1
|
Van Hulten V, Driessen JHM, Andersen S, Kvist A, Viggers R, Bliuc D, Center JR, Brouwers MCJG, Vestergaard P, van den Bergh JP. Fracture risk revisited: Bone mineral density T-score and fracture risk in type 2 diabetes. Diabetes Obes Metab 2024; 26:5325-5335. [PMID: 39228286 DOI: 10.1111/dom.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/05/2024]
Abstract
AIM To study the association between femoral neck (FN) bone mineral density (BMD) T-score and fracture risk in individuals with and without type 2 diabetes (T2D). MATERIALS AND METHODS We performed a single-centre retrospective cohort study using the Danish National Health Service. BMD of the FN was measured by dual-energy X-ray absorptiometry. Cox proportional hazards regression models were used to study the association between FN BMD T-score and fractures in individuals with and without T2D separately, adjusted for age, comorbidities and comedication. The results from this analysis were used to estimate the 10-year absolute fracture risk. RESULTS In total, there were 35,129 women (2362 with T2D) and 7069 men (758 with T2D). The FN BMD T-score was significantly associated with risk of any, hip and major osteoporotic fracture in men and women with [adjusted hazard risk ratios (aHR) women, hip: 1.57; 95% confidence interval (CI) 1.24-2.00, incidence rate (IR) 8.7; aHR men, hip: 1.55; 95% CI 1.01-2.36, IR 4.6] and without T2D (aHR women, hip: 1.75; 95% CI 1.64-1.87, IR 7.0; aHR men, hip: 1.97, 95% CI 1.73-2.25, IR 6.3), and its ability to predict fracture risk was similar. Fracture IRs were not significantly different for individuals with or without T2D, nor was the estimated cumulative 10-year fracture risk. CONCLUSIONS The FN BMD T-score was significantly associated with hip, non-spine and major osteoporotic fracture risk in men and women with and without T2D. Fracture risk for a given T-score and age was equal in individuals with and without T2D, as was the ability of the FN BMD T-score to predict fracture risk.
Collapse
Affiliation(s)
- V Van Hulten
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Clinical Pharmacy, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J H M Driessen
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- Department of Clinical Pharmacy, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - S Andersen
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| | - A Kvist
- Steno Diabetes Center North Denmark, Aalborg, Denmark
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, Odense, Denmark
| | - R Viggers
- Steno Diabetes Center North Denmark, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - D Bliuc
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of population Health, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - J R Center
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Clinical School, St Vincent's Hospital, Faculty of Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - M C J G Brouwers
- Department of Internal Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, Netherlands
| | - P Vestergaard
- Steno Diabetes Center North Denmark, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - J P van den Bergh
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Rheumatology, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- Department of Internal Medicine, Subdivision of Endocrinology, VieCuri Medical Center, Venlo, The Netherlands
| |
Collapse
|
2
|
van Hulten V, Souverein PC, Starup-Linde J, Viggers R, Klungel OH, Vestergaard P, Brouwers MCJG, van den Bergh JP, Driessen JHM. The association of type 2 diabetes-related characteristics with fracture risk at different sites. Diabetes Obes Metab 2024; 26:4887-4896. [PMID: 39223858 DOI: 10.1111/dom.15884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
AIM To determine the association of diabetes-related characteristics with fractures at different sites in individuals with type 2 diabetes (T2D). MATERIALS AND METHODS We conducted a cohort study using the Clinical Practice Research Datalink (CPRD) GOLD. Patients aged over 30 years with T2D were identified within the CPRD. Patients were followed from the start of diabetes treatment until the end of data collection, death, or the occurrence of a fracture. Cox proportional hazards models were used to estimate the hazard ratios for the association of the individual characteristics (diabetes duration, glycated haemoglobin [HbA1c] level, and microvascular complications) with fracture risk, adjusted for demographics, comorbidities and comedication. RESULTS A diabetes duration of >10 years was associated with an increased risk of any fracture and major osteoporotic fractures (MOFs), while a diabetes duration of >8 years was associated with an increased hip fracture risk, compared to a duration <2 years. An HbA1c level <6% was associated with an increased fracture risk compared to HbA1c values of 6% to <7%. The presence of one or two microvascular complications was associated with an increased risk of any fracture and MOFs and the presence of two microvascular complications was associated with an increased hip fracture risk, compared to no microvascular complications. CONCLUSION In conclusion, our study shows that a diabetes duration of 10 years or more, strict glycaemic control resulting in HbA1c levels below 6%, and/or the presence of at least one microvascular complication increased the risk of any fracture, hip fractures, MOFs, and humerus fractures, but not ankle, scapula or skull fractures.
Collapse
Affiliation(s)
- Veerle van Hulten
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Clinical Pharmacy, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Patrick C Souverein
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Viggers
- Steno Diabetes Center North Denmark, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Olaf H Klungel
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Peter Vestergaard
- Steno Diabetes Center North Denmark, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Martijn C J G Brouwers
- Department of Internal Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Joop P van den Bergh
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Rheumatology, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- Department of Internal Medicine, Subdivision of Endocrinology, VieCuri Medical Center, Venlo, The Netherlands
| | - Johanna H M Driessen
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
- Department of Clinical Pharmacy, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities. Stem Cell Res Ther 2024; 15:266. [PMID: 39183341 PMCID: PMC11346273 DOI: 10.1186/s13287-024-03885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in stem cell technology offer new possibilities for patients with untreated diseases and disorders. Stem cell-based therapy, which includes multipotent mesenchymal stem cells (MSCs), has recently become important in regenerative therapies. MSCs are multipotent progenitor cells that possess the ability to undergo in vitro self-renewal and differentiate into various mesenchymal lineages. MSCs have demonstrated promise in several areas, such as tissue regeneration, immunological modulation, anti-inflammatory qualities, and wound healing. Additionally, the development of specific guidelines and quality control methods that ultimately result in the therapeutic application of MSCs has been made easier by recent advancements in the study of MSC biology. This review discusses the latest clinical uses of MSCs obtained from the umbilical cord (UC), bone marrow (BM), or adipose tissue (AT) in treating various human diseases such as pulmonary dysfunctions, neurological disorders, endocrine/metabolic diseases, skin burns, cardiovascular conditions, and reproductive disorders. Additionally, this review offers comprehensive information regarding the clinical application of targeted therapies utilizing MSCs. It also presents and examines the concept of MSC tissue origin and its potential impact on the function of MSCs in downstream applications. The ultimate aim of this research is to facilitate translational research into clinical applications in regenerative therapies.
Collapse
Affiliation(s)
- Song Zhidu
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Tao Ying
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiang Rui
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhang Chao
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
4
|
Zhang F, Qiao W, Wei JA, Tao Z, Chen C, Wu Y, Lin M, Ng KMC, Zhang L, Yeung KWK, Chow BKC. Secretin-dependent signals in the ventromedial hypothalamus regulate energy metabolism and bone homeostasis in mice. Nat Commun 2024; 15:1030. [PMID: 38310104 PMCID: PMC10838336 DOI: 10.1038/s41467-024-45436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Secretin, though originally discovered as a gut-derived hormone, is recently found to be abundantly expressed in the ventromedial hypothalamus, from which the central neural system controls satiety, energy metabolism, and bone homeostasis. However, the functional significance of secretin in the ventromedial hypothalamus remains unclear. Here we show that the loss of ventromedial hypothalamus-derived secretin leads to osteopenia in male and female mice, which is primarily induced by diminished cAMP response element-binding protein phosphorylation and upregulation in peripheral sympathetic activity. Moreover, the ventromedial hypothalamus-secretin inhibition also contributes to hyperphagia, dysregulated lipogenesis, and impaired thermogenesis, resulting in obesity in male and female mice. Conversely, overexpression of secretin in the ventromedial hypothalamus promotes bone mass accrual in mice of both sexes. Collectively, our findings identify an unappreciated secretin signaling in the central neural system for the regulation of energy and bone metabolism, which may serve as a new target for the clinical management of obesity and osteoporosis.
Collapse
Affiliation(s)
- Fengwei Zhang
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Wei Qiao
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China.
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Ji-An Wei
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
- Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhengyi Tao
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Yefeng Wu
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Minghui Lin
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Ka Man Carmen Ng
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Kelvin Wai-Kwok Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
5
|
Xuan X, Sun R, Peng C, Liu L, Huang T, Huang C. The nonlinear association between triglyceride glucose-body mass index and femoral neck BMD in nondiabetic elderly men: NHANES 2005-March 2020. PLoS One 2024; 19:e0296935. [PMID: 38261591 PMCID: PMC10805317 DOI: 10.1371/journal.pone.0296935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The triglyceride glucose-body mass index (TyG-BMI) has been considered a surrogate marker for assessing insulin resistance. We aimed to correlate the TyG-BMI, triglyceride glucose combined with body mass index, with femoral neck bone mineral density (FN BMD) in non-diabetic elderly men. METHODS Using data from the National Health and Nutrition Examination Survey (NHANES) database, totally, 1182 eligible men aged ≥ 50 years without diabetes were included in the current study. Smoothed curves were obtained by a two-piecewise linear regression model and the threshold effects were explored by using a smoothing function. RESULTS TyG-BMI was positive related with and FN BMD with or without adjustment for confounders. However, no typical dose-dependent positive association between TyG-BMI and FN BMD was observed across the TyG-BMI tertiles, indicating a non-linear association. Further analysis by the weighted two-piecewise linear regression model and recursive algorithm suggested that per SD increase in TyG-BMI increased FN BMD by 0.266 gm/cm2 when TyG-BMI lower than 168.20. However, when TyG-BMI is higher than 168.20, FN BMD only increased 0.046 gm/cm2 for per SD increase of TyG-BMI after fully adjustment (OR = 11.258, 95%CI: 6.034, 16.481). Moreover, subgroup analyses showed that higher TyG-BMI levels were related to elevated FN BMD in all groups, suggesting the consistency of the positive association within these stratas. CONCLUSIONS This study demonstrated that TyG-BMI is positively associated with FN BMD in a nonlinear fashion among elderly men without diabetes, which may be a reliable marker for the early identification of individuals with lower FN BMD.
Collapse
Affiliation(s)
- Xiuping Xuan
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Rong Sun
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medical, Shiyan, 442000, Hubei, China
| | - Caibi Peng
- Bishan Maternity and Child Hospital of Chongqing, Bishan, Chongqing, 402760, China
| | - Lijuan Liu
- Department of Endocrinology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Bishan, Chongqing, 402760, China
| | - Tiantian Huang
- Department of Endocrinology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Bishan, Chongqing, 402760, China
| | - Chenghu Huang
- Department of Endocrinology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Bishan, Chongqing, 402760, China
| |
Collapse
|
6
|
Harada S, Gersing AS, Stohldreier Y, Dietrich O, Lechner A, Seissler J, Ferrari U, Pappa E, Hesse N. Associations of gestational diabetes and proton density fat fraction of vertebral bone marrow and paraspinal musculature in premenopausal women. Front Endocrinol (Lausanne) 2024; 14:1303126. [PMID: 38292769 PMCID: PMC10824991 DOI: 10.3389/fendo.2023.1303126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Background and objective Fat content in bones and muscles, quantified by magnetic resonance imaging (MRI) as a proton density fat fraction (PDFF) value, is an emerging non-invasive biomarker. PDFF has been proposed to indicate bone and metabolic health among postmenopausal women. Premenopausal women with a history of gestational diabetes (GDM) carry an increased risk of developing type 2 diabetes and an increased risk of fractures. However, no studies have investigated the associations between a history of GDM and PDFF of bone or of paraspinal musculature (PSM), composed of autochthonous muscle (AM) and psoas muscle, which are responsible for moving and stabilizing the spine. This study aims to investigate whether PDFF of vertebral bone marrow and of PSM are associated with a history of GDM in premenopausal women. Methods A total of 37 women (mean age 36.3 ± 3.8 years) who were 6 to 15 months postpartum with (n=19) and without (n=18) a history of GDM underwent whole-body 3T MRI, including a chemical shift encoding-based water-fat separation. The PDFF maps were calculated for the vertebral bodies and PSM. The cross-sectional area (CSA) of PSM was obtained. Associations between a history of GDM and PDFF were assessed using multivariable linear and logistic regression models. Results The PDFF of the vertebral bodies was significantly higher in women with a history of GDM (GDM group) than in women without (thoracic: median 41.55 (interquartile range 32.21-49.48)% vs. 31.75 (30.03-34.97)%; p=0.02, lumbar: 47.84 (39.19-57.58)% vs. 36.93 (33.36-41.31)%; p=0.02). The results remained significant after adjustment for age and body mass index (BMI) (p=0.01-0.02). The receiver operating characteristic curves showed optimal thoracic and lumbar vertebral PDFF cutoffs at 38.10% and 44.18%, respectively, to differentiate GDM (AUC 0.72 and 0.73, respectively, sensitivity 0.58, specificity 0.89). The PDFF of the AM was significantly higher in the GDM group (12.99 (12.18-15.90)% vs. 10.83 (9.39-14.71)%; p=0.04) without adjustments, while the CSA was similar between the groups (p=0.34). Conclusion A history of GDM is significantly associated with a higher PDFF of the vertebral bone marrow, independent of age and BMI. This statistical association between GDM and increased PDFF highlights vertebral bone marrow PDFF as a potential biomarker for the assessment of bone health in premenopausal women at risk of diabetes.
Collapse
Affiliation(s)
- Saori Harada
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany
| | - Alexandra S. Gersing
- Department of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Yannick Stohldreier
- Department of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Olaf Dietrich
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Lechner
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Uta Ferrari
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eleni Pappa
- Medizinische Klinik und Poliklinik IV, Diabetes Zentrum - Campus Innenstadt, LMU Klinikum, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nina Hesse
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Greere D, Grigorescu F, Manda D, Lautier C, Poianã C. INSULIN RESISTANCE AND PATHOGENESIS OF POSTMENOPAUSAL OSTEOPOROSIS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:349-363. [PMID: 38356971 PMCID: PMC10863952 DOI: 10.4183/aeb.2023.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Osteoporosis (OP) is a disease predisposing postmenopausal women to fractures, and often accompanied by insulin resistance (IR) and metabolic syndrome (MetS). Previous studies provided contradictory results concerning prevalence of MetS in postmenopausal OP. To better understand the pathogenesis of IR, we reviewed cellular and molecular aspects and systematically reviewed studies providing homeostasis model assessment (HOMA) index. Bone is an active endocrine organ maintaining its integrity by orchestrated balance between bone formation and resorption. Both osteoblasts and osteoclasts contain receptors for insulin and insulin-like growth factor-1 (IGF-1) operating in skeletal development and in the adult life. Defects in this system generate systemic IR and bone-specific IR, which in turn regulates glucose homeostasis and energy metabolism through osteocalcin. Examination of genetic syndromes of extreme IR revealed intriguing features namely high bone mineral density (BMD) or accelerated growth. Studies of moderate forms of IR in postmenopausal women reveal positive correlations between HOMA index and BMD while correlations with osteocalcin were rather negative. The relation with obesity remains complex involving regulatory factors such as leptin and adiponectin to which the contribution of potential genetic factors and in particular, the correlation with the degree of obesity or body composition should be added.
Collapse
Affiliation(s)
- D.I.I. Greere
- “C.I. Parhon” National Institute of Endocrinology - Clinical Endocrinology, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy - Endocrinology, Bucharest, Romania
| | - F. Grigorescu
- Institut Convergences Migrations - Molecular - Endocrinology, Montpellier, France
| | - D. Manda
- “C.I. Parhon” National Institute of Endocrinology - Molecular Cellular and Structural Endocrinology Laboratory, Bucharest, Romania
| | - C. Lautier
- Université de Montpellier, Montpellier, France
| | - C. Poianã
- “C.I. Parhon” National Institute of Endocrinology - Clinical Endocrinology, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy - Endocrinology, Bucharest, Romania
| |
Collapse
|
8
|
Bone Marrow Adipose Tissue: Regulation of Osteoblastic Niche, Hematopoiesis and Hematological Malignancies. Stem Cell Rev Rep 2023:10.1007/s12015-023-10531-3. [PMID: 36930385 DOI: 10.1007/s12015-023-10531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Bone marrow adipose tissue (BMAT) creates a specific microniche within multifunctional bone marrow (BM) ecosystem which imposes changes in surrounding cells and at systemic level. Moreover, BMAT contributes to spatial and temporal separation and metabolic compartmentalization of BM, thus regulating BM homeostasis and diseases. Recent findings have identified novel progenitor subsets of bone marrow adipocytes (BMAd)s recruited during the BM adipogenesis within different skeletal and hematopoietic stem cell niches. Potential of certain mesenchymal BM cells to differentiate into both osteogenic and adipogenic lineages, contributes to the complex interplay of BMAT with endosteal (osteoblastic) niche compartments as an important cellular player in bone tissue homeostasis. Targeting and ablation of BMAT cells at certain states might be an optional and promising strategy for improvement of bone health. Additionally, recent findings demonstrated spatial distribution of BMAds related to hematopoietic cells and pointed out important functional roles in the vital processes such as long-term hematopoiesis. BM adipogenesis appears to be an emergency phenomenon that follows the production of hematopoietic stem and progenitor cell niche factors, thus regulating physiological, stressed, and malignant hematopoiesis. Lipolytic and secretory activity of BMAds can influence survival and proliferation of hematopoietic cells at different maturation stages. Due to their different lipid status, constitutive and regulated BMAds are important determinants of normal and malignant hematopoietic cells. Further elucidation of cellular and molecular players involved in BMAT expansion and crosstalk with malignant cells is of paramount importance for conceiving the new therapies for improvement of BM health.
Collapse
|
9
|
Alzheimer's Disease and Impaired Bone Microarchitecture, Regeneration and Potential Genetic Links. Life (Basel) 2023; 13:life13020373. [PMID: 36836731 PMCID: PMC9963274 DOI: 10.3390/life13020373] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's Disease (AD) and osteoporosis are both age-related degenerative diseases. Many studies indicate that these two diseases share common pathogenesis mechanisms. In this review, the osteoporotic phenotype of AD mouse models was discussed, and shared mechanisms such as hormonal imbalance, genetic factors, similar signaling pathways and impaired neurotransmitters were identified. Moreover, the review provides recent data associated with these two diseases. Furthermore, potential therapeutic approaches targeting both diseases were discussed. Thus, we proposed that preventing bone loss should be one of the most important treatment goals in patients with AD; treatment targeting brain disorders is also beneficial for osteoporosis.
Collapse
|
10
|
Li Z, Qi C, Pan X, Jia Y, Zhao X, Deng C, Chen S. The relationship between estimated glucose disposal rate and bone turnover markers in type 2 diabetes mellitus. Endocrine 2022; 77:242-251. [PMID: 35697964 DOI: 10.1007/s12020-022-03090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To investigate the relationship between estimated glucose disposal rate (eGDR) and bone turnover markers in patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS This is a cross-sectional study, which recruited 549 patients with T2DM. The eGDRs of patients were calculated based on the presence of hypertension, glycated hemoglobin, and body mass index. All patients were divided into high-eGDR group and low-eGDR group using the median of eGDR as the boundary. The patients were further divided into two subgroups: males and postmenopausal females. RESULTS The lower the eGDR, the more severe was insulin resistance. The levels of osteocalcin (OC), type I collagen carboxyl-terminal peptide (β-CTX), and type I procollagen amino-terminal peptide (PINP) were significantly lower in the low-eGDR group than those in the high-eGDR group. The eGDR was positively correlated with OC, β-CTX, and PINP in all patients, and in the male subgroups. In the postmenopausal female subgroup, there was no correlation between eGDR and OC, β-CTX, or PINP. In addition, this positive correlation remained after adjusting for other factors in multilinear regression analysis. CONCLUSION Our study was the first to demonstrate that eGDR is positively correlated with bone turnover markers in patients with T2DM. This correlation was observed among the male patients with T2DM but not among postmenopausal female patients with T2DM.
Collapse
Affiliation(s)
- Zelin Li
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cuijuan Qi
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaoyu Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yujiao Jia
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xuetong Zhao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Chenqian Deng
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China.
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei North University, Zhangjiakou, Hebei, China.
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, Hebei, China.
| |
Collapse
|
11
|
Wawrzyniak A, Balawender K. Structural and Metabolic Changes in Bone. Animals (Basel) 2022; 12:ani12151946. [PMID: 35953935 PMCID: PMC9367262 DOI: 10.3390/ani12151946] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Bone is an extremely metabolically active tissue that is regenerated and repaired over its lifetime by bone remodeling. Most bone diseases are caused by abnormal restructure processes that undermine bone structure and mechanical strength and trigger clinical symptoms, such as pain, deformity, fracture, and abnormalities of calcium and phosphate homoeostasis. The article examines the main aspects of bone development, anatomy, structure, and the mechanisms of cell and molecular regulation of bone remodeling. Abstract As an essential component of the skeleton, bone tissue provides solid support for the body and protects vital organs. Bone tissue is a reservoir of calcium, phosphate, and other ions that can be released or stored in a controlled manner to provide constant concentration in body fluids. Normally, bone development or osteogenesis occurs through two ossification processes (intra-articular and intra-chondral), but the first produces woven bone, which is quickly replaced by stronger lamellar bone. Contrary to commonly held misconceptions, bone is a relatively dynamic organ that undergoes significant turnover compared to other organs in the body. Bone metabolism is a dynamic process that involves simultaneous bone formation and resorption, controlled by numerous factors. Bone metabolism comprises the key actions. Skeletal mass, structure, and quality are accrued and maintained throughout life, and the anabolic and catabolic actions are mostly balanced due to the tight regulation of the activity of osteoblasts and osteoclasts. This activity is also provided by circulating hormones and cytokines. Bone tissue remodeling processes are regulated by various biologically active substances secreted by bone tissue cells, namely RANK, RANKL, MMP-1, MMP-9, or type 1 collagen. Bone-derived factors (BDF) influence bone function and metabolism, and pathophysiological conditions lead to bone dysfunction. This work aims to analyze and evaluate the current literature on various local and systemic factors or immune system interactions that can affect bone metabolism and its impairments.
Collapse
|
12
|
Ren YZ, Ding SS, Jiang YP, Wen H, Li T. Application of exosome-derived noncoding RNAs in bone regeneration: Opportunities and challenges. World J Stem Cells 2022; 14:473-489. [PMID: 36157529 PMCID: PMC9350624 DOI: 10.4252/wjsc.v14.i7.473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
With advances in the fields of regenerative medicine, cell-free therapy has received increased attention. Exosomes have a variety of endogenous properties that provide stability for molecular transport across biological barriers to cells, as a form of cell-to-cell communication that regulates function and phenotype. In addition, exosomes are an important component of paracrine signaling in stem-cell-based therapy and can be used as a stand-alone therapy or as a drug delivery system. The remarkable potential of exosomes has paved the pathway for cell-free treatment in bone regeneration. Exosomes are enriched in distinct noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs and circular RNAs. Different ncRNAs have multiple functions. Altered expression of ncRNA in exosomes is associated with the regenerative potential and development of various diseases, such as femoral head osteonecrosis, myocardial infarction, and cancer. Although there is increasing evidence that exosome-derived ncRNAs (exo-ncRNAs) have the potential for bone regeneration, the detailed mechanisms are not fully understood. Here, we review the biogenesis of exo-ncRNA and the effects of ncRNAs on angiogenesis and osteoblast- and osteoclast-related pathways in different diseases. However, there are still many unsolved problems and challenges in the clinical application of ncRNA; for instance, production, storage, targeted delivery and therapeutic potency assessment. Advancements in exo-ncRNA methods and design will promote the development of therapeutics, revolutionizing the present landscape.
Collapse
Affiliation(s)
- Yuan-Zhong Ren
- Department of Emergency Trauma Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Shan-Shan Ding
- Department of Geriatrics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Ya-Ping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hui Wen
- Department of Emergency Trauma Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan Province, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
13
|
Mazziotti G, Lania AG, Canalis E. Skeletal disorders associated with the growth hormone-insulin-like growth factor 1 axis. Nat Rev Endocrinol 2022; 18:353-365. [PMID: 35288658 DOI: 10.1038/s41574-022-00649-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 11/08/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are important regulators of bone remodelling and metabolism and have an essential role in the achievement and maintenance of bone mass throughout life. Evidence from animal models and human diseases shows that both GH deficiency (GHD) and excess are associated with changes in bone remodelling and cause profound alterations in bone microstructure. The consequence is an increased risk of fractures in individuals with GHD or acromegaly, a condition of GH excess. In addition, functional perturbations of the GH-IGF1 axis, encountered in individuals with anorexia nervosa and during ageing, result in skeletal fragility and osteoporosis. The effect of interventions used to treat GHD and acromegaly on the skeleton is variable and dependent on the duration of the disease, the pre-existing skeletal state, coexistent hormone alterations (such as those occurring in hypogonadism) and length of therapy. This variability could also reflect the irreversibility of the skeletal structural defect occurring during alterations of the GH-IGF1 axis. Moreover, the effects of the treatment of GHD and acromegaly on locally produced IGF1 and IGF binding proteins are uncertain and in need of further study. This Review highlights the pathophysiological, clinical and therapeutic aspects of skeletal fragility associated with perturbations in the GH-IGF1 axis.
Collapse
Affiliation(s)
- Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.
- Endocrinology, Diabetology and Andrology Unit - Bone Diseases and Osteoporosis Section, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
- Endocrinology, Diabetology and Andrology Unit - Bone Diseases and Osteoporosis Section, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, USA
| |
Collapse
|
14
|
Labella R, Little-Letsinger S, Avilkina V, Sarkis R, Tencerova M, Vlug A, Palmisano B. Next Generation Bone Marrow Adiposity Researchers: Report From the 1 st BMAS Summer School 2021. Front Endocrinol (Lausanne) 2022; 13:879588. [PMID: 35498418 PMCID: PMC9043644 DOI: 10.3389/fendo.2022.879588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The first International Summer School on Bone Marrow Adiposity was organized by members of Bone Marrow Adiposity Society and held virtually on September 6-8 2021. The goal of this meeting was to bring together young scientists interested in learning about bone marrow adipose tissue biology and pathology. Fifty-two researchers from different backgrounds and fields, ranging from bone physiopathology to adipose tissue biology and hematology, participated in the summer school. The meeting featured three keynote lectures on the fundamentals of bone marrow adiposity, three scientific workshops on technical considerations in studying bone marrow adiposity, and six motivational and career development lectures, spanning from scientific writing to academic career progression. Moreover, twenty-one participants presented their work in the form of posters. In this report we highlight key moments and lessons learned from the event.
Collapse
Affiliation(s)
- Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, United States
| | | | - Viktorjia Avilkina
- Marrow Adiposity and Bone Lab (MAB Lab) ULR4490, Univ Littoral Côte d’Opale, Boulogne-sur-Mer, France
| | - Rita Sarkis
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Michaela Tencerova
- Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czechia
| | - Annegreet Vlug
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Biagio Palmisano,
| |
Collapse
|
15
|
Rinonapoli G, Pace V, Ruggiero C, Ceccarini P, Bisaccia M, Meccariello L, Caraffa A. Obesity and Bone: A Complex Relationship. Int J Mol Sci 2021; 22:ijms222413662. [PMID: 34948466 PMCID: PMC8706946 DOI: 10.3390/ijms222413662] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
There is a large literature on the relationship between obesity and bone. What we can conclude from this review is that the increase in body weight causes an increase in BMD, both for a mechanical effect and for the greater amount of estrogens present in the adipose tissue. Nevertheless, despite an apparent strengthening of the bone witnessed by the increased BMD, the risk of fracture is higher. The greater risk of fracture in the obese subject is due to various factors, which are carefully analyzed by the Authors. These factors can be divided into metabolic factors and increased risk of falls. Fractures have an atypical distribution in the obese, with a lower incidence of typical osteoporotic fractures, such as those of hip, spine and wrist, and an increase in fractures of the ankle, upper leg, and humerus. In children, the distribution is different, but it is not the same in obese and normal-weight children. Specifically, the fractures of the lower limb are much more frequent in obese children. Sarcopenic obesity plays an important role. The authors also review the available literature regarding the effects of high-fat diet, weight loss and bariatric surgery.
Collapse
Affiliation(s)
- Giuseppe Rinonapoli
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
- Correspondence:
| | - Valerio Pace
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| | - Carmelinda Ruggiero
- Orthogeriatric Service, Geriatric Unit, Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, 06156 Perugia, Italy;
| | - Paolo Ceccarini
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| | - Michele Bisaccia
- Department of Orthopaedics and Traumatology, AORN San Pio “Gaetano Rummo Hospital”, Via R.Delcogliano, 82100 Benevento, Italy; (M.B.); (L.M.)
| | - Luigi Meccariello
- Department of Orthopaedics and Traumatology, AORN San Pio “Gaetano Rummo Hospital”, Via R.Delcogliano, 82100 Benevento, Italy; (M.B.); (L.M.)
| | - Auro Caraffa
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| |
Collapse
|
16
|
Balera Brito VG, Patrocinio MS, Alves Barreto AE, Tfaile Frasnelli SC, Lara VS, Santos CF, Penha Oliveira SH. Telmisartan impairs the in vitro osteogenic differentiation of mesenchymal stromal cells from spontaneously hypertensive male rats. Eur J Pharmacol 2021; 912:174609. [PMID: 34743978 DOI: 10.1016/j.ejphar.2021.174609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
Telmisartan (TELM) is an angiotensin II (Ang II) type 1 receptor (Agtr1) antagonist, with partial agonism for Pparg, and has been shown to affect bone metabolism. Therefore, the aim of this study was to investigate the effects of TELM in the in vitro osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSC) from spontaneously hypertensive rats (SHRs). BMSC were obtained from male SHR, and the osteogenic medium (OM) was added to the cells concomitantly with TELM (0.005, 0.05, and 0.5 μM). Undifferentiated BMSC, in control medium (CM), showed an increased viability, while the addition of OM reduced this parameter, and TELM did not show cytotoxicity in the concentrations used. BMSC in OM had an alkaline phosphatase (ALP) activity peak at d10, which decreased at d14 and d21, and TELM reduced ALP at d10 in a dose-dependent manner. Mineralization was observed in the OM at d14, which intensified at d21, but was inhibited by TELM. Agtr1b was increased in the OM, and TELM inhibited its expression. TELM reduced Opn, Ocn, and Bsp and increased Pparg expression, and at the higher concentration TELM also increased the expression of adipogenic markers, Fabp4 and Adipoq. In addition, TELM 0.5 μM increased Irs1 and Glut4, insulin and glucose metabolism markers, known to be regulated by Pparg and to be related to adipogenic phenotype. Our data shows that TELM inhibited the osteogenic differentiation and mineralization of SHR BMSC, by favoring an adipogenic prone phenotype due to Pparg upregulation.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Mariana Sousa Patrocinio
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Ayná Emanuelli Alves Barreto
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | | | - Vanessa Soares Lara
- Department of Stomatology, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Science, Bauru School of Dentistry, University of São Paulo (USP), SP, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil; Multicenter Postgraduate Program in Physiological Sciences, Brazilian Society of Physiology, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil.
| |
Collapse
|
17
|
Wyst KBV, Hu HH, Peña A, Olson ML, Bailey SS, Shaibi GQ. Bone marrow adipose tissue content in Latino adolescents with prediabetes and obesity. Obesity (Silver Spring) 2021; 29:2100-2107. [PMID: 34582099 PMCID: PMC8612952 DOI: 10.1002/oby.23279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study aimed to examine whether total, regional, and organ fat predicts bone marrow adipose tissue (BMAT) fat content and to explore whether BMAT fat content differs by sex among Latino youth. METHODS Latino youth (n = 86; age 13.6 [1.4] years, 62% male) with obesity (BMI percentile = 98.5% [1.2%]) underwent a dual-energy x-ray absorptiometry scan to assess body composition and a magnetic resonance imaging scan to determine abdominal adiposity, liver fat, and vertebral BMAT fat content in the thoracic (average of T8-T12) and lumbar (average of L1-L5) spine. RESULTS Male youth exhibited significantly greater thoracic (male youth = 30.8% [1.4%] vs. female youth = 24.5% [2.1%], p = 0.027) and lumbar (male youth = 36.3% [1.5%] vs. female youth = 30.2% [2.2%], p = 0.038) BMAT fat content compared with female youth. Visceral adipose tissue was a significant predictor of thoracic (β = 0.434, t[86] = 3.016, p = 0.003) and lumbar (β = 0.389, t[86] = 2.677, p = 0.009) BMAT fat content, explaining 8.9% and 6.9% of the variance, respectively. Liver fat was a significant predictor of both thoracic (β = 0.487, t[86] = 4.334, p < 0.001) and lumbar (β = 0.436, t[86] = 3.793, p < 0.001) BMAT fat content, explaining 17.6% and 13.8% of the variance, respectively. CONCLUSIONS Male youth had significantly greater thoracic and lumbar BMAT fat content than female youth. Greater BMAT fat content is associated with greater liver fat and visceral adipose tissue among youth with obesity. Further investigation of the mechanistic underpinnings of BMAT may help to differentiate its metabolic and bone-related functions.
Collapse
Affiliation(s)
- Kiley B. Vander Wyst
- College of Graduate Studies, Midwestern University, Glendale, AZ
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
| | - Houchun H. Hu
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
- Clinical Science, Hyperfine, Inc., Guilford, CT
| | - Armando Peña
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
| | - Micah L. Olson
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
- Division of Pediatric Endocrinology and Diabetes, Phoenix Children’s Hospital, Phoenix, AZ
| | - Smita S. Bailey
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
- Department of Radiology, Phoenix Children’s Hospital, Phoenix, AZ
| | - Gabriel Q. Shaibi
- Center for Health Promotion and Disease Prevention, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
- Division of Pediatric Endocrinology and Diabetes, Phoenix Children’s Hospital, Phoenix, AZ
- Southwest Interdisciplinary Research Center, Arizona State University, Phoenix, AZ
| |
Collapse
|
18
|
Andrade VFC, Besen D, Chula DC, Borba VZC, Dempster D, Moreira CA. Bone Marrow Adiposity in Premenopausal Women With Type 2 Diabetes With Observations on Peri-Trabecular Adipocytes. J Clin Endocrinol Metab 2021; 106:e3592-e3602. [PMID: 33974069 DOI: 10.1210/clinem/dgab322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/16/2022]
Abstract
CONTEXT No study has yet evaluated the relationships among bone marrow adiposity (BMA), bone histomorphometry (BH), and glycemic control in premenopausal women with type 2 diabetes (T2DM). OBJECTIVE We aimed to assess the effect of glycemic control on BMA, correlate the parameters of BH with BMA, and correlate BMA with the use of hypoglycemic agents and with bone mineral density (BMD). METHODS This was a cross-sectional study that evaluated 26 premenopausal women with T2DM who were divided into groups with HbA1c < 7% (good control [GC], n = 10) and HbA1c > 7% (poor control [PC], n = 16). BMA parameters (adipocyte number [Ad.N], total adipocyte perimeter [Ad.Pm], total adipocyte area [Ad.Ar], percentage adipocyte volume per marrow volume [Ad.V/Ma.V]) and peri-trabecular adipocyte number divided by bone surface (Ad.N/BS) were evaluated. BH static (bone volume fraction [BV/TV], osteoid thickness [O.Th], osteoid surface/bone surface [OS/BS]) and dynamic parameters and serum insulin-like growth factor-1 were measured. BMA data were compared between the GC and PC groups. Correlations were performed. RESULTS Ad.N, Ad.Pm, and Ad.Ar were higher in PC (all, P = 0.04). HbA1c correlated positively with Ad.N/BS (P < 0.01) and Ad.N/BS correlated negatively with O.Th (P < 0.01) and OS/BS (P = 0.02). Positive and negative correlations were observed between insulin and metformin use, respectively, with all adipocyte parameters except Ad.N/BS (P < 0.05). Structural parameters were negatively correlated with the BMA. BMD of the femoral neck (r = -549, P < 0.01) and total femur (r = -0.502, P < 0.01) were negatively correlated with Ad.V/Ma.V. CONCLUSION Poor glycemic control is associated with hyperplasia and hypertrophy of BMAs and with lower BV/TV. Ad.N/BS, a new BMA parameter, is correlated with HbA1c and negatively with O.Th. The use of insulin seems to stimulate the expansion of BMA while that of metformin has the opposite effect. These findings suggest that the increase in BMA may play a role in the T2DM bone disease; on the other hand, good glycemic control might help prevent it.
Collapse
Affiliation(s)
- Vicente F C Andrade
- Endocrine Division (SEMPR), Department of Internal Medicine, Federal University of Paraná, Curitiba, Paraná, 80030-110, Brazil
| | - Débora Besen
- Professor of Endocrinology, University of Southern Santa Catarina (Unisul), Palhoça, Santa Catarina, 88137-270, Brazil
| | - Domingos C Chula
- Nephrology Unit, Clinics Hospital of Federal University of Paraná, Curitiba, Paraná, 80030-110, Brazil
| | - Victória Z C Borba
- Endocrine Division (SEMPR), Department of Internal Medicine, Federal University of Paraná, Curitiba, Paraná, 80030-110, Brazil
| | - David Dempster
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Carolina Aguiar Moreira
- Endocrine Division (SEMPR), Department of Internal Medicine, Federal University of Paraná, Curitiba, Paraná, 80030-110, Brazil
- Laboratory PRO - section of bone histomorphometry, Fundação Pró-Renal, Curitiba, Paraná, 80030-110, Brazil
| |
Collapse
|
19
|
Mincham KT, Panchal K, Hart PH, Lucas RM, Feelisch M, Weller RB, Matthews VB, Strickland DH, Gorman S. Metabolic dysfunction induced by a high-fat diet modulates hematopoietic stem and myeloid progenitor cells in brown adipose tissue of mice. Immunol Cell Biol 2021; 99:749-766. [PMID: 33866598 DOI: 10.1111/imcb.12460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
Brown adipose tissue (BAT) may be an important metabolic regulator of whole-body glucose. While important roles have been ascribed to macrophages in regulating metabolic functions in BAT, little is known of the roles of other immune cells subsets, particularly dendritic cells (DCs). Eating a high-fat diet may compromise the development of hematopoietic stem and progenitor cells (HSPCs)-which give rise to DCs-in bone marrow, with less known of its effects in BAT. We have previously demonstrated that ongoing exposure to low-dose ultraviolet radiation (UVR) significantly reduced the 'whitening' effect of eating a high-fat diet upon interscapular (i) BAT of mice. Here, we examined whether this observation may be linked to changes in the phenotype of HSPCs and myeloid-derived immune cells in iBAT and bone marrow of mice using 12-colour flow cytometry. Many HSPC subsets declined in both iBAT and bone marrow with increasing metabolic dysfunction. Conversely, with rising adiposity and metabolic dysfunction, conventional DCs (cDCs) increased in both of these tissues. When compared with a low-fat diet, consumption of a high-fat diet significantly reduced proportions of myeloid, common myeloid and megakaryocyte-erythrocyte progenitors in iBAT, and short-term hematopoietic stem cells in bone marrow. In mice fed the high-fat diet, exposure to low-dose UVR significantly reduced proportions of cDCs in iBAT, independently of nitric oxide release from irradiated skin [blocked using the scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO)], but did not significantly modify HSPC subsets in either tissue. Further studies are needed to determine whether changes in these cell populations contribute towards metabolic dysfunction .
Collapse
Affiliation(s)
- Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Kunjal Panchal
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Richard B Weller
- University of Edinburgh, MRC Centre for Inflammation Research, Edinburgh, Scotland
| | - Vance B Matthews
- School of Biomedical Science - Royal Perth Hospital Unit, The University of Western Australia, Perth, Australia
| | | | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| |
Collapse
|
20
|
Guo H, Wang C, Jiang B, Ge S, Cai J, Zhou Y, Ying R, Zha K, Zhou J, Wang N, Zhu C, Cao C, Zhang L, Gu T, Zhao Y, Lu Y, An Z. Association of Insulin Resistance and β-cell Function With Bone Turnover Biomarkers in Dysglycemia Patients. Front Endocrinol (Lausanne) 2021; 12:554604. [PMID: 33841321 PMCID: PMC8027237 DOI: 10.3389/fendo.2021.554604] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Background The interrelation between glucose and bone metabolism is complex and has not been fully revealed. This study aimed to investigate the association between insulin resistance, β-cell function and bone turnover biomarker levels among participants with abnormal glycometabolism. Methods A total of 5277 subjects were involved through a cross-sectional study (METAL study, http://www.chictr.org.cn, ChiCTR1800017573) in Shanghai, China. Homeostasis model assessment of insulin resistance (HOMA-IR) and β-cell dysfunction (HOMA-%β) were applied to elucidate the nexus between β-C-terminal telopeptide (β-CTX), intact N-terminal propeptide of type I collagen (P1NP) and osteocalcin (OC). β-CTX, OC and P1NP were detected by chemiluminescence. Results HOMA-IR was negatively associated with β-CTX, P1NP and OC (regression coefficient (β) -0.044 (-0.053, -0.035), Q4vsQ1; β -7.340 (-9.130, -5.550), Q4vsQ1 and β -2.885 (-3.357, -2.412), Q4vsQ1, respectively, all P for trend <0.001). HOMA-%β was positively associated with β-CTX, P1NP and OC (β 0.022 (0.014, 0.031), Q4vsQ1; β 6.951 (5.300, 8.602), Q4vsQ1 and β 1.361 (0.921, 1.800), Q4vsQ1, respectively, all P for trend <0.001). Conclusions Our results support that lower bone turnover biomarker (β-CTX, P1NP and OC) levels were associated with a combination of higher prevalence of insulin resistance and worse β-cell function among dysglycemia patients. It is feasible to detect bone turnover in diabetes or hyperglycemia patients to predict the risk of osteoporosis and fracture, relieve patients' pain and reduce the expenses of long-term cure.
Collapse
Affiliation(s)
- Hui Guo
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Chiyu Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boren Jiang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaohong Ge
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Jian Cai
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Ying Zhou
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Rong Ying
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Kexi Zha
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Ji Zhou
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunfang Zhu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Cao
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqin Zhang
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Tao Gu
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Yan Zhao
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengmei An
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| |
Collapse
|
21
|
Okla M, Kassem M. Thermogenic potentials of bone marrow adipocytes. Bone 2021; 143:115658. [PMID: 32979539 DOI: 10.1016/j.bone.2020.115658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022]
Abstract
Bone marrow adipose tissue (MAT) is a unique fat depot located in proximity to bone surfaces and exerts regulatory functions in the skeleton. Recent studies have demonstrated that MAT responds to changes in whole-body energy metabolism, such as in obesity and anorexia nervosa, where MAT expands, resulting in deleterious effects on the skeleton. Interestingly, MAT shares properties with both brown and white adipose tissues but exhibits distinct features with regard to lipid metabolism and insulin sensitivity. Recent reports have addressed the capacity of MAT to undergo browning, which could be an attractive strategy for preventing excessive MAT accumulation within the skeleton. In this review, we summarize studies addressing the browning phenomenon of MAT and its regulation by a number of pathophysiological conditions. Moreover, we discuss the relationship between adaptive thermogenesis and bone health. Understanding the thermogenic potentials of MAT will delineate the biological importance of this organ and unravel its potential for improving bone health and whole-body energy metabolism.
Collapse
Affiliation(s)
- Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Molecular Endocrinology, KMEB, University of Southern Denmark, Odense University Hospital, 5000 Odense C, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Hou J, He C, He W, Yang M, Luo X, Li C. Obesity and Bone Health: A Complex Link. Front Cell Dev Biol 2020; 8:600181. [PMID: 33409277 PMCID: PMC7779553 DOI: 10.3389/fcell.2020.600181] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
So far, the connections between obesity and skeleton have been extensively explored, but the results are inconsistent. Obesity is thought to affect bone health through a variety of mechanisms, including body weight, fat volume, bone formation/resorption, proinflammatory cytokines together with bone marrow microenvironment. In this review, we will mainly describe the effects of adipokines secreted by white adipose tissue on bone cells, as well as the interaction between brown adipose tissue, bone marrow adipose tissue, and bone metabolism. Meanwhile, this review also reviews the evidence for the effects of adipose tissue and its distribution on bone mass and bone-related diseases, along with the correlation between different populations with obesity and bone health. And we describe changes in bone metabolism in patients with anorexia nervosa or type 2 diabetes. In summary, all of these findings show that the response of skeleton to obesity is complex and depends on diversified factors, such as mechanical loading, obesity type, the location of adipose tissue, gender, age, bone sites, and secreted cytokines, and that these factors may exert a primary function in bone health.
Collapse
Affiliation(s)
- Jing Hou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
23
|
Regeneration during Obesity: An Impaired Homeostasis. Animals (Basel) 2020; 10:ani10122344. [PMID: 33317011 PMCID: PMC7763812 DOI: 10.3390/ani10122344] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Regeneration represents the biological processes that allow cells and tissues to renew and develop. During obesity, a variety of changes and reactions are seen. This includes inflammation and metabolic disorders. These obesity-induced changes do impact the regeneration processes. Such impacts that obesity has on regeneration would affect tissues and organs development and would also have consequences on the outcomes of therapies that depend on cells regeneration (such as burns, radiotherapy and leukemia) given to patients suffering from obesity. Therefore, a particular attention should be given to patients suffering from obesity in biological, therapeutic and clinical contexts that depend on regeneration ability. Abstract Obesity is a health problem that, in addition to the known morbidities, induces the generation of a biological environment with negative impacts on regeneration. Indeed, factors like DNA damages, oxidative stress and inflammation would impair the stem cell functions, in addition to some metabolic and development patterns. At the cellular and tissulaire levels, this has consequences on growth, renewal and restoration which results into an impaired regeneration. This impaired homeostasis concerns also key metabolic tissues including muscles and liver which would worsen the energy balance outcome towards further development of obesity. Such impacts of obesity on regeneration shows the need of a specific care given to obese patients recovering from diseases or conditions requiring regeneration such as burns, radiotherapy and leukemia. On the other hand, since stem cells are suggested to manage obesity, this impaired regeneration homeostasis needs to be considered towards more optimized stem cells-based obesity therapies within the context of precision medicine.
Collapse
|
24
|
Boroumand P, Klip A. Bone marrow adipose cells - cellular interactions and changes with obesity. J Cell Sci 2020; 133:133/5/jcs238394. [PMID: 32144195 DOI: 10.1242/jcs.238394] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The bone marrow is a spatially restricted niche, housing cells of the hematopoietic and mesenchymal lineages in various hierarchical commitment states. Although highly localized, cells within this niche are also subject to regulation by environmental and/or circulatory changes through extensive vascularization. Bone marrow adipocytes, derived from mesenchymal stem cells and once known as marrow space fillers, are a heterogeneous population. These cells reside in distinct niches within the bone marrow and interact with proximal cells, such as hematopoietic precursors and lineage-committed cells. In this diverse cellular milieu, bone marrow adipocytes influence commitment decisions and cellular lineage selection by interacting with stem and progenitor cells. In addition, bone marrow adipocytes respond to environmental changes, such as obesity, by undergoing hypertrophy, hyperplasia or adoption of characteristics resembling those of peripheral brown, beige or white adipocytes. Here, we review recent findings and concepts on the influence of bone marrow adipocytes on hematopoietic and other cellular lineages within this niche. We discuss how changes in local, systemic, cellular and secreted signals impact on mesenchymal stem cell expansion, differentiation and lineage commitment. Furthermore, we highlight that bone marrow adipocytes may be intermediaries conveying environmental cues to influence hematopoietic cellular survival, proliferation and preferential differentiation.
Collapse
Affiliation(s)
- Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|