauma; Section 12 concerns bone fracture simulation; Section 13 presents the multiscale structure of bone; Section 14 concerns the multiscale mathematical modelling of bone; Section 15 concerns the experimental validation of bone fracture simulations; Section 16 concerns bone fracture risk assessment. Lastly, glossaries for symbols, acronyms, and physico-mathematical terms are provided.
Collapse
Affiliation(s)
- Amadeus C. S. Alcântara
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Israel Assis
- Department of Integrated Systems, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Daniel Prada
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Konrad Mehle
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, 06217 Merseburg, Germany;
| | - Stefan Schwan
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle/Saale, Germany;
| | - Lúcia Costa-Paiva
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-887, Brazil;
| | - Munir S. Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Luiz C. Wrobel
- Institute of Materials and Manufacturing, Brunel University London, Uxbridge UB8 3PH, UK;
- Department of Civil and Environmental Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Paulo Sollero
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| |
Collapse
|
26
|
Efficient materially nonlinear [Formula: see text]FE solver for simulations of trabecular bone failure. Biomech Model Mechanobiol 2019; 19:861-874. [PMID: 31749070 PMCID: PMC7203600 DOI: 10.1007/s10237-019-01254-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/05/2019] [Indexed: 01/15/2023]
Abstract
An efficient solver for large-scale linear \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu \hbox {FE}$$\end{document}μFE simulations was extended for nonlinear material behavior. The material model included damage-based tissue degradation and fracture. The new framework was applied to 20 trabecular biopsies with a mesh resolution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${36}\,{{\upmu }\hbox {m}}$$\end{document}36μm. Suitable material parameters were identified based on two biopsies by comparison with axial tension and compression experiments. The good parallel performance and low memory footprint of the solver were preserved. Excellent correlation of the maximum apparent stress was found between simulations and experiments (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R^2 > 0.97$$\end{document}R2>0.97). The development of local damage regions was observable due to the nonlinear nature of the simulations. A novel elasticity limit was proposed based on the local damage information. The elasticity limit was found to be lower than the 0.2% yield point. Systematic differences in the yield behavior of biopsies under apparent compression and tension loading were observed. This indicates that damage distributions could lead to more insight into the failure mechanisms of trabecular bone.
Collapse
|
27
|
Liu Y, Yuan Q, Zhang S. Three-dimensional intravital imaging in bone research. JOURNAL OF BIOPHOTONICS 2019; 12:e201960075. [PMID: 31593614 DOI: 10.1002/jbio.201960075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 02/05/2023]
Abstract
Intravital imaging has emerged as a novel and efficient tool for visualization of in situ dynamics of cellular behaviors and cell-microenvironment interactions in live animals, based on desirable microscopy techniques featuring high resolutions, deep imaging and low phototoxicity. Intravital imaging, especially based on multi-photon microscopy, has been used in bone research for dynamics visualization of a variety of physiological and pathological events at the cellular level, such as bone remodeling, hematopoiesis, immune responses and cancer development, thus, providing guidance for elucidating novel cellular mechanisms in bone biology as well as guidance for new therapies. This review is aimed at interpreting development and advantages of intravital imaging in bone research, and related representative discoveries concerning bone matrices, vessels, and various cells types involved in bone physiologies and pathologies. Finally, current limitations, further refinement, and extended application of intravital imaging in bone research are concluded.
Collapse
Affiliation(s)
- Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Han Q, Liu Y, Chang F, Chen B, Zhong L, Wang J. Measurement of talar morphology in northeast Chinese population based on three-dimensional computed tomography. Medicine (Baltimore) 2019; 98:e17142. [PMID: 31517856 PMCID: PMC6750351 DOI: 10.1097/md.0000000000017142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Morphological data of talus are important for the design of talar prostheses. The talar morphology of Chinese population has been rarely reported. This study adopted a three-dimensional (3D) measurement approach to provide accurate data for the anatomical morphology of talus in Northeast Chinese population and compared it with that of foreigners.One hundred forty-six healthy subjects form Northeast China underwent computed tomography (CT) arthrography. 3D digital talar model was reconstructed and thirteen morphological parameters were measured through Mimics and Magics software. Length and breadth indexes of total talus, trochlea, medial and lateral malleolus articular surface were mainly selected. Statistical analysis was conducted by independent-samples and paired-samples t test through SPSS software.All the indexes were normally distributed. No significant difference between left and right talus was identified in either males or females (P > .05). Most of the indexes showed significant sexual differences except the radian of lateral malleolus articular surface and the posterior breadth of trochlea (P < .05). The talar anatomy of Chinese subjects is different from the published data in other populations.The promising approach adopted in this study addresses some inconvenience with previous conventional methods on cadaver specimens. The geometric parameters of talus in Chinese population differ from those in other populations. The talar measurements and morphology analysis in this study suggest that population characteristics should be taken into account. This study will provide references for the design of talar prostheses in Chinese population.
Collapse
|
29
|
Daniels AM, Theelen LMA, Wyers CE, Janzing HMJ, van Rietbergen B, Vranken L, van der Velde RY, Geusens PPMM, Kaarsemaker S, Poeze M, van den Bergh JP. Bone Microarchitecture and Distal Radius Fracture Pattern Complexity. J Orthop Res 2019; 37:1690-1697. [PMID: 30977554 PMCID: PMC6767516 DOI: 10.1002/jor.24306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/02/2019] [Accepted: 03/27/2019] [Indexed: 02/04/2023]
Abstract
Distal radius fractures (DRFs) occur in various complexity patterns among patients differing in age, gender, and bone mineral density (BMD). Our aim was to investigate the association of patient characteristics, BMD, bone microarchitecture, and bone strength with the pattern complexity of DRFs. In this study, 251 patients aged 50-90 years with a radiologically confirmed DRF who attended the Fracture Liaison Service of VieCuri Medical Centre, the Netherlands, between November 2013 and June 2016 were included. In all patients fracture risk factors and underling metabolic disorders were evaluated and BMD measurement with vertebral fractures assessment by dual-energy X-ray absorptiometry was performed. Radiographs of all DRFs were reviewed by two independent investigators to assess fracture pattern complexity according to the AO/OTA classification in extra-articular (A), partially articular (B), and complete articular (C) fractures. For this study, patients with A and C fractures were compared. Seventy-one patients were additionally assessed by high-resolution peripheral quantitative computed tomography. Compared to group A, mean age, the proportion of males, and current smokers were higher in group C, but BMD and prevalent vertebral fractures were not different. In univariate analyses, age, male gender, trabecular area, volumetric BMD (vBMD), and stiffness were associated with type C fractures. In multivariate analyses, only male gender (odds ratio (OR) 8.48 95% confidence interval (CI) 1.75-41.18, p = 0.008]) and age (OR 1.11 [95% CI 1.03-1.19, p = 0.007]) were significantly associated with DRF pattern complexity. In conclusion, our data demonstrate that age and gender, but not body mass index, BMD, bone microarchitecture, or strength were associated with pattern complexity of DRFs.© 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. J Orthop Res 37:1690-1697, 2019.
Collapse
Affiliation(s)
- Anne M. Daniels
- Department of SurgeryVieCuri Medical CentreVenloThe Netherlands,NUTRIM School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Luuk M. A. Theelen
- Department of Orthopaedic SurgeryVieCuri Medical CentreVenloThe Netherlands
| | - Caroline E. Wyers
- NUTRIM School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands,Department of Internal MedicineVieCuri Medical CentreVenloThe Netherlands,Department of Internal MedicineMaastricht UniversityMaastrichtThe Netherlands
| | | | - Bert van Rietbergen
- Department of Biomedical Engineering, Orthopaedic BiomechanicsEindhoven University of TechnologyEind hovenThe Netherlands,Department of Orthopaedic Surgery, Research School CAPHRIMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Lisanne Vranken
- NUTRIM School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands,Department of Internal MedicineVieCuri Medical CentreVenloThe Netherlands
| | - Robert Y. van der Velde
- NUTRIM School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands,Department of Internal MedicineVieCuri Medical CentreVenloThe Netherlands
| | - Piet P. M. M. Geusens
- Department of Internal MedicineMaastricht UniversityMaastrichtThe Netherlands,Faculty of Medicine, Division of Internal MedicineHasselt UniversityHasseltBelgium
| | - Sjoerd Kaarsemaker
- Department of Orthopaedic SurgeryVieCuri Medical CentreVenloThe Netherlands
| | - Martijn Poeze
- NUTRIM School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands,Department of Surgery, Division of TraumasurgeryMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Joop P. van den Bergh
- NUTRIM School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands,Department of Internal MedicineVieCuri Medical CentreVenloThe Netherlands,Department of Internal MedicineMaastricht UniversityMaastrichtThe Netherlands,Faculty of Medicine, Division of Internal MedicineHasselt UniversityHasseltBelgium
| |
Collapse
|
30
|
López Picazo M, Humbert L, Di Gregorio S, González Ballester MA, Del Río Barquero LM. Discrimination of osteoporosis-related vertebral fractures by DXA-derived 3D measurements: a retrospective case-control study. Osteoporos Int 2019; 30:1099-1110. [PMID: 30770938 DOI: 10.1007/s00198-019-04894-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/08/2019] [Indexed: 01/30/2023]
Abstract
UNLABELLED A retrospective case-control study assessing the association of DXA-derived 3D measurements with osteoporosis-related vertebral fractures was performed. Trabecular volumetric bone mineral density was the measurement that best discriminates between fracture and control groups. INTRODUCTION The aim of the present study was to evaluate the association of DXA-derived 3D measurements at the lumbar spine with osteoporosis-related vertebral fractures. METHODS We retrospectively analyzed a database of 74 postmenopausal women: 37 subjects with incident vertebral fractures and 37 age-matched controls without any type of fracture. DXA scans at the lumbar spine were acquired at baseline (i.e., before the fracture event for subjects in the fracture group), and areal bone mineral density (aBMD) was measured. DXA-derived 3D measurements, such as volumetric BMD (vBMD), were assessed using a DXA-based 3D modeling software (3D-SHAPER). vBMD was computed at the trabecular, cortical, and integral bone. Cortical thickness and cortical surface BMD were also measured. Differences in DXA-derived measurements between fracture and control groups were evaluated using unpaired t test. Odds ratio (OR) and area under the receiver operating curve (AUC) were also computed. Subgroup analyses according to fractured vertebra were performed. RESULTS aBMD of fracture group was 9.3% lower compared with control group (p < 0.01); a higher difference was found for trabecular vBMD in the vertebral body (- 16.1%, p < 0.001). Trabecular vBMD was the measurement that best discriminates between fracture and control groups, with an AUC of 0.733, against 0.682 for aBMD. Overall, similar findings were observed within the subgroup analyses. The L1 vertebral fractures subgroup had the highest AUC at trabecular vBMD (0.827), against aBMD (0.758). CONCLUSION This study showed the ability of cortical and trabecular measurements from DXA-derived 3D models to discriminate between fracture and control groups. Large cohorts need to be analyzed to determine if these measurements could improve fracture risk prediction in clinical practice.
Collapse
Affiliation(s)
- M López Picazo
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain.
- BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain.
| | - L Humbert
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
| | | | | | | |
Collapse
|
31
|
Levy SM, Eichenberger-Gilmore JM, Warren JJ, Kavand G, Letuchy E, Broffitt B, Marshall TA, Burns TL, Janz KF, Pauley C, Torner JC, Phipps K. Associations of fluoride intake with children's cortical bone mineral and strength measures at age 11. J Public Health Dent 2018; 78:352-359. [PMID: 30155933 PMCID: PMC6279557 DOI: 10.1111/jphd.12286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 05/31/2018] [Accepted: 06/24/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES There is strong affinity between fluoride and calcium, and mineralized tissues. Investigations of fluoride and bone health during childhood and adolescence show inconsistent results. This analysis assessed associations between period-specific and cumulative fluoride intakes from birth to age 11, and age 11 cortical bone measures obtained using peripheral quantitative computed tomography (pQCT) of the radius and tibia (n = 424). METHODS Participants were a cohort recruited from eight Iowa hospitals at birth. Fluoride intakes from water, other beverages, selected foods, dietary supplements, and dentifrice were recorded every 1.5-6 months using detailed questionnaires. Correlations between bone measures (cortical bone mineral content, density, area, and strength) and fluoride intake were determined in bivariate and multivariable analyses adjusting for Tanner stage, weight and height. RESULTS The majority of associations were weak. For boys, only the positive associations between daily fluoride intakes for 0-3 years and radius and tibia bone mineral content were statistically significant. For girls, the negative correlations of recent daily fluoride intake per kg of body weight from 8.5 to 11 years with radius bone mineral content, area, and strength and tibia strength were statistically significant. No associations between cumulative daily fluoride intakes from birth to 11 years and bone measures were statistically significant. CONCLUSIONS In this cohort of 11-year-old children, mostly living in optimally fluoridated areas, life-long fluoride intakes from combined sources were weakly associated with tibia and radius cortical pQCT measures.
Collapse
Affiliation(s)
- Steven M Levy
- Department of Preventive and Community Dentistry, University of Iowa College of Dentistry, Iowa City, IA, USA
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Julie M Eichenberger-Gilmore
- Department of Preventive and Community Dentistry, University of Iowa College of Dentistry, Iowa City, IA, USA
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
- Nutrition and Food Services, Iowa City Veterans Affairs Health Care System, Iowa City, IA, USA
| | - John J Warren
- Department of Preventive and Community Dentistry, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Golnaz Kavand
- Department of Preventive and Community Dentistry, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Elena Letuchy
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Barbara Broffitt
- Department of Preventive and Community Dentistry, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Teresa A Marshall
- Department of Preventive and Community Dentistry, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Trudy L Burns
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Kathy F Janz
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
- Department of Health and Human Physiology, University of Iowa College of Liberal Arts and Sciences, Iowa City, IA, USA
| | - Cynthia Pauley
- Department of Preventive and Community Dentistry, University of Iowa College of Dentistry, Iowa City, IA, USA
- Institute for Clinical and Translational Sciences, University of Iowa, Iowa City, IA, USA
| | - James C Torner
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | | |
Collapse
|
32
|
Neumann A, Haschka J, Kleyer A, Schuster L, Englbrecht M, Berlin A, Figueiredo CP, Simon D, Muschitz C, Kocijan R, Resch H, Rech J, Schett G. Cortical bone loss is an early feature of nonradiographic axial spondyloarthritis. Arthritis Res Ther 2018; 20:202. [PMID: 30165891 PMCID: PMC6117894 DOI: 10.1186/s13075-018-1620-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023] Open
Abstract
Background In the present study, we investigated bone geometry, microstructure, and volumetric bone mineral density (vBMD) in a cohort of patients with nonradiographic axial spondyloarthritis (nr-axSpA) in order to define the early bone changes occurring in axial spondyloarthritis (axSpA) and to define potential factors for deterioration of bone microstructure. Methods Patients with axSpA (n = 107) and healthy control subjects (n = 50) of similar age and sex were assessed for geometric, volumetric, and microstructural parameters of bone using high-resolution peripheral quantitative computed tomography (HR-pQCT) at the radius. Additionally, demographic and disease-specific characteristics of patients with axSpA were recorded. Results Patients with nr-axSpA and control subjects were comparable in age, sex, and body mass index. Geometric and microstructural analysis by HR-pQCT revealed a significantly reduced cortical area (p = 0.022) and cortical thickness (p = 0.006) in patients with nr-axSpA compared with control subjects. Total and cortical vBMD were significantly reduced in patients with nr-axSpA (p = 0.042 and p = 0.007, respectively), whereas there was no difference in trabecular vBMD. Patients with a short disease duration (< 2 years; n = 46) also showed significant reduction of cortical thickness and cortical area compared with control subjects. Patients with disease duration > 2 years (n = 55) additionally developed a decrease of cortical and total vBMD. Multiple regression models identified male sex to be associated with lower cortical vBMD and female sex to be associated with lower trabecular vBMD. Conclusions Bone microstructure in patients with nr-axSpA is characterized primarily by deterioration of cortical bone. Cortical bone loss starts early and is evident within the first 2 years of the disease. Electronic supplementary material The online version of this article (10.1186/s13075-018-1620-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Neumann
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Judith Haschka
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.,St. Vincent Hospital, VINFORCE Study Group, Medical University of Vienna, Vienna, Austria
| | - Arnd Kleyer
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Louis Schuster
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Matthias Englbrecht
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Andreas Berlin
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Camille P Figueiredo
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.,Division of Rheumatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - David Simon
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Christian Muschitz
- St. Vincent Hospital, VINFORCE Study Group, Medical University of Vienna, Vienna, Austria
| | - Roland Kocijan
- St. Vincent Hospital, VINFORCE Study Group, Medical University of Vienna, Vienna, Austria
| | - Heinrich Resch
- St. Vincent Hospital, VINFORCE Study Group, Medical University of Vienna, Vienna, Austria
| | - Jürgen Rech
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nurnberg and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
33
|
Kuperus JS, Samsour L, Buckens CF, Oner FC, de Jong PA, Verlaan JJ. Bone mineral density changes over time in diffuse idiopathic skeletal hyperostosis of the thoracic spine. Bone 2018; 112:90-96. [PMID: 29649655 DOI: 10.1016/j.bone.2018.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Diffuse idiopathic skeletal hyperostosis (DISH) is an increasingly prevalent ankylosing condition. Patients with DISH have an increased risk of spinal fractures, hypothetically the result of biomechanical changes in the spine. The aim of this study was to analyze the occurrence of biomechanical stress shielding in patients with DISH. To do this, bone mineral density (BMD) was measured longitudinally in the vertebral bodies of subjects with and without DISH and in the newly formed bone of subjects with DISH. The presence of DISH was evaluated using Resnick criteria on two chest computed tomography (CT) scans taken at least 2.5 years apart from subjects over 50 years of age. Three groups were identified: pre-DISH (individuals who developed DISH after the first CT scan), definite DISH (individuals who had DISH on both CT scans), and controls (individuals with no DISH). Hounsfield units (HU) were measured in the newly formed bone and in predefined anterior and posterior portions of the involved vertebral bodies. Mean BMD of the newly formed bone increased significantly (mean ΔHU 137.5; p < 0.01) during a mean interval of 5 years in the cranial, middle, and caudally involved vertebral segments of both DISH groups. Mean BMD of the vertebral bodies in the ankylotic segments in the DISH groups did not significantly differ from that of the non-ankylotic vertebral bodies of the same subject. In contrast to our hypothesis, the HU value of the vertebral body decreased more in the control group than in the DISH groups; however, statistical significance was only reached at the cranial level in the anterior part of the vertebral body (p = 0.048). Our data suggest that 1) vertebral BMD is not influenced by the presence of DISH and 2) increased spinal stiffness may play a more important role than vertebral BMD in the increased fracture risk of and the typical fracture patterns observed in individuals with DISH.
Collapse
Affiliation(s)
- Jonneke S Kuperus
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lima Samsour
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - F Cumhur Oner
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jorrit-Jan Verlaan
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
34
|
Martini D, Guareschi C, Biasini B, Bedogni G, Galli C, Angelino D, Marchi L, Zavaroni I, Pruneti C, Ventura M, Galli D, Mirandola P, Vitale M, Dei Cas A, Bonadonna RC, Passeri G, Del Rio D. Claimed effects, outcome variables and methods of measurement for health claims proposed under Regulation (EC) 1924/2006 in the framework of bone health. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2017.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Schönenberg D, Guggenberger R, Frey D, Pape HC, Simmen HP, Osterhoff G. CT-based evaluation of volumetric bone density in fragility fractures of the pelvis-a matched case-control analysis. Osteoporos Int 2018; 29:459-465. [PMID: 29134241 DOI: 10.1007/s00198-017-4307-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/06/2017] [Indexed: 10/24/2022]
Abstract
UNLABELLED This matched case-control study compared the computed tomography (CT)-based regional bone density of patients with fragility fractures of the sacrum to a control without fracture. Patients with a sacral fracture demonstrated a significantly lower regional bone density of the sacrum, the sacral bone density not being correlated with the BMD by DXA of the spine. INTRODUCTION The aim of this study is to compare the computed tomography-based regional bone density measured by Hounsfield units (HUs) in patients with and without fragility fractures of the sacrum. METHODS Patients aged ≥ 50 years with a fragility fracture of the sacrum were compared to patients of similar age and gender who had a fall from standing height without fracture (n = 46). A matched case-control analysis was conducted by retrospective chart review and assessment of areal bone mineral density by lumbar DXA and by volumetric regional HU measurements in uncalibrated CT scans of the sacrum. RESULTS Patients with a sacral fracture (age 74 ± 11 years) showed a lower bone density in the body of S1 (HU 85 ± 22) when compared to the matched control group without fracture (age 73 ± 10 years, HU 125 ± 37, p < 0.001). The CT-based bone density of S1 did not correlate with the DXA values of the lumbar spine (r = 0.223, p = 0.136), and lumbar spine T-scores did not differ between the groups (- 2.0 ± 1.3 vs. - 1.9 ± 1.2, p = 0.786). All measurements are based on uncalibrated scans, and absolute HU values are restricted to scans made on Siemens SOMATOM Force or SOMATOM Edge scanners. CONCLUSIONS Patients with fragility fractures of the sacrum demonstrated a lower regional volumetric bone density of the sacrum when compared to a cohort without a fracture. Local sacral volumetric bone density as measured by CT seems to be independent from the areal BMD as measured by DXA of the lumbar spine. LEVEL OF EVIDENCE level III.
Collapse
Affiliation(s)
- D Schönenberg
- Division of Trauma Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - R Guggenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - D Frey
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - H-C Pape
- Division of Trauma Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - H-P Simmen
- Division of Trauma Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - G Osterhoff
- Division of Trauma Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
36
|
Guglielmi G, Balzano RF, Cheng X. What is changed in the diagnosis of osteoporosis: the role of radiologists. Quant Imaging Med Surg 2018. [PMID: 29541617 DOI: 10.21037/qims.2018.02.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giuseppe Guglielmi
- Department of Radiology, Università degli Studi di Foggia, Viale Luigi Pinto, Foggia, Puglia, Italy.,Department of Radiology, Ospedale Casa Sollievo della Sofferenza, Viale cappuccini, San Giovanni Rotondo, Italy
| | - Rosario Francesco Balzano
- Department of Radiology, Università degli Studi di Foggia, Scuole di Specializzazione di Area Medica, Viale Luigi Pinto, Foggia, Puglia, Italy
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
37
|
Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci 2018; 1410:93-106. [PMID: 29265417 DOI: 10.1111/nyas.13572] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Bone quality encompasses all the characteristics of bone that, in addition to density, contribute to its resistance to fracture. In this review, we consider changes in architecture, porosity, and composition, including collagen structure, mineral composition, and crystal size. These factors all are known to vary with tissue and animal ages, and health status. Bone morphology and presence of microcracks, which also contribute to bone quality, will not be discussed in this review. Correlations with mechanical performance for collagen cross-linking, crystallinity, and carbonate content are contrasted with mineral content. Age-dependent changes in humans and rodents are discussed in relation to rodent models of disease. Examples are osteoporosis, osteomalacia, osteogenesis imperfecta (OI), and osteopetrosis in both humans and animal models. Each of these conditions, along with aging, is associated with increased fracture risk for distinct reasons.
Collapse
Affiliation(s)
- Adele L Boskey
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York.,Department of Biochemistry, Weill Cornell Medical College, New York, New York
| | - Laurianne Imbert
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York
| |
Collapse
|
38
|
Jiang H, Yates CJ, Gorelik A, Kale A, Song Q, Wark JD. Peripheral Quantitative Computed Tomography (pQCT) Measures Contribute to the Understanding of Bone Fragility in Older Patients With Low-trauma Fracture. J Clin Densitom 2018; 21:140-147. [PMID: 28285742 DOI: 10.1016/j.jocd.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/24/2017] [Accepted: 02/13/2017] [Indexed: 02/01/2023]
Abstract
Dual-energy X-ray absorptiometry (DXA) as currently used has limitations in identifying patients with osteoporosis and predicting occurrence of fracture. We aimed to express peripheral quantitative computed tomography (pQCT) variables of patients with low-trauma fracture as T-scores by using T-score scales obtained from healthy young women, and to evaluate the potential clinical utility of pQCT for the assessment of bone fragility. Fracture patients were recruited from a fracture liaison service at the Royal Melbourne Hospital. Reference pQCT data were obtained from studies on women's health conducted by our group. A study visit was arranged with fracture patients, during which DXA and pQCT were applied to measure their bone strength. A total of 59 fracture patients were recruited, and reference data were obtained from 78 healthy young females. All DXA variables and most pQCT variables were significantly different between healthy young females and fracture patients (p < 0.05), except polar stress-strain index (p = 0.34) and cortical bone density (p = 0.19). Fracture patients were divided into osteoporosis and non-osteoporosis groups according to their DXA T-scores. Significant differences were observed in most pQCT variables (p < 0.05), except trabecular area and cortical density (p > 0.9 and p = 0.5, respectively). By applying pQCT T-scores, 11 (27%) of patients who were classified as having low or medium risk of osteoporosis on DXA T-scores alone were reclassified as high risk. Results of logistic regression suggested trabecular bone density as an independent predictor of osteoporosis status. More patients can be identified with osteoporosis by applying pQCT T-score variables in older people with low-trauma fracture. Peripheral QCT T-scores contribute to the understanding of bone fragility in this population.
Collapse
Affiliation(s)
- Hongyuan Jiang
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher J Yates
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia; Bone and Mineral Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Alexandra Gorelik
- Melbourne EpiCentre, University of Melbourne and Melbourne Health, Parkville, Victoria, Australia
| | - Ashwini Kale
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia; Bone and Mineral Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Qichun Song
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia; Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - John D Wark
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia; Bone and Mineral Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
39
|
Woisetschläger M, Spångeus A. Model for improved correlation of BMD values between abdominal routine Dual energy CT data and DXA scans. Eur J Radiol 2017; 99:76-81. [PMID: 29362154 DOI: 10.1016/j.ejrad.2017.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Osteoporosis is a common but underdiagnosed and undertreated disease causing severe morbidity and economic burden. The gold standard for detection of osteoporosis is DXA (dual energy x-ray absorptiometry), which is a dedicated examination for osteoporosis. Dual energy CT (DECT) examinations are increasingly used in daily routine for a wide variety of diagnoses. In the present study, we wanted to examine whether vBMD (volume bone mass density) could be evaluated as a side product in non-contrast as well as contrast phases as well as to evaluate a correction model taking known shortcomings for DXA into account. METHODS A total of 20 patients, i.e. 79 vertebrae (one excluded due to vertebral fracture), mean age 71 years (range 43-85) with a mean BMI (body mass index) of 26 (range 17-33) were examined with both abdominal/pelvic DECT as well as DXA. Furthermore, aortic calcium was measured as well as the presence of osteoarthritis of the spine (OAS) and osteoarthritis in facet joints (OAF) with a 5-grade scaling system. RESULTS A significant correlation was found between DXA BMD and vBMD from DECT with no contrast (WNC) (r = 0.424, p = 0.001), and with venous contrast (WVC) (r = 0.402, p < 0.001), but no significant correlation was found with arterial contrast (WAC). Using multivariate linear regression with DXA BMD as dependent, two models were created combining DECT WNC, aortic calciumscore (ACS), OAS and BMI yielding an R2 = 0.616 (model 1) and replacement of WNC to WVC a R2 = 0.612 (model 2). The Pearson correlation between DXA and predictive DXA BMD value of model 1 was r = 0.785 (p < 0.001) and model 2 r = 0.782 (p < 0.001). CONCLUSION There is a correlation between DXA BMD and DECT in non-contrast and venous contrast scans but not in arterial scans. The correlation is further improved by quantifying the degree of different confounding factors (osteoarthritis of the spine, body mass index and aortic calcium score) and taking these into account in an explanatory model. Future software solutions with DECT data as input data might be able to automatically measure the BMD in the trabecular bone as well as measuring the confounding factors automatically in order to obtain spinal DXA comparable BMD values.
Collapse
Affiliation(s)
- Mischa Woisetschläger
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | - Anna Spångeus
- Department of Endocrinology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
40
|
Saul D, Gleitz S, Nguyen HH, Kosinsky RL, Sehmisch S, Hoffmann DB, Wassmann M, Menger B, Komrakova M. Effect of the lipoxygenase-inhibitors baicalein and zileuton on the vertebra in ovariectomized rats. Bone 2017; 101:134-144. [PMID: 28455215 DOI: 10.1016/j.bone.2017.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/25/2022]
Abstract
Osteoporosis is one of the most common diseases worldwide. In osteoporosis, vertebral fractures represent a major burden. Lipoxygenase (LOX) inhibitors such as baicalein and zileuton may represent a promising therapeutic option owing to their antioxidative effects and suppression of various inflammatory processes in muscle and bone. The effect of these LOX inhibitors on the spine was studied in osteopenic rats. Female Sprague-Dawley rats were divided two times into five groups: four groups each were ovariectomized (OVX) and one control group was non-ovariectomized (NON-OVX). Eight weeks after ovariectomy, three concentrations of baicalein (1mg/kg body weight [BW], 10mg/kgBW, and 100mg/kgBW) were administered subcutaneously daily in three OVX groups for 4weeks. Similarly, zileuton was administered in three concentrations via food for 5weeks. In vivo computed tomography (pQCT) of the spine was performed before the treatments and at the end of the experiment. Lumbar vertebrae were subjected to a compression test, micro-CT, and ashing analyses. After baicalein treatment, cortical bone mineral density (BMD) was improved; trabecular connectivity and trabecular BMD were diminished at high dose. After zileuton treatment, the total BMD, anorganic weight, trabecular nodes, and trabecular area were improved. The in vivo stress-strain index was increased and alkaline phosphatase activity in serum was enhanced after both treatments. A dose-dependent effect was not clearly observed after both treatments. The treatments using baicalein for 4 and zileuton for 5weeks were not sufficient to change the biomechanical properties and bone volume fraction (BV/TV). Overall, baicalein improved the cortical bone parameters whereas zileuton had a favorable effect on the trabecular structure. Moreover, both treatments increased the bone formation rate. Longer trials, a combination of both LOX inhibitors, and their effect at the cellular and molecular levels should be investigated in further studies.
Collapse
Affiliation(s)
- D Saul
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany.
| | - S Gleitz
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - H H Nguyen
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - R L Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - S Sehmisch
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - D B Hoffmann
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - M Wassmann
- Medical Institute of General Hygiene and Environmental Health, University of Goettingen, 37075 Goettingen, Germany
| | - B Menger
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - M Komrakova
- Department of Trauma, Orthopaedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| |
Collapse
|
41
|
Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int 2017; 28:2275-2291. [PMID: 28378291 DOI: 10.1007/s00198-017-4019-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Although musculoskeletal diseases such as osteoporosis are diagnosed and treatment outcome is evaluated based mainly on routine clinical outcomes of bone mineral density (BMD) by DXA and biochemical markers, it is recognized that these two indicators, as valuable as they have proven to be in the everyday clinical practice, do not fully account for manifested bone strength. Thus, the term bone quality was introduced, to complement considerations based on bone turnover rates and BMD. Bone quality is an "umbrella" term that incorporates the structural and material/compositional characteristics of bone tissue. Vibrational spectroscopic techniques such as Fourier transform infrared microspectroscopy (FTIRM) and imaging (FTIRI), and Raman spectroscopy, are suitable analytical tools for the determination of bone quality as they provide simultaneous, quantitative, and qualitative information on all main bone tissue components (mineral, organic matrix, tissue water), in a spatially resolved manner. Moreover, the results of such analyses may be readily combined with the outcomes of other techniques such as histology/histomorphometry, small angle X-ray scattering, quantitative backscattered electron imaging, and nanoindentation.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| |
Collapse
|
42
|
Schwaiger BJ, Kopperdahl DL, Nardo L, Facchetti L, Gersing AS, Neumann J, Lee KJ, Keaveny TM, Link TM. Vertebral and femoral bone mineral density and bone strength in prostate cancer patients assessed in phantomless PET/CT examinations. Bone 2017; 101:62-69. [PMID: 28442297 PMCID: PMC5506071 DOI: 10.1016/j.bone.2017.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Bone fracture risk assessed ancillary to positron emission tomography with computed tomography co-registration (PET/CT) could provide substantial clinical value to oncology patients with elevated fracture risk without introducing additional radiation dose. The purpose of our study was to investigate the feasibility of obtaining valid measurements of bone mineral density (BMD) and finite element analysis-derived bone strength of the hip and spine using PET/CT examinations of prostate cancer patients by comparing against values obtained using routine multidetector-row computed tomography (MDCT) scans-as validated in previous studies-as a reference standard. MATERIALS AND METHODS Men with prostate cancer (n=82, 71.6±8.3 years) underwent Fluorine-18 NaF PET/CT and routine MDCT within three months. Femoral neck and total hip areal BMD, vertebral trabecular BMD and femur and vertebral strength based on finite element analysis were assessed in 63 paired PET/CT and MDCT examinations using phantomless calibration and Biomechanical-CT analysis. Men with osteoporosis or fragile bone strength identified at either the hip or spine (vertebral trabecular BMD ≤80mg/cm3, femoral neck or total hip T-score ≤-2.5, vertebral strength ≤6500N and femoral strength ≤3500N, respectively) were considered to be at high risk of fracture. PET/CT- versus MDCT-based BMD and strength measurements were compared using paired t-tests, linear regression and by generating Bland-Altman plots. Agreement in fracture-risk classification was assessed in a contingency table. RESULTS All measurements from PET/CT versus MDCT were strongly correlated (R2=0.93-0.97; P<0.0001 for all). Mean differences for total hip areal BMD (0.001g/cm2, 1.1%), femoral strength (-60N, 1.3%), vertebral trabecular BMD (2mg/cm3, 2.6%) and vertebral strength (150N; 1.7%) measurements were not statistically significant (P>0.05 for all), whereas the mean difference in femoral neck areal BMD measurements was small but significant (-0.018g/cm2; -2.5%; P=0.007). The agreement between PET/CT and MDCT for fracture-risk classification was 97% (0.89 kappa for repeatability). CONCLUSION Ancillary analyses of BMD, bone strength, and fracture risk agreed well between PET/CT and MDCT, suggesting that PET/CT can be used opportunistically to comprehensively assess bone integrity. In subjects with high fracture risk such as cancer patients this may serve as an additional clinical tool to guide therapy planning and prevention of fractures.
Collapse
Affiliation(s)
- Benedikt J Schwaiger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| | | | - Lorenzo Nardo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Luca Facchetti
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Alexandra S Gersing
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| | - Jan Neumann
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| | - Kwang J Lee
- O.N. Diagnostics, LLC, Berkeley, CA, United States
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, United States.
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| |
Collapse
|
43
|
Genant HK, Engelke K, Bolognese MA, Mautalen C, Brown JP, Recknor C, Goemaere S, Fuerst T, Yang YC, Grauer A, Libanati C. Effects of Romosozumab Compared With Teriparatide on Bone Density and Mass at the Spine and Hip in Postmenopausal Women With Low Bone Mass. J Bone Miner Res 2017; 32:181-187. [PMID: 27487526 DOI: 10.1002/jbmr.2932] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/20/2016] [Accepted: 07/31/2016] [Indexed: 01/17/2023]
Abstract
Romosozumab, a monoclonal antibody that binds sclerostin, has a dual effect on bone by increasing bone formation and reducing bone resorption, and thus has favorable effects in both aspects of bone volume regulation. In a phase 2 study, romosozumab increased areal BMD at the lumbar spine and total hip as measured by DXA compared with placebo, alendronate, and teriparatide in postmenopausal women with low bone mass. In additional analyses from this international, randomized study, we now describe the effect of romosozumab on lumbar spine and hip volumetric BMD (vBMD) and BMC at month 12 as assessed by QCT in the subset of participants receiving placebo, s.c. teriparatide (20 µg once daily), and s.c. romosozumab (210 mg once monthly). QCT measurements were performed at the lumbar spine (mean of L1 and L2 entire vertebral bodies, excluding posterior processes) and hip. One year of treatment with romosozumab significantly increased integral vBMD and BMC at the lumbar spine and total hip from baseline, and compared with placebo and teriparatide (all p < 0.05). Trabecular vertebral vBMD improved significantly and similarly from baseline (p < 0.05) with both romosozumab (18.3%) and teriparatide (20.1%), whereas cortical vertebral vBMD gains were larger with romosozumab compared with teriparatide (13.7% versus 5.7%, p < 0.0001). Trabecular hip vBMD gains were significantly larger with romosozumab than with teriparatide (10.8% versus 4.2%, p = 0.01), but were similar for cortical vBMD (1.1% versus -0.9%, p = 0.12). Cortical BMC gains were larger with romosozumab compared with teriparatide at both the spine (23.3% versus 10.9%, p < 0.0001) and hip (3.4% versus 0.0%, p = 0.03). These improvements are expected to result in strength gains and support the continued clinical investigation of romosozumab as a potential therapy to rapidly reduce fracture risk in ongoing phase 3 studies. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Harry K Genant
- University of California, San Francisco (UCSF), San Francisco, CA, USA.,BioClinica-Synarc, San Francisco, CA, USA
| | - Klaus Engelke
- BioClinica, Hamburg, Germany.,Institute of Medical Physics, University of Erlangen, Erlangen, Germany
| | | | | | - Jacques P Brown
- CHU de Québec Research Centre and Laval University, Québec, QC, Canada
| | | | - Stefan Goemaere
- Department of Endocrinology and Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | |
Collapse
|
44
|
Effects of dose reduction on bone strength prediction using finite element analysis. Sci Rep 2016; 6:38441. [PMID: 27934902 PMCID: PMC5146932 DOI: 10.1038/srep38441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/08/2016] [Indexed: 01/29/2023] Open
Abstract
This study aimed to evaluate the effect of dose reduction, by means of tube exposure reduction, on bone strength prediction from finite-element (FE) analysis. Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-detector computed tomography (MDCT), at different intensities of X-ray tube exposures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated from the mid-slice of each specimen from MDCT images. Differences in image quality and geometry of each specimen were measured. FE analysis was performed on all specimens to predict fracture load. Paired t-tests were used to compare the results obtained, using the highest CT dose (500 mAs) as reference. Dose reduction had no significant impact on FE-predicted fracture loads, with significant correlations obtained with reference to 500 mAs, for 80 mAs (R2 = 0.997, p < 0.001), 150 mAs (R2 = 0.998, p < 0.001) and 220 mAs (R2 = 0.987, p < 0.001). There were no significant differences in volume quantification between the different doses examined. CT imaging radiation dose could be reduced substantially to 64% with no impact on strength estimates obtained from FE analysis. Reduced CT dose will enable early diagnosis and advanced monitoring of osteoporosis and associated fracture risk.
Collapse
|
45
|
Oei L, Koromani F, Rivadeneira F, Zillikens MC, Oei EHG. Quantitative imaging methods in osteoporosis. Quant Imaging Med Surg 2016; 6:680-698. [PMID: 28090446 DOI: 10.21037/qims.2016.12.13] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.
Collapse
Affiliation(s)
- Ling Oei
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Fjorda Koromani
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Knowles NK, Reeves JM, Ferreira LM. Quantitative Computed Tomography (QCT) derived Bone Mineral Density (BMD) in finite element studies: a review of the literature. J Exp Orthop 2016; 3:36. [PMID: 27943224 PMCID: PMC5234499 DOI: 10.1186/s40634-016-0072-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/30/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Finite element modeling of human bone provides a powerful tool to evaluate a wide variety of outcomes in a highly repeatable and parametric manner. These models are most often derived from computed tomography data, with mechanical properties related to bone mineral density (BMD) from the x-ray energy attenuation provided from this data. To increase accuracy, many researchers report the use of quantitative computed tomography (QCT), in which a calibration phantom is used during image acquisition to improve the estimation of BMD. Since model accuracy is dependent on the methods used in the calculation of BMD and density-mechanical property relationships, it is important to use relationships developed for the same anatomical location and using the same scanner settings, as these may impact model accuracy. The purpose of this literature review is to report the relationships used in the conversion of QCT equivalent density measures to ash, apparent, and/or tissue densities in recent finite element (FE) studies used in common density-modulus relationships. For studies reporting experimental validation, the validation metrics and results are presented. RESULTS Of the studies reviewed, 29% reported the use of a dipotassium phosphate (K2HPO4) phantom, 47% a hydroxyapatite (HA) phantom, 13% did not report phantom type, 7% reported use of both K2HPO4 and HA phantoms, and 4% alternate phantom types. Scanner type and/or settings were omitted or partially reported in 31% of studies. The majority of studies used densitometric and/or density-modulus relationships derived from different anatomical locations scanned in different scanners with different scanner settings. The methods used to derive various densitometric relationships are reported and recommendations are provided toward the standardization of reporting metrics. CONCLUSIONS This review assessed the current state of QCT-based FE modeling with use of clinical scanners. It was found that previously developed densitometric relationships vary by anatomical location, scanner type and settings. Reporting of all parameters used when referring to previously developed relationships, or in the development of new relationships, may increase the accuracy and repeatability of future FE models.
Collapse
Affiliation(s)
- Nikolas K. Knowles
- Graduate Program in Biomedical Engineering, The University of Western Ontario, 1151 Richmond St, London, ON Canada
- Roth|McFarlane Hand and Upper Limb Centre, Surgical Mechatronics
Laboratory, St. Josephs Health Care, 268 Grosvenor St, London, ON Canada
- Collaborative Training Program in Musculoskeletal Health Research, and
Bone and Joint Institute, The University of Western Ontario, 1151 Richmond St, London, ON Canada
| | - Jacob M. Reeves
- Roth|McFarlane Hand and Upper Limb Centre, Surgical Mechatronics
Laboratory, St. Josephs Health Care, 268 Grosvenor St, London, ON Canada
- Collaborative Training Program in Musculoskeletal Health Research, and
Bone and Joint Institute, The University of Western Ontario, 1151 Richmond St, London, ON Canada
- Department of Mechanical and Materials Engineering, The University of Western Ontario, 1151 Richmond St, London, ON Canada
| | - Louis M. Ferreira
- Graduate Program in Biomedical Engineering, The University of Western Ontario, 1151 Richmond St, London, ON Canada
- Roth|McFarlane Hand and Upper Limb Centre, Surgical Mechatronics
Laboratory, St. Josephs Health Care, 268 Grosvenor St, London, ON Canada
- Collaborative Training Program in Musculoskeletal Health Research, and
Bone and Joint Institute, The University of Western Ontario, 1151 Richmond St, London, ON Canada
| |
Collapse
|
47
|
Tabari A, Torriani M, Miller KK, Klibanski A, Kalra MK, Bredella MA. Anorexia Nervosa: Analysis of Trabecular Texture with CT. Radiology 2016; 283:178-185. [PMID: 27797678 DOI: 10.1148/radiol.2016160970] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P < .001), and a trend toward lower entropy (P = .07) compared with control subjects. Bone mineral density, abdominal fat area, and paraspinal muscle area were inversely associated with skewness and kurtosis and positively associated with MPP and entropy. Texture parameters, but not bone mineral density, were associated with lowest lifetime weight and duration of amenorrhea in anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016.
Collapse
Affiliation(s)
- Azadeh Tabari
- From the Department of Radiology (A.T., M.T., M.K.K., M.A.B.) and Neuroendocrine Unit (K.K.M., A.K.), Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114
| | - Martin Torriani
- From the Department of Radiology (A.T., M.T., M.K.K., M.A.B.) and Neuroendocrine Unit (K.K.M., A.K.), Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114
| | - Karen K Miller
- From the Department of Radiology (A.T., M.T., M.K.K., M.A.B.) and Neuroendocrine Unit (K.K.M., A.K.), Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114
| | - Anne Klibanski
- From the Department of Radiology (A.T., M.T., M.K.K., M.A.B.) and Neuroendocrine Unit (K.K.M., A.K.), Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114
| | - Mannudeep K Kalra
- From the Department of Radiology (A.T., M.T., M.K.K., M.A.B.) and Neuroendocrine Unit (K.K.M., A.K.), Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114
| | - Miriam A Bredella
- From the Department of Radiology (A.T., M.T., M.K.K., M.A.B.) and Neuroendocrine Unit (K.K.M., A.K.), Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114
| |
Collapse
|
48
|
Saffarzadeh M, Hightower RC, Talton JW, Miller AN, Stitzel JD, Weaver AA. Multicenter analysis of CIREN occupant lumbar bone mineral density and correlation with age and fracture incidence. TRAFFIC INJURY PREVENTION 2016; 17 Suppl 1:34-41. [PMID: 27586100 DOI: 10.1080/15389588.2016.1203429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE This study aimed to quantify lumbar volumetric bone mineral density (vBMD) for 873 seriously injured Crash Injury Research and Engineering Network (CIREN) motor vehicle crash occupants (372 male, 501 female) from 8 centers using phantomless computed tomography scans and to associate vBMD with age, fracture incidence, and osteopenia/osteoporosis diagnoses. The novelty of this work is that it associates vBMD with region of injury by applying an established method for vBMD measurement using phantomless computed tomography (CT). METHODS A validated phantomless CT calibration method that uses patient-specific fat and muscle measurements to calibrate vBMD measured from the L1-L5 trabeculae was applied on 873 occupants from various CIREN centers. CT-measured lumbar vBMD < 145 mg/cc is indicative of osteopenia using a published threshold. CIREN occupant lumbar vBMD in milligrams per cubic centimeter was regressed against age, osteopenia/osteoporosis comorbidities, height, weight, body mass index (BMI), and the incidence of fracture in vertebral (cervical, thoracic, lumbar) and rib/sternum regions. RESULTS Among the 873 occupants analyzed, 11% (92 occupants) were diagnosed as osteopenic in CIREN. Of these 92 occupants, 42% (39 occupants) had normal vBMD measures (≥145 mg/cc), suggesting possible misclassification in CIREN. Of the 134 occupants classified as osteopenic in vBMD analysis, 60% were not classified as osteopenic in CIREN, suggesting undiagnosed osteopenia, and 40% were correctly classified in CIREN. Age was negatively correlated with vBMD (P <.0001) and occupants with <145 mg/cc vBMD sustained a median number of 2 rib/sternum fractures compared to a median value of 0 rib/sternum fractures for the ≥145 mg/cc vBMD group (P <.0001). Vertebral fracture analysis revealed that the thoracolumbar region was the most common region of injury in the spine. Though the incidence of fracture was not significantly different in the thoracic (10% versus 6%, P =.122) and lumbar (16% versus 13%, P =.227) regions between the 2 bone quality groups, the proportion of thoracolumbar fractures was significantly higher in occupants with <145 mg/cc vBMD versus occupants with ≥145 mg/cc vBMD (24% versus 17%, P =.043). CONCLUSIONS Low lumbar vertebral bone quality is associated with an increased number of rib/sternum fractures and a greater incidence of thoracolumbar vertebral body fractures within the CIREN population analyzed.
Collapse
Affiliation(s)
- Mona Saffarzadeh
- a Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston-Salem , North Carolina
- b Wake Forest School of Medicine , Winston-Salem , North Carolina
| | - R Caresse Hightower
- a Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston-Salem , North Carolina
- b Wake Forest School of Medicine , Winston-Salem , North Carolina
| | - Jennifer W Talton
- c Wake Forest School of Medicine, Public Health Sciences , Winston-Salem , North Carolina
| | - Anna N Miller
- d Wake Forest School of Medicine, Orthopaedic Surgery , Winston-Salem , North Carolina
| | - Joel D Stitzel
- a Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston-Salem , North Carolina
- b Wake Forest School of Medicine , Winston-Salem , North Carolina
| | - Ashley A Weaver
- a Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston-Salem , North Carolina
- b Wake Forest School of Medicine , Winston-Salem , North Carolina
| |
Collapse
|
49
|
Haschka J, Hirschmann S, Kleyer A, Englbrecht M, Faustini F, Simon D, Figueiredo CP, Schuster L, Muschitz C, Kocijan R, Resch H, Atreya R, Rech J, Neurath MF, Schett G. High-resolution Quantitative Computed Tomography Demonstrates Structural Defects in Cortical and Trabecular Bone in IBD Patients. J Crohns Colitis 2016; 10:532-40. [PMID: 26818661 PMCID: PMC4957457 DOI: 10.1093/ecco-jcc/jjw012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/01/2015] [Accepted: 12/14/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS To investigate the macro- and microstructural changes of bone in patients with inflammatory bowel disease [IBD] and to define the factors associated with bone loss in IBD. METHODS A total of 148 subjects, 59 with Crohn's disease [CD], 39 with ulcerative colitis [UC], and 50 healthy controls were assessed for the geometric, volumetric and microstructural properties of bone using high-resolution peripheral quantitative computed tomography. In addition, demographic and disease-specific characteristics of IBD patients were recorded. RESULTS IBD patients and controls were comparable in age, sex, and body mass index. Total [p = 0.001], cortical [p < 0.001], and trabecular volumetric bone mineral density [BMD] [p = 0.03] were significantly reduced in IBD patients compared with healthy controls. Geometric and microstructural analysis revealed significantly lower cortical area [p = 0.001] and cortical thickness [p < 0.001] without differences in cortical porosity, pore volume, or pore diameter. CD showed a more severe bone phenotype than UC: cortical bone loss was observed in both diseases, but CD additionally showed profound trabecular bone loss with reduced trabecular BMD [p = 0.008], bone volume [p = 0.008], and trabecular thickness [p = 0.009]. Multivariate regression models identified the diagnosis of CD, female sex, lower body mass index, and the lack of remission as factors independently associated with bone loss in IBD. CONCLUSION IBD patients develop significant cortical bone loss, impairing bone strength. Trabecular bone loss is limited to CD patients, who exhibit a more severe bone phenotype compared with UC patients.
Collapse
Affiliation(s)
- Judith Haschka
- Department of Internal Medicine 3, St Vincent Hospital, VINFORCE Study Group, Medical University of Vienna, Vienna, Austria
| | - Simon Hirschmann
- Department of Internal Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | - Camille P Figueiredo
- Department of Internal Medicine 3, Division of Rheumatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Christian Muschitz
- St Vincent Hospital, VINFORCE Study Group, Medical University of Vienna, Vienna, Austria
| | - Roland Kocijan
- St Vincent Hospital, VINFORCE Study Group, Medical University of Vienna, Vienna, Austria
| | - Heinrich Resch
- St Vincent Hospital, VINFORCE Study Group, Medical University of Vienna, Vienna, Austria
| | - Raja Atreya
- Department of Internal Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Markus F Neurath
- Department of Internal Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
50
|
Pottecher P, Engelke K, Duchemin L, Museyko O, Moser T, Mitton D, Vicaut E, Adams J, Skalli W, Laredo JD, Bousson V. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT). Radiology 2016; 280:837-47. [PMID: 27077380 DOI: 10.1148/radiol.2016142796] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose To evaluate the performance of three imaging methods (radiography, dual-energy x-ray absorptiometry [DXA], and quantitative computed tomography [CT]) and that of a numerical analysis with finite element modeling (FEM) in the prediction of failure load of the proximal femur and to identify the best densitometric or geometric predictors of hip failure load. Materials and Methods Institutional review board approval was obtained. A total of 40 pairs of excised cadaver femurs (mean patient age at time of death, 82 years ± 12 [standard deviation]) were examined with (a) radiography to measure geometric parameters (lengths, angles, and cortical thicknesses), (b) DXA (reference standard) to determine areal bone mineral densities (BMDs), and (c) quantitative CT with dedicated three-dimensional analysis software to determine volumetric BMDs and geometric parameters (neck axis length, cortical thicknesses, volumes, and moments of inertia), and (d) quantitative CT-based FEM to calculate a numerical value of failure load. The 80 femurs were fractured via mechanical testing, with random assignment of one femur from each pair to the single-limb stance configuration (hereafter, stance configuration) and assignment of the paired femur to the sideways fall configuration (hereafter, side configuration). Descriptive statistics, univariate correlations, and stepwise regression models were obtained for each imaging method and for FEM to enable us to predict failure load in both configurations. Results Statistics reported are for stance and side configurations, respectively. For radiography, the strongest correlation with mechanical failure load was obtained by using a geometric parameter combined with a cortical thickness (r(2) = 0.66, P < .001; r(2) = 0.65, P < .001). For DXA, the strongest correlation with mechanical failure load was obtained by using total BMD (r(2) = 0.73, P < .001) and trochanteric BMD (r(2) = 0.80, P < .001). For quantitative CT, in both configurations, the best model combined volumetric BMD and a moment of inertia (r(2) = 0.78, P < .001; r(2) = 0.85, P < .001). FEM explained 87% (P < .001) and 83% (P < .001) of bone strength, respectively. By combining (a) radiography and DXA and (b) quantitative CT and DXA, correlations with mechanical failure load increased to 0.82 (P < .001) and 0.84 (P < .001), respectively, for radiography and DXA and to 0.80 (P < .001) and 0.86 (P < .001) , respectively, for quantitative CT and DXA. Conclusion Quantitative CT-based FEM was the best method with which to predict the experimental failure load; however, combining quantitative CT and DXA yielded a performance as good as that attained with FEM. The quantitative CT DXA combination may be easier to use in fracture prediction, provided standardized software is developed. These findings also highlight the major influence on femoral failure load, particularly in the trochanteric region, of a densitometric parameter combined with a geometric parameter. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Pierre Pottecher
- From the Laboratoire de Radiologie Expérimentale, CNRS UMR 7052, UFR Lariboisière-Saint-Louis, 2 rue Ambroise Paré, 75010 Paris, France (P.P., J.D.L., V.B.); Institute of Medical Physics, University of Erlangen, Erlangen, Germany (K.E., O.M.); LBM/Institut de Biomecanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France (L.D., W.S.); Department of Radiology, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (T.M.); Laboratoire de Biomécanique et Mécanique des Chocs-Université Lyon 1-IFSTTAR, Lyon, France (D.M.); Unité de Recherché Clinique Saint-Louis Lariboisère Fernand Widal, Paris, France (E.V.); and Department of Clinical Radiology, The Royal Infirmary, Imaging Science and Biomedical Engineering, University of Manchester, Manchester, England (J.A.)
| | - Klaus Engelke
- From the Laboratoire de Radiologie Expérimentale, CNRS UMR 7052, UFR Lariboisière-Saint-Louis, 2 rue Ambroise Paré, 75010 Paris, France (P.P., J.D.L., V.B.); Institute of Medical Physics, University of Erlangen, Erlangen, Germany (K.E., O.M.); LBM/Institut de Biomecanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France (L.D., W.S.); Department of Radiology, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (T.M.); Laboratoire de Biomécanique et Mécanique des Chocs-Université Lyon 1-IFSTTAR, Lyon, France (D.M.); Unité de Recherché Clinique Saint-Louis Lariboisère Fernand Widal, Paris, France (E.V.); and Department of Clinical Radiology, The Royal Infirmary, Imaging Science and Biomedical Engineering, University of Manchester, Manchester, England (J.A.)
| | - Laure Duchemin
- From the Laboratoire de Radiologie Expérimentale, CNRS UMR 7052, UFR Lariboisière-Saint-Louis, 2 rue Ambroise Paré, 75010 Paris, France (P.P., J.D.L., V.B.); Institute of Medical Physics, University of Erlangen, Erlangen, Germany (K.E., O.M.); LBM/Institut de Biomecanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France (L.D., W.S.); Department of Radiology, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (T.M.); Laboratoire de Biomécanique et Mécanique des Chocs-Université Lyon 1-IFSTTAR, Lyon, France (D.M.); Unité de Recherché Clinique Saint-Louis Lariboisère Fernand Widal, Paris, France (E.V.); and Department of Clinical Radiology, The Royal Infirmary, Imaging Science and Biomedical Engineering, University of Manchester, Manchester, England (J.A.)
| | - Oleg Museyko
- From the Laboratoire de Radiologie Expérimentale, CNRS UMR 7052, UFR Lariboisière-Saint-Louis, 2 rue Ambroise Paré, 75010 Paris, France (P.P., J.D.L., V.B.); Institute of Medical Physics, University of Erlangen, Erlangen, Germany (K.E., O.M.); LBM/Institut de Biomecanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France (L.D., W.S.); Department of Radiology, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (T.M.); Laboratoire de Biomécanique et Mécanique des Chocs-Université Lyon 1-IFSTTAR, Lyon, France (D.M.); Unité de Recherché Clinique Saint-Louis Lariboisère Fernand Widal, Paris, France (E.V.); and Department of Clinical Radiology, The Royal Infirmary, Imaging Science and Biomedical Engineering, University of Manchester, Manchester, England (J.A.)
| | - Thomas Moser
- From the Laboratoire de Radiologie Expérimentale, CNRS UMR 7052, UFR Lariboisière-Saint-Louis, 2 rue Ambroise Paré, 75010 Paris, France (P.P., J.D.L., V.B.); Institute of Medical Physics, University of Erlangen, Erlangen, Germany (K.E., O.M.); LBM/Institut de Biomecanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France (L.D., W.S.); Department of Radiology, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (T.M.); Laboratoire de Biomécanique et Mécanique des Chocs-Université Lyon 1-IFSTTAR, Lyon, France (D.M.); Unité de Recherché Clinique Saint-Louis Lariboisère Fernand Widal, Paris, France (E.V.); and Department of Clinical Radiology, The Royal Infirmary, Imaging Science and Biomedical Engineering, University of Manchester, Manchester, England (J.A.)
| | - David Mitton
- From the Laboratoire de Radiologie Expérimentale, CNRS UMR 7052, UFR Lariboisière-Saint-Louis, 2 rue Ambroise Paré, 75010 Paris, France (P.P., J.D.L., V.B.); Institute of Medical Physics, University of Erlangen, Erlangen, Germany (K.E., O.M.); LBM/Institut de Biomecanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France (L.D., W.S.); Department of Radiology, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (T.M.); Laboratoire de Biomécanique et Mécanique des Chocs-Université Lyon 1-IFSTTAR, Lyon, France (D.M.); Unité de Recherché Clinique Saint-Louis Lariboisère Fernand Widal, Paris, France (E.V.); and Department of Clinical Radiology, The Royal Infirmary, Imaging Science and Biomedical Engineering, University of Manchester, Manchester, England (J.A.)
| | - Eric Vicaut
- From the Laboratoire de Radiologie Expérimentale, CNRS UMR 7052, UFR Lariboisière-Saint-Louis, 2 rue Ambroise Paré, 75010 Paris, France (P.P., J.D.L., V.B.); Institute of Medical Physics, University of Erlangen, Erlangen, Germany (K.E., O.M.); LBM/Institut de Biomecanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France (L.D., W.S.); Department of Radiology, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (T.M.); Laboratoire de Biomécanique et Mécanique des Chocs-Université Lyon 1-IFSTTAR, Lyon, France (D.M.); Unité de Recherché Clinique Saint-Louis Lariboisère Fernand Widal, Paris, France (E.V.); and Department of Clinical Radiology, The Royal Infirmary, Imaging Science and Biomedical Engineering, University of Manchester, Manchester, England (J.A.)
| | - Judith Adams
- From the Laboratoire de Radiologie Expérimentale, CNRS UMR 7052, UFR Lariboisière-Saint-Louis, 2 rue Ambroise Paré, 75010 Paris, France (P.P., J.D.L., V.B.); Institute of Medical Physics, University of Erlangen, Erlangen, Germany (K.E., O.M.); LBM/Institut de Biomecanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France (L.D., W.S.); Department of Radiology, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (T.M.); Laboratoire de Biomécanique et Mécanique des Chocs-Université Lyon 1-IFSTTAR, Lyon, France (D.M.); Unité de Recherché Clinique Saint-Louis Lariboisère Fernand Widal, Paris, France (E.V.); and Department of Clinical Radiology, The Royal Infirmary, Imaging Science and Biomedical Engineering, University of Manchester, Manchester, England (J.A.)
| | - Wafa Skalli
- From the Laboratoire de Radiologie Expérimentale, CNRS UMR 7052, UFR Lariboisière-Saint-Louis, 2 rue Ambroise Paré, 75010 Paris, France (P.P., J.D.L., V.B.); Institute of Medical Physics, University of Erlangen, Erlangen, Germany (K.E., O.M.); LBM/Institut de Biomecanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France (L.D., W.S.); Department of Radiology, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (T.M.); Laboratoire de Biomécanique et Mécanique des Chocs-Université Lyon 1-IFSTTAR, Lyon, France (D.M.); Unité de Recherché Clinique Saint-Louis Lariboisère Fernand Widal, Paris, France (E.V.); and Department of Clinical Radiology, The Royal Infirmary, Imaging Science and Biomedical Engineering, University of Manchester, Manchester, England (J.A.)
| | - Jean Denis Laredo
- From the Laboratoire de Radiologie Expérimentale, CNRS UMR 7052, UFR Lariboisière-Saint-Louis, 2 rue Ambroise Paré, 75010 Paris, France (P.P., J.D.L., V.B.); Institute of Medical Physics, University of Erlangen, Erlangen, Germany (K.E., O.M.); LBM/Institut de Biomecanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France (L.D., W.S.); Department of Radiology, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (T.M.); Laboratoire de Biomécanique et Mécanique des Chocs-Université Lyon 1-IFSTTAR, Lyon, France (D.M.); Unité de Recherché Clinique Saint-Louis Lariboisère Fernand Widal, Paris, France (E.V.); and Department of Clinical Radiology, The Royal Infirmary, Imaging Science and Biomedical Engineering, University of Manchester, Manchester, England (J.A.)
| | - Valérie Bousson
- From the Laboratoire de Radiologie Expérimentale, CNRS UMR 7052, UFR Lariboisière-Saint-Louis, 2 rue Ambroise Paré, 75010 Paris, France (P.P., J.D.L., V.B.); Institute of Medical Physics, University of Erlangen, Erlangen, Germany (K.E., O.M.); LBM/Institut de Biomecanique Humaine Georges Charpak, Arts et Métiers ParisTech, Paris, France (L.D., W.S.); Department of Radiology, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (T.M.); Laboratoire de Biomécanique et Mécanique des Chocs-Université Lyon 1-IFSTTAR, Lyon, France (D.M.); Unité de Recherché Clinique Saint-Louis Lariboisère Fernand Widal, Paris, France (E.V.); and Department of Clinical Radiology, The Royal Infirmary, Imaging Science and Biomedical Engineering, University of Manchester, Manchester, England (J.A.)
| |
Collapse
|