1
|
Wang Z, Jiang T, Xu H, Wang C, Tang R. Circadian rhythm sleep loss impairs motor inhibition more than motor execution in continuous action. Sci Rep 2024; 14:18668. [PMID: 39134656 PMCID: PMC11319480 DOI: 10.1038/s41598-024-69242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Under total sleep deprivation, both inhibitory and motor control are impaired. However, how circadian rhythm sleep loss caused by irregular sleep pattern affects motor inhibition and execution in continuous actions remains unknown. This study utilized a pointing task to investigate the question over 30 days. During regular trials, participants were instructed to tap on a specified location, while in countermanding trials, they were required to countermand their current action. Additionally, there was a control group performed the same task following a normal 24-h rhythm. The results indicated that the decrease in accuracy and the increase in movement time in countermanding trials were more prominent in the shift work group. In contrast, there was no significant difference in reaction time between the two groups. Notably, the shift work group outperformed the control group in terms of movement time in regular trials and radial displacement in countermanding trials. Overall, these results show that circadian rhythm sleep loss predominantly affects inhibitory control, rather than motor control, underscoring the nuanced impacts of sleep disruption on differential aspects of cognitive and motor functions.
Collapse
Affiliation(s)
- Ziying Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200433, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai, 200433, China
| | - Tingwei Jiang
- School of Social and Behavioral Sciences, Department of Psychology, Nanjing University, Nanjing, 210023, China
| | - Haodan Xu
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200433, China
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai, 200433, China
| | - Chuan Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai, 200433, China.
| | - Rixin Tang
- School of Social and Behavioral Sciences, Department of Psychology, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Blue light insertion at night is involved in sleep and arousal-promoting response delays and depressive-like emotion in mice. Biosci Rep 2021; 41:227923. [PMID: 33624794 PMCID: PMC7938454 DOI: 10.1042/bsr20204033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Light plays a direct crucial role in the switch between sleep and arousal and the regulation of physiology and behaviour, such as circadian rhythms and emotional change. Artificial lights, which are different from natural light sources with a continuous light spectrum, are composed of three single-colour lights and are increasingly applied in modern society. However, in vivo research on the mechanisms of blue light-regulated sleep and arousal is still insufficient. In this work, we detected the effects of inserting white or blue light for 1 h during the dark period on the wheel-running activity and sucrose preference of C57 mice. The results showed that blue light could induce delays in sleep and arousal-promoting responses. Furthermore, this lighting pattern, including blue light alone, induced depressive-like emotions. The c-fos expression in the blue light group was significantly higher in the arcuate hypothalamic nucleus (Arc) and significantly lower in the cingulate cortex (Cg) and anterior part of the paraventricular thalamic nucleus (PVA) than in the white light group. Compared with the white light group, the phospho-ERK expression in the paraventricular hypothalamic nucleus (PVN) and PVA was lower in the blue light group. These molecular changes indicated that certain brain regions are involved in blue light-induced response processes. This study may provide useful information to explore the specific mechanism of special light-regulated physiological function.
Collapse
|
3
|
Mendoza J. Circadian insights into the biology of depression: Symptoms, treatments and animal models. Behav Brain Res 2019; 376:112186. [PMID: 31473283 DOI: 10.1016/j.bbr.2019.112186] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
In depression, symptoms range from loss of motivation and energy to suicidal thoughts. Moreover, in depression alterations might be also observed in the sleep-wake cycle and in the daily rhythms of hormonal (e.g., cortisol, melatonin) secretion. Both, the sleep-wake cycle and hormonal rhythms, are regulated by the internal biological clock within the hypothalamic suprachiasmatic nucleus (SCN). Therefore, a dysregulation of the internal mechanism of the SCN might lead in the disturbance of temporal physiology and depression. Hence, circadian symptoms in mood disorders can be used as important biomarkers for the prevention and treatment of depression. Disruptions of daily rhythms in physiology and behavior are also observed in animal models of depression, giving thus an important tool of research for the understanding of the circadian mechanisms implicated in mood disorders. This review discusses the alterations of daily rhythms in depression, and how circadian perturbations might lead in mood changes and depressive-like behavior in humans and rodents respectively. The use of animal models with circadian disturbances and depressive-like behaviors will help to understand the central timing mechanisms underlying depression, and how treating the biological clock(s) it may be possible to improve mood.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212 University of Strasbourg, 8 allée du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
4
|
Becker T, Penzel T, Fietze I. A new German Charité Jet Lag Scale for jet lag symptoms and application. ERGONOMICS 2014; 58:811-821. [PMID: 25420767 DOI: 10.1080/00140139.2014.982209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Travelling across multiple time zones provokes adaptation of endogenous circadian rhythm to the new time zone. Within the context of previous studies, an English-language state-of-health questionnaire, the Columbia Jet Lag Scale, is the only sufficiently validated scale for jet lag and its symptoms. This study presents a new state-of-health questionnaire in German, one intended to achieve standardisation of surveys on jet lag. The questionnaire was applied to define the baseline for the prevalence of jet lag symptoms based on a reference group (n = 36). The jet lag score ascertained was subsequently applied to determine the frequency of jet lag in a group of 53 subjects. Systematic investigation of the frequency of jet lag symptoms had not been previously presented. Among the group of 53 travelling test subjects, 60% demonstrated moderate jet lag symptoms. Practitioner Summary: This introduction of the Charité Jet Lag Scale, the first German jet lag questionnaire, calls attention to this topic for the first time since a 2000 publication in Ergonomics. Our systematic investigation of jet lag frequency, with the new scale, determined moderate jet lag symptoms among 60% of subjects.
Collapse
Affiliation(s)
- Tanja Becker
- a Centre for Sleep Medicine, Charité-Universitätsmedizin Berlin , Berlin , Germany
| | | | | |
Collapse
|
5
|
Leliavski A, Dumbell R, Ott V, Oster H. Adrenal Clocks and the Role of Adrenal Hormones in the Regulation of Circadian Physiology. J Biol Rhythms 2014; 30:20-34. [DOI: 10.1177/0748730414553971] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) and subordinate clocks that disseminate time information to various central and peripheral tissues. While the function of the SCN in circadian rhythm regulation has been extensively studied, we still have limited understanding of how peripheral tissue clock function contributes to the regulation of physiological processes. The adrenal gland plays a special role in this context as adrenal hormones show strong circadian secretion rhythms affecting downstream physiological processes. At the same time, they have been shown to affect clock gene expression in various other tissues, thus mediating systemic entrainment to external zeitgebers and promoting internal circadian alignment. In this review, we discuss the function of circadian clocks in the adrenal gland, how they are reset by the SCN and may further relay time-of-day information to other tissues. Focusing on glucocorticoids, we conclude by outlining the impact of adrenal rhythm disruption on neuropsychiatric, metabolic, immune, and malignant disorders.
Collapse
Affiliation(s)
- Alexei Leliavski
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Rebecca Dumbell
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| | - Volker Ott
- Institute of Neuroendocrinology, University of Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department, University of Lübeck, Germany
| |
Collapse
|
6
|
Vermersch C, Geoffroy PA, Fovet T, Thomas P, Amad A. [Travel and psychotic disorders: clinical aspects and practical recommendations]. Presse Med 2014; 43:1317-24. [PMID: 25220438 DOI: 10.1016/j.lpm.2014.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 04/25/2014] [Accepted: 05/05/2014] [Indexed: 11/30/2022] Open
Abstract
Psychotic disorders are frequent among travelers (10 to 20 % of medical evacuations). The travel is a concentrate of stressors. Psychotic disorders are not a contraindication to travel. Special precautions should be taken for patients with psychotic disorders wishing to travel. These precautions could apply to patients at risk of transition to a psychotic disorder.
Collapse
Affiliation(s)
- Charles Vermersch
- CHRU de Lille, université Lille Nord-de-France, pôle de psychiatrie, 59000 Lille, France
| | - Pierre Alexis Geoffroy
- CHRU de Lille, université Lille Nord-de-France, pôle de psychiatrie, 59000 Lille, France
| | - Thomas Fovet
- CHRU de Lille, université Lille Nord-de-France, pôle de psychiatrie, 59000 Lille, France
| | - Pierre Thomas
- CHRU de Lille, université Lille Nord-de-France, pôle de psychiatrie, 59000 Lille, France
| | - Ali Amad
- CHRU de Lille, université Lille Nord-de-France, pôle de psychiatrie, 59000 Lille, France.
| |
Collapse
|
7
|
Affiliation(s)
- Emily Brennan
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, Melbourne, Australia
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, Melbourne, Australia
| |
Collapse
|
8
|
Zhang L, Abraham D, Lin ST, Oster H, Eichele G, Fu YH, Ptáček LJ. PKCγ participates in food entrainment by regulating BMAL1. Proc Natl Acad Sci U S A 2012; 109:20679-84. [PMID: 23185022 PMCID: PMC3528600 DOI: 10.1073/pnas.1218699110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temporally restricted feeding (RF) can phase reset the circadian clocks in numerous tissues in mammals, contributing to altered timing of behavioral and physiological rhythms. However, little is known regarding the underlying molecular mechanism. Here we demonstrate a role for the gamma isotype of protein kinase C (PKCγ) in food-mediated entrainment of behavior and the molecular clock. We found that daytime RF reduced late-night activity in wild-type mice but not mice homozygous for a null mutation of PKCγ (PKCγ(-/-)). Molecular analysis revealed that PKCγ exhibited RF-induced changes in activation patterns in the cerebral cortex and that RF failed to substantially phase shift the oscillation of clock gene transcripts in the absence of PKCγ. PKCγ exerts effects on the clock, at least in part, by stabilizing the core clock component brain and muscle aryl hydrocarbon receptor nuclear translocator like 1 (BMAL1) and reducing its ubiquitylation in a deubiquitination-dependent manner. Taken together, these results suggest that PKCγ plays a role in food entrainment by regulating BMAL1 stability.
Collapse
Affiliation(s)
| | - Diya Abraham
- Department of Neurology and
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | | | - Henrik Oster
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Gregor Eichele
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | | | - Louis J. Ptáček
- Department of Neurology and
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94158; and
| |
Collapse
|
9
|
Wright KP, Lowry CA, LeBourgeois MK. Circadian and wakefulness-sleep modulation of cognition in humans. Front Mol Neurosci 2012; 5:50. [PMID: 22529774 PMCID: PMC3328852 DOI: 10.3389/fnmol.2012.00050] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/27/2012] [Indexed: 11/13/2022] Open
Abstract
Cognitive and affective processes vary over the course of the 24 h day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24 h period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain (BF) and hypothalamic arousal systems and inhibition or disruption of these systems reduces brain arousal, impairs cognition, and promotes sleep. The internal circadian timekeeping system modulates cognition and affective function by projections from the master circadian clock, located in the hypothalamic suprachiasmatic nuclei (SCN), to arousal and sleep systems and via clock gene oscillations in brain tissues. Understanding the basic principles of circadian and wakefulness-sleep physiology can help to recognize how the circadian system modulates human cognition and influences learning, memory and emotion. Developmental changes in sleep and circadian processes and circadian misalignment in circadian rhythm sleep disorders have important implications for learning, memory and emotion. Overall, when wakefulness occurs at appropriate internal biological times, circadian clockwork benefits human cognitive and emotion function throughout the lifespan. Yet, when wakefulness occurs at inappropriate biological times because of environmental pressures (e.g., early school start times, long work hours that include work at night, shift work, jet lag) or because of circadian rhythm sleep disorders, the resulting misalignment between circadian and wakefulness-sleep physiology leads to impaired cognitive performance, learning, emotion, and safety.
Collapse
Affiliation(s)
- Kenneth P. Wright
- Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado, BoulderCO, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, Behavioral Neuroendocrinology Laboratory, University of Colorado, BoulderCO, USA
| | - Monique K. LeBourgeois
- Department of Integrative Physiology, Sleep and Development Laboratory, University of Colorado, BoulderCO, USA
| |
Collapse
|
10
|
Igaz P, Tulassay Z. [Clinical picture and treatment of jet lag]. Orv Hetil 2011; 152:2021-4. [PMID: 22112375 DOI: 10.1556/oh.2011.29275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Symptoms associated with rapid time zone crosses represent one of the major health problems associated with commercial flights. This condition is termed jet lag that is characterized by sleep disturbances (insomnia, sleepiness), somatic symptoms, and decrease in mental and physical outputs. Difference between the light-darkness cycles of the destination and internal homeostatic rhythm is responsible for the syndrome. Restitution of the internal rhythm by appropriate light exposure or melatonin, optimal sleep time and duration, and drugs can be used in its treatment.
Collapse
Affiliation(s)
- Péter Igaz
- Semmelweis Egyetem, Általános Orvostudományi Kar II. Belgyógyászati Klinika Budapest Szentkirályi u. 46. 1088.
| | | |
Collapse
|