1
|
Sullivan PF, Yao S, Hjerling-Leffler J. Schizophrenia genomics: genetic complexity and functional insights. Nat Rev Neurosci 2024; 25:611-624. [PMID: 39030273 DOI: 10.1038/s41583-024-00837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/21/2024]
Abstract
Determining the causes of schizophrenia has been a notoriously intractable problem, resistant to a multitude of investigative approaches over centuries. In recent decades, genomic studies have delivered hundreds of robust findings that implicate nearly 300 common genetic variants (via genome-wide association studies) and more than 20 rare variants (via whole-exome sequencing and copy number variant studies) as risk factors for schizophrenia. In parallel, functional genomic and neurobiological studies have provided exceptionally detailed information about the cellular composition of the brain and its interconnections in neurotypical individuals and, increasingly, in those with schizophrenia. Taken together, these results suggest unexpected complexity in the mechanisms that drive schizophrenia, pointing to the involvement of ensembles of genes (polygenicity) rather than single-gene causation. In this Review, we describe what we now know about the genetics of schizophrenia and consider the neurobiological implications of this information.
Collapse
Affiliation(s)
- Patrick F Sullivan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Vessels T, Strayer N, Lee H, Choi KW, Zhang S, Han L, Morley TJ, Smoller JW, Xu Y, Ruderfer DM. Integrating Electronic Health Records and Polygenic Risk to Identify Genetically Unrelated Comorbidities of Schizophrenia That May Be Modifiable. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100297. [PMID: 38645405 PMCID: PMC11033077 DOI: 10.1016/j.bpsgos.2024.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 04/23/2024] Open
Abstract
Background Patients with schizophrenia have substantial comorbidity that contributes to reduced life expectancy of 10 to 20 years. Identifying modifiable comorbidities could improve rates of premature mortality. Conditions that frequently co-occur but lack shared genetic risk with schizophrenia are more likely to be products of treatment, behavior, or environmental factors and therefore are enriched for potentially modifiable associations. Methods Phenome-wide comorbidity was calculated from electronic health records of 250,000 patients across 2 independent health care institutions (Vanderbilt University Medical Center and Mass General Brigham); associations with schizophrenia polygenic risk scores were calculated across the same phenotypes in linked biobanks. Results Schizophrenia comorbidity was significantly correlated across institutions (r = 0.85), and the 77 identified comorbidities were consistent with prior literature. Overall, comorbidity and polygenic risk score associations were significantly correlated (r = 0.55, p = 1.29 × 10-118). However, directly testing for the absence of genetic effects identified 36 comorbidities that had significantly equivalent schizophrenia polygenic risk score distributions between cases and controls. This set included phenotypes known to be consequences of antipsychotic medications (e.g., movement disorders) or of the disease such as reduced hygiene (e.g., diseases of the nail), thereby validating the approach. It also highlighted phenotypes with less clear causal relationships and minimal genetic effects such as tobacco use disorder and diabetes. Conclusions This work demonstrates the consistency and robustness of electronic health record-based schizophrenia comorbidities across independent institutions and with the existing literature. It identifies known and novel comorbidities with an absence of shared genetic risk, indicating other causes that may be modifiable and where further study of causal pathways could improve outcomes for patients.
Collapse
Affiliation(s)
- Tess Vessels
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicholas Strayer
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hyunjoon Lee
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Karmel W. Choi
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Siwei Zhang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lide Han
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Theodore J. Morley
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jordan W. Smoller
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas M. Ruderfer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
ElGizy N, Khoweiled A, Khalil MA, Magdy R, Khalifa D. Migraine in bipolar disorder and schizophrenia: The hidden pain. Int J Psychiatry Med 2023; 58:605-616. [PMID: 37266918 DOI: 10.1177/00912174231178483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVE This study examined the prevalence of comorbid migraine in patients with bipolar disorder and those with schizophrenia and also examined the association between migraine comorbidity and disease characteristics in both disorders. METHODS In this cross-sectional study, 150 patients with bipolar disorder and 150 with schizophrenia were evaluated for migraine diagnosis using the International Classification of Headache Disorders (3rd ed). Patients were selected from psychiatry outpatient clinics at Kasr Al Ainy hospitals, Cairo University. The Young Mania Rating Scale (YMRS) and the Hamilton Depression Rating Scale (HDRS) were administered to the bipolar group, whereas the Positive and Negative Syndrome Scale (PANSS) was administered to the schizophrenia group. Both groups were evaluated by the Clinical Global Impressions (CGI) scale. RESULTS The diagnosis of migraine was made in 34 (22.7%) of the bipolar group and 24 (16.0%) of the schizophrenia group. Patients with schizophrenia showed a significantly higher frequency and intensity of migraine attacks on the Migraine Disability Assessment scale than did the bipolar group (p < 0.001). In the bipolar group, there was no significant difference between patients with and without migraine on the YMRS, HDRS, and CGI. Among patients with schizophrenia, the duration of the migraine attacks was positively correlated with CGI scores (r = 0.40, p = 0.02). CONCLUSION Migraine was found to be a significant comorbidity in patients with bipolar disorder and schizophrenia. However, the intensity and frequency of migraine attacks were higher in the schizophrenia than in the bipolar group.
Collapse
Affiliation(s)
- Nancy ElGizy
- Department of Psychiatry, Students Hospital, Cairo University, Cairo, Egypt
| | - Aref Khoweiled
- Department of Psychiatry, Kasr Al Ainy Hospitals, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed A Khalil
- Department of Psychiatry, Kasr Al Ainy Hospitals, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rehab Magdy
- Department of Neurology, Kasr Al Ainy Hospitals, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia Khalifa
- Department of Psychiatry, Kasr Al Ainy Hospitals, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Vessels T, Strayer N, Choi KW, Lee H, Zhang S, Han L, Morley TJ, Smoller JW, Xu Y, Ruderfer DM. Identifying modifiable comorbidities of schizophrenia by integrating electronic health records and polygenic risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.01.23290057. [PMID: 37333378 PMCID: PMC10274978 DOI: 10.1101/2023.06.01.23290057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Patients with schizophrenia have substantial comorbidity contributing to reduced life expectancy of 10-20 years. Identifying which comorbidities might be modifiable could improve rates of premature mortality in this population. We hypothesize that conditions that frequently co-occur but lack shared genetic risk with schizophrenia are more likely to be products of treatment, behavior, or environmental factors and therefore potentially modifiable. To test this hypothesis, we calculated phenome-wide comorbidity from electronic health records (EHR) in 250,000 patients in each of two independent health care institutions (Vanderbilt University Medical Center and Mass General Brigham) and association with schizophrenia polygenic risk scores (PRS) across the same phenotypes (phecodes) in linked biobanks. Comorbidity with schizophrenia was significantly correlated across institutions (r = 0.85) and consistent with prior literature. After multiple test correction, there were 77 significant phecodes comorbid with schizophrenia. Overall, comorbidity and PRS association were highly correlated (r = 0.55, p = 1.29×10-118), however, 36 of the EHR identified comorbidities had significantly equivalent schizophrenia PRS distributions between cases and controls. Fifteen of these lacked any PRS association and were enriched for phenotypes known to be side effects of antipsychotic medications (e.g., "movement disorders", "convulsions", "tachycardia") or other schizophrenia related factors such as from smoking ("bronchitis") or reduced hygiene (e.g., "diseases of the nail") highlighting the validity of this approach. Other phenotypes implicated by this approach where the contribution from shared common genetic risk with schizophrenia was minimal included tobacco use disorder, diabetes, and dementia. This work demonstrates the consistency and robustness of EHR-based schizophrenia comorbidities across independent institutions and with the existing literature. It identifies comorbidities with an absence of shared genetic risk indicating other causes that might be more modifiable and where further study of causal pathways could improve outcomes for patients.
Collapse
Affiliation(s)
- Tess Vessels
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville TN
| | - Nicholas Strayer
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN
| | - Karmel W. Choi
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston MA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston MA
| | - Hyunjoon Lee
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston MA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston MA
| | - Siwei Zhang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville TN
| | - Lide Han
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville TN
| | - Theodore J. Morley
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville TN
| | - Jordan W. Smoller
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston MA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston MA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville TN
| | - Douglas M. Ruderfer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville TN
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
González-Rodríguez A, Monreal JA, Natividad M, Seeman MV. Collaboration between Psychiatrists and Other Allied Medical Specialists for the Treatment of Delusional Disorders. Healthcare (Basel) 2022; 10:healthcare10091729. [PMID: 36141341 PMCID: PMC9498439 DOI: 10.3390/healthcare10091729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background: There is increasing evidence that individuals with psychosis are at increased risk for cardiovascular disease, diabetes, metabolic syndrome, and several other medical comorbidities. In delusional disorder (DD), this is particularly so because of the relatively late onset age. Aims: The aim of this narrative review is to synthesize the literature on the necessity for medical collaboration between psychiatrists and other specialists. Methods: A non-systematic narrative review was carried out of papers addressing referrals and cooperation among specialists in the care of DD patients. Results: Psychiatrists, the primary care providers for DD patients, depend on neurology to assess cognitive defects and rule out organic sources of delusions. Neurologists rely on psychiatry to help with patient adherence to treatment and the management of psychotropic drug side effects. Psychiatrists require ophthalmology/otolaryngology to treat sensory deficits that often precede delusions; reciprocally, psychiatric consults can help in instances of functional sensory impairment. Close collaboration with dermatologists is essential for treating delusional parasitosis and dysmorphophobia to ensure timely referrals to psychiatry. Conclusions: This review offers many other examples from the literature of the extent of overlap among medical specialties in the evaluation and effective treatment of DD. Optimal patient care requires close collaboration among specialties.
Collapse
Affiliation(s)
- Alexandre González-Rodríguez
- Department of Mental Health, Mutua Terrassa University Hospital, 5 Dr. Robert Square, 08221 Terrassa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, 08221 Terrassa, Spain
| | - José Antonio Monreal
- Department of Mental Health, Mutua Terrassa University Hospital, 5 Dr. Robert Square, 08221 Terrassa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, 08221 Terrassa, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), 08221 Terrassa, Spain
- Correspondence:
| | - Mentxu Natividad
- Department of Mental Health, Mutua Terrassa University Hospital, 5 Dr. Robert Square, 08221 Terrassa, Spain
| | - Mary V. Seeman
- Department of Psychiatry, University of Toronto, 605 260 Heath Street West, Toronto, ON M5P 3L6, Canada
| |
Collapse
|
6
|
Wang Q, Qi Y, Li Y, Yan Z, Wang X, Ma Q, Tang C, Liu X, Wei M, Zhang H. Psychiatric traits and intracerebral hemorrhage: A Mendelian randomization study. Front Psychiatry 2022; 13:1049432. [PMID: 36684013 PMCID: PMC9850495 DOI: 10.3389/fpsyt.2022.1049432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Psychiatric traits have been associated with intracerebral hemorrhage (ICH) in observational studies, although their causal relationships remain uncertain. We used Mendelian randomization analyses to infer causality between psychiatric traits and ICH. METHODS We collected data from genome-wide association studies of ICH (n = 361,194) and eight psychiatric traits among Europeans, including mood swings (n = 451,619), major depressive disorder (n = 480,359), attention-deficit/hyperactivity disorder (n = 53,293), anxiety (n = 459,560), insomnia (n = 462,341), schizophrenia (n = 77,096), neuroticism (n = 374,323), and bipolar disorder (n = 51,710). We performed a series of bidirectional two-sample Mendelian randomization and related sensitivity analyses. A Bonferroni corrected threshold of p < 0.00625 (0.05/8) was considered to be significant, and p < 0.05 was considered suggestive of evidence for a potential association. RESULTS Mendelian randomization analyses revealed suggestive positive causality of mood swings on ICH (odds ratio = 1.006, 95% confidence interval = 1.001-1.012, p = 0.046), and the result was consistent after sensitivity analysis. However, major depressive disorder (p = 0.415), attention-deficit/hyperactivity disorder (p = 0.456), anxiety (p = 0.664), insomnia (p = 0.699), schizophrenia (p = 0.799), neuroticism (p = 0.140), and bipolar disorder (p = 0.443) are not significantly associated with the incidence of ICH. In the reverse Mendelian randomization analyses, no causal effects of ICH on mood swings (p = 0.565), major depressive disorder (p = 0.630), attention-deficit/hyperactivity disorder (p = 0.346), anxiety (p = 0.266), insomnia (p = 0.102), schizophrenia (p = 0.463), neuroticism (p = 0.261), or bipolar disorder (p = 0.985) were found. CONCLUSION Our study revealed that mood swings are suggestively causal of ICH and increase the risk of ICH. These results suggest the clinical significance of controlling mood swings for ICH prevention.
Collapse
Affiliation(s)
- Qingduo Wang
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yajie Qi
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhengcun Yan
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaodong Wang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Qiang Ma
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Can Tang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaoguang Liu
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Min Wei
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Park S, Kim GU, Kim H. Physical Comorbidity According to Diagnoses and Sex among Psychiatric Inpatients in South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4187. [PMID: 33920944 PMCID: PMC8071239 DOI: 10.3390/ijerph18084187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022]
Abstract
People with mental disorders are susceptible to physical comorbidities. Mind-body interventions are important for improving health outcomes. We examined the prevalence of physical comorbidities and their differences by diagnoses and sex among psychiatric inpatients. The dataset, from National Health Insurance claims data, included 48,902 adult inpatients admitted to psychiatric wards for at least 2 days in 2016 treated for schizophrenia, schizotypal and delusional disorders, or mood disorders. We identified 26 physical comorbidities using the Elixhauser comorbidity measure. Among schizophrenia-related disorders, other neurological disorders were most common, then liver disease and chronic pulmonary disease. Among mood disorders, liver disease was most common, then uncomplicated hypertension and chronic pulmonary disease. Most comorbid physical diseases (except other neurological disorders) were more prevalent in mood disorders than schizophrenia-related disorders. Male and female patients with schizophrenia-related disorders showed similar comorbidity prevalence patterns by sex. Among patients with mood disorders, liver disease was most prevalent in males and third-most in females. In both diagnostic groups, liver disease and uncomplicated diabetes mellitus were more prevalent in males, and hypothyroidism in females. Mental health professionals should refer to a specialist to manage physical diseases via early assessments and optimal interventions for physical comorbidities in psychiatric patients.
Collapse
Affiliation(s)
- Suin Park
- College of Nursing, Kosin University, Busan 49267, Korea;
| | - Go-Un Kim
- College of Nursing, Yonsei University, Seoul 03722, Korea
| | - Hyunlye Kim
- Department of Nursing, College of Medicine, Chosun University, Gwangju 61452, Korea;
| |
Collapse
|
8
|
Swahari V, Nakamura A, Hollville E, Stroud H, Simon JM, Ptacek TS, Beck MV, Flowers C, Guo J, Plestant C, Liang J, Kurtz CL, Kanke M, Hammond SM, He YW, Anton ES, Sethupathy P, Moy SS, Greenberg ME, Deshmukh M. MicroRNA-29 is an essential regulator of brain maturation through regulation of CH methylation. Cell Rep 2021; 35:108946. [PMID: 33826889 PMCID: PMC8103628 DOI: 10.1016/j.celrep.2021.108946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/09/2020] [Accepted: 03/14/2021] [Indexed: 11/27/2022] Open
Abstract
Although embryonic brain development and neurodegeneration have received considerable attention, the events that govern postnatal brain maturation are less understood. Here, we identify the miR-29 family to be strikingly induced during the late stages of brain maturation. Brain maturation is associated with a transient, postnatal period of de novo non-CG (CH) DNA methylation mediated by DNMT3A. We examine whether an important function of miR-29 during brain maturation is to restrict the period of CH methylation via its targeting of Dnmt3a. Deletion of miR-29 in the brain, or knockin mutations preventing miR-29 to specifically target Dnmt3a, result in increased DNMT3A expression, higher CH methylation, and repression of genes associated with neuronal activity and neuropsychiatric disorders. These mouse models also develop neurological deficits and premature lethality. Our results identify an essential role for miR-29 in restricting CH methylation in the brain and illustrate the importance of CH methylation regulation for normal brain maturation.
Collapse
Affiliation(s)
- Vijay Swahari
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Ayumi Nakamura
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Emilie Hollville
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Hume Stroud
- Department of Neurobiology, Harvard University, Boston, MA, USA
| | - Jeremy M Simon
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | - Travis S Ptacek
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew V Beck
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Cornelius Flowers
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jiami Guo
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jie Liang
- Department of Immunology, Duke University, Durham, NC, USA
| | - C Lisa Kurtz
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Matt Kanke
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Scott M Hammond
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - You-Wen He
- Department of Immunology, Duke University, Durham, NC, USA
| | - E S Anton
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Praveen Sethupathy
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Sheryl S Moy
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | | | - Mohanish Deshmukh
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
High frequency of clinical conditions commonly associated with mitochondrial disorders in schizophrenia. Acta Neuropsychiatr 2020; 32:265-269. [PMID: 32329429 DOI: 10.1017/neu.2020.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE It has been hypothesised that neuropsychiatric symptoms, including psychosis, can be the result of a milder brain bioenergetic defect produced by mitochondrial dysfunction; however, mitochondrial dysfunction can be present in other organs or systems. The aim of the study was to investigate whether clinical conditions associated with mitochondrial disorders (CAMDs) were frequently present in schizophrenia. METHODS A previously used questionnaire regarding the CAMDs was administered to patients and controls in a direct interview with a trained psychiatrist. The frequencies of CAMDs in 164 patients with schizophrenia were compared to those in 156 age- and sex-matched controls. RESULTS Severe fatigue, seizures, constipation and diabetes were significantly more frequent in patients with schizophrenia than in control subjects and apparently not related to pharmacological treatment. CONCLUSION The results of the present study suggest that multi-systemic mitochondrial dysfunction may be an underlying mechanism involved in schizophrenia.
Collapse
|
10
|
Mané-Damas M, Hoffmann C, Zong S, Tan A, Molenaar PC, Losen M, Martinez-Martinez P. Autoimmunity in psychotic disorders. Where we stand, challenges and opportunities. Autoimmun Rev 2019; 18:102348. [PMID: 31323365 DOI: 10.1016/j.autrev.2019.102348] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022]
Abstract
Psychotic disorders are debilitating mental illnesses associated with abnormalities in various neurotransmitter systems. The development of disease-modifing therapies has been hampered by the mostly unknown etiologies and pathophysiologies. Autoantibodies against several neuronal antigens are responsible for autoimmune encephalitis. These autoantibodies disrupt neurotransmission within the brain, resulting in a wide range of psychiatric and neurologic manifestations, including psychosis. The overlap of symptoms of autoimmune encephalitis with psychotic disorders raised the question as to whether autoantibodies against a number of receptors, ion channel and associated proteins could ultimately be responsible for some forms of psychosis. Here we review our current knowledge, on antibody mediated autoimmunity in psychotic disorders, the different diagnostic methods and their limitations, as well as on varying therapeutic approaches targeting the immune system.
Collapse
Affiliation(s)
- Marina Mané-Damas
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Carolin Hoffmann
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Shenghua Zong
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Amanda Tan
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Peter C Molenaar
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Yun JY, Lee JS, Kang SH, Nam B, Lee SJ, Lee SH, Choi J, Kim CH, Chung YC. Korean Treatment Guideline on Pharmacotherapy of Co-existing Symptoms and Antipsychotics-related Side Effects in Patients with Schizophrenia. ACTA ACUST UNITED AC 2019. [DOI: 10.16946/kjsr.2019.22.2.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Je-Yeon Yun
- Seoul National University Hospital, Seoul, Korea
- Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Suk Lee
- Department of Psychiatry, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Shi Hyun Kang
- Adult Psychiatry, Division of Medical Services, National Center for Mental Health, Seoul, Korea
| | - Beomwoo Nam
- Department of Psychiatry, School of Medicine, Konkuk University, Chungju, Korea
| | - Seung Jae Lee
- Department of Psychiatry, School of Medicine, Kyoungpook National University, Daegu, Korea
| | - Seung-Hwan Lee
- Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Korea
| | - Joonho Choi
- Department of Psychiatry, Hanyang University Guri Hospital, Guri, Korea
| | - Chan-Hyung Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
12
|
Hu M, Zheng P, Xie Y, Boz Z, Yu Y, Tang R, Jones A, Zheng K, Huang XF. Propionate Protects Haloperidol-Induced Neurite Lesions Mediated by Neuropeptide Y. Front Neurosci 2018; 12:743. [PMID: 30374288 PMCID: PMC6196753 DOI: 10.3389/fnins.2018.00743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/26/2018] [Indexed: 01/22/2023] Open
Abstract
Haloperidol is a commonly used antipsychotic drug for treating schizophrenia. Clinical imaging studies have found that haloperidol can cause volume loss of human brain tissue, which is supported by animal studies showing that haloperidol reduces the number of synaptic spines. The mechanism remains unknown. Gut microbiota metabolites, short chain fatty acids including propionate, are reported to have neuroprotective effect and influence gene expression. This study aims to investigate the effect and mechanism of propionate in the protection of neurite lesion induced by haloperidol. This study showed that 10 μM haloperidol (clinical relevant dose) impaired neurite length in human blastoma SH-SY5Y cells, which were confirmed by using primary mouse striatal spiny neurons. We found that haloperidol impaired neurite length were accompanied by a decreased neuropeptide Y (NPY) expression, but no effect on GSK3β signaling. Importantly, this project research found that propionate was capable of protecting against haloperidol-induced neurite lesions and preventing NPY reduction. To confirm this finding, we used specific siRNAs targeting NPY which blocked the protective effect of propionate on haloperidol-induced neurite lesions. Furthermore, since NPY is regulated by the nuclear transcription factor CREB, we measured pCREB that was decreased by haloperidol and was normalized by propionate. Therefore, propionate has a protective effect against pCREB-NPY mediated haloperidol-induced neurite lesions.
Collapse
Affiliation(s)
- Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China.,Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Peng Zheng
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Yuanyi Xie
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Zehra Boz
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China
| | - Alison Jones
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Jiangsu, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
13
|
Rossi KC, Kim AM, Jetté N, Yoo JY, Hung K, Dhamoon MS. Increased risk of hospital admission for ICD-9-CM psychotic episodes following admission for epilepsy. Epilepsia 2018; 59:1603-1611. [DOI: 10.1111/epi.14508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Kyle C. Rossi
- Department of Neurology; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Anna M. Kim
- Department of Psychiatry; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Nathalie Jetté
- Department of Neurology; Icahn School of Medicine at Mount Sinai; New York NY USA
- Department of Population Health Science & Policy; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Ji Yeoun Yoo
- Department of Neurology; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Kenneth Hung
- Department of Psychiatry; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Mandip S. Dhamoon
- Department of Neurology; Icahn School of Medicine at Mount Sinai; New York NY USA
| |
Collapse
|
14
|
Jing R, Huang J, Jiang D, Lin X, Ma X, Tian H, Li J, Zhuo C. Distinct pattern of cerebral blood flow alterations specific to schizophrenics experiencing auditory verbal hallucinations with and without insight: a pilot study. Oncotarget 2018; 9:6763-6770. [PMID: 29467926 PMCID: PMC5805512 DOI: 10.18632/oncotarget.23631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Schizophrenia is associated with widespread and complex cerebral blood flow (CBF) disturbance. Auditory verbal hallucinations (AVH) and insight are the core symptoms of schizophrenia. However, to the best of our knowledge, very few studies have assessed the CBF characteristics of the AVH suffered by schizophrenic patients with and without insight. Based on our previous findings, Using a 3D pseudo-continuous ASL (pcASL) technique, we investigated the differences in AVH-related CBF alterations in schizophrenia patients with and without insight. We used statistical parametric mapping (SPM8) and statistical non-parametric mapping (SnPM13) to perform the fMRI analysis. We found that AVH-schizophrenia patients without insight showed an increased CBF in the left temporal pole and a decreased CBF in the right middle frontal gyrus when compared to AVH-schizophrenia patients with insight. Our novel findings suggest that AVH-schizophrenia patients without insight possess a more complex CBF disturbance. Simultaneously, our findings also incline to support the idea that the CBF aberrant in some specific brain regions may be the common neural basis of insight and AVH. Our findings support the mostly current hypotheses regarding AVH to some extent. Although our findings come from a small sample, it provide the evidence that indicate us to conduct a larger study to thoroughly explore the mechanisms of schizophrenia, especially the core symptoms of AVHs and insight.
Collapse
Affiliation(s)
- Rixing Jing
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiangjie Huang
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| | - Deguo Jiang
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaodong Lin
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaolei Ma
- Department of Psychological Medicine, Tianjin Anning Hospital, Tianjin, China
| | - Hongjun Tian
- Department of Psychological Medicine, Tianjin Anning Hospital, Tianjin, China
| | - Jie Li
- Department of Psychiatric Neuroimaging Laboratory, Tianjin Anding Hospital, Tianjin Mental Health Center, Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Chuanjun Zhuo
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China.,Department of Psychiatric Neuroimaging Laboratory, Tianjin Anding Hospital, Tianjin Mental Health Center, Teaching Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Chronic Neuropsychological Sequelae in a Patient with Nontumorous Anti-NMDA-Receptor Encephalitis. Case Rep Neurol Med 2017; 2017:5675732. [PMID: 28503332 PMCID: PMC5414487 DOI: 10.1155/2017/5675732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Anti-N-methyl-D-aspartate receptor encephalitis is a neurological, autoimmune disorder tightly conceptualized only as recently as the mid-2000s. It presents itself in a combination of psychiatric, neurological, and autonomic features. We observe a unique case with probable earlier episode (prior to the mid-2000s conceptualization of the disease) and a later relapse, accompanying a comprehensive neuropsychological profile tracked after the relapse and subsequent improvement. Neurocognitive findings revealed residual frontal deficits with mood changes even in the state after plasmapheresis. This case is the first to describe posttreatment cognition in anti-NMDAR encephalitis after probable serial autoimmune episodes.
Collapse
|
16
|
Hoffmann C, Zong S, Mané-Damas M, Molenaar P, Losen M, Martinez-Martinez P. Autoantibodies in Neuropsychiatric Disorders. Antibodies (Basel) 2016; 5:antib5020009. [PMID: 31557990 PMCID: PMC6698850 DOI: 10.3390/antib5020009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022] Open
Abstract
Little is known about the etiology of neuropsychiatric disorders. The identification of autoantibodies targeting the N-methyl-d-aspartate receptor (NMDA-R), which causes neurological and psychiatric symptoms, has reinvigorated the hypothesis that other patient subgroups may also suffer from an underlying autoimmune condition. In recent years, a wide range of neuropsychiatric diseases and autoantibodies targeting ion-channels or neuronal receptors including NMDA-R, voltage gated potassium channel complex (VGKC complex), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R), γ-aminobutyric acid receptor (GABA-R) and dopamine receptor (DR) were studied and conflicting reports have been published regarding the seroprevalence of these autoantibodies. A clear causative role of autoantibodies on psychiatric symptoms has as yet only been shown for the NMDA-R. Several other autoantibodies have been related to the presence of certain symptoms and antibody effector mechanisms have been proposed. However, extensive clinical studies with large multicenter efforts to standardize diagnostic procedures for autoimmune etiology and animal studies are needed to confirm the pathogenicity of these autoantibodies. In this review, we discuss the current knowledge of neuronal autoantibodies in the major neuropsychiatric disorders: psychotic, major depression, autism spectrum, obsessive-compulsive and attention-deficit/hyperactivity disorders.
Collapse
Affiliation(s)
- Carolin Hoffmann
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Shenghua Zong
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Marina Mané-Damas
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Peter Molenaar
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Mario Losen
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Pilar Martinez-Martinez
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|