1
|
Martínez-Lapuente L, Guadalupe Z, Higueras M, Ayestarán B, Pérez-Porras P, Bautista-Ortín AB, Gómez-Plaza E. Effect of Pre-fermentative Treatments on Polysaccharide Composition of White and Rosé Musts and Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1928-1937. [PMID: 36840676 PMCID: PMC10835724 DOI: 10.1021/acs.jafc.2c08976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This paper studied the effect of conventional pre-fermentative techniques (direct pressing "CP" and cold maceration "CM") and an innovate technique (high power ultrasounds "S"), applied to Viogner and Monastrell grapes on the polysaccharide content of the musts, white and rosé wines, and after six months of bottle aging. The results showed that the longer pre-fermentation maceration time applied with the CM technique compared to the short ultrasonic maceration was key in the extraction of polysaccharides from the grape to the must. CP treatment produced wines with the lowest content of total soluble polysaccharide families since it was the least intense pretreatment for the disruption of the grape berry cell wall polysaccharides. Ultrasonic pretreatment could be used as a new tool to increase the solubilization of polysaccharides in wines, positively affecting the wine colloidal properties. During bottle aging, there wasn't a clear effect of pretreatments on the evolution of polysaccharides.
Collapse
Affiliation(s)
- Leticia Martínez-Lapuente
- Institute
of Vine and Wine Sciences, ICVV (University
of La Rioja, Government of La Rioja and CSIC), Finca La Grajera, 26007 Logroño, Spain
| | - Zenaida Guadalupe
- Institute
of Vine and Wine Sciences, ICVV (University
of La Rioja, Government of La Rioja and CSIC), Finca La Grajera, 26007 Logroño, Spain
| | - Manuel Higueras
- Scientific
Computation & Technological Innovation Center (SCoTIC), Universidad de La Rioja, 26006 Logroño, Spain
| | - Belén Ayestarán
- Institute
of Vine and Wine Sciences, ICVV (University
of La Rioja, Government of La Rioja and CSIC), Finca La Grajera, 26007 Logroño, Spain
| | - Paula Pérez-Porras
- Department
of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | - Ana Belén Bautista-Ortín
- Department
of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | - Encarna Gómez-Plaza
- Department
of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| |
Collapse
|
2
|
Wang S, Liu Z, Zhao S, Zhang L, Li C, Liu S. Effect of combined ultrasonic and enzymatic extraction technique on the quality of noni (Morinda citrifolia L.) juice. ULTRASONICS SONOCHEMISTRY 2023; 92:106231. [PMID: 36463783 PMCID: PMC9722495 DOI: 10.1016/j.ultsonch.2022.106231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
In order to obtain noni juice with high yield and good quality, the effect of combined extraction technique of enzymatic treatment (EZ) and ultrasonication (US) on the overall quality of noni juice was investigated. Moreover, the extraction performance of the EZ-US combined extraction technique was compared with that of EZ-based extraction and the US-based extraction. Response surface methodology (RSM) was designed to optimize the parameters of ultrasonic treatment, by taking consideration of the extraction efficiency, quality parameters and bioactive ingredients of noni juice. The results indicated that combined ultrasonic and enzymatic treatment achieved a synergistic effect on promoting the quality of noni juice. The maximum juice yield of 67.95 % was obtained under ultrasonication for 10 min at 600 W after enzymatic treatment (EZU). In addition, EZU-treated juice exhibited the highest contents of total phenolic and flavonoid, which were 148.19 ± 2.53 mg gallic acid/100 mL and 47.19 ± 1.22 mg rutin/100 mL, respectively, thus contributing to better antioxidant activity. Moreover, the EZU treatment significantly reduced the particle size of noni juice, and improved its suspension stability and rheological properties. FTIR results indicated that the treatments did not bring major changes in the chemical structure and the functional groups of compounds in noni juice. Therefore, EZU treatment can be successfully applied to the extraction of noni juice with better nutritional properties and overall quality.
Collapse
Affiliation(s)
- Siting Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhiqing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuang Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou 570228, China.
| | - Sixin Liu
- School of Science, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou City, Haikou 570228, China.
| |
Collapse
|
3
|
Pérez-Porras P, Gómez-Plaza E, Osete-Álcaraz A, Martínez-Pérez P, Jurado R, Bautista-Ortín AB. The effect of ultrasound on Syrah wine composition as affected by the ripening or sanitary status of the grapes. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSeveral studies have demonstrated that the application of ultrasounds to crushed grapes improves the chromatic and sensory characteristics of the resulting wines by facilitating the extractability of compounds from grapes to the must-wine. The objective of this work was to determine whether the application of ultrasounds to grapes of different maturity levels or different sanitary status leads to the same positive outcome as regards chromatic characteristics, phenolic and aroma compounds as well as sensory properties. The results showed that, independent of grape ripening or sanitary status, the application of ultrasounds to Syrah crushed grapes leads to wines with better chromatic characteristics at the moment of bottling, increasing colour intensity, total phenol content and tannin concentration up to 12%, 18% and 43%, respectively, in the wines from less ripen grapes and 13%, 23% and 30% in the wine from partially rotten grapes. The concentration of volatile compounds was less affected by sonication than the chromatic characteristics, with small decreases in the main families of volatile compounds, although the sensory analysis showed clear differences between control wines and those made from sonicated grapes, which were generally preferred and score higher for most of the sensory parameters evaluated.
Collapse
|
4
|
Grape Pulp Fiber as Possible Fining Agents for Red Wine. Biomolecules 2022; 12:biom12101519. [PMID: 36291731 PMCID: PMC9599290 DOI: 10.3390/biom12101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
One of the biggest problems with the use of traditional fining agents is that some of them present allergenic characteristics or are not suitable for vegan consumers due to their animal origin. An alternative to these traditional proteinaceous agents could be cell walls from grape pulp. This material could be used to modify the final phenolic concentration of a wine due to its affinity for phenolic compounds. In this study, the ability of freeze-dried grape pulp fiber, rich in pulp cell walls, to act as a fining agent was analyzed in wines from three different varieties: Cabernet Sauvignon, Syrah, and Monastrell. After the use of this material, the wine chromatic characteristics and total tannin concentration were analyzed by spectrophotometric and chromatographic techniques. In addition, the wines were contaminated with ochratoxin A and histamine to check whether this material could also be a tool for removing these wine contaminants. The pulp fiber presented a high capacity to retain phenolic compounds, especially tannins; however, there were differences depending on the studied wine. The largest reduction in tannin concentration after fining was observed when this material was used in Cabernet Sauvignon wines (23%), whereas for Monastrell wines the reduction was lower (18.3%) and even lower for Syrah wines (14.3%). This fining agent also reduced the anthocyanin concentration of the three red wines, although to a lesser extent than the reduction observed for tannins. A really interesting result was that the addition of this fining agent reduced the concentration of ochratoxin A by 50% in all the studied wines.
Collapse
|
5
|
Vejarano R, Luján-Corro M. Red Wine and Health: Approaches to Improve the Phenolic Content During Winemaking. Front Nutr 2022; 9:890066. [PMID: 35694174 PMCID: PMC9174943 DOI: 10.3389/fnut.2022.890066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022] Open
Abstract
There is ample evidence regarding the health benefits of red wine consumption due to its content of phenolic compounds, as an alternative to improve the state of health and prevent various diseases, being the implementation of procedures that allow a greater extraction and stability of phenolic compounds during the elaboration a key aspect. The first part of this review summarizes some studies, mostly at the preclinical level, on the mechanisms by which phenolic compounds act in the human organism, taking advantage of their antioxidant, anti-inflammatory, antitumor, antithrombotic, antiatherogenic, antimicrobial, antiviral, and other activities. Although the migration of grape components into the must/wine occurs during the winemaking process, the application of new technologies may contribute to increasing the content of phenolic compounds in the finished wine. Some of these technologies have been evaluated on an industrial scale, and in some cases, they have been included in the International Code of Oenological Practice by the International Organization of Vine and Wine (OIV). In this sense, the second part of this review deals with the use of these novel technologies that can increase, or at least maintain, the polyphenol content. For example, in the pre-fermentative stage, phenolic extraction can be increased by treating the berries or must with high pressures, pulsed electric fields (PEF), ultrasound (US), e-beam radiation or ozone. At fermentative level, yeasts with high production of pyranoanthocyanins and/or their precursor molecules, low polyphenol absorption, and low anthocyanin-β-glucosidase activity can be used. Whereas, at the post-fermentative level, aging-on-lees (AOL) can contribute to maintaining polyphenol levels, and therefore transmitting health benefits to the consumer.
Collapse
Affiliation(s)
- Ricardo Vejarano
- Department of Research, Innovation and Social Responsibility, Universidad Privada del Norte (UPN), Trujillo, Peru
| | - Mariano Luján-Corro
- School of Agroindustrial Engineering, Universidad Nacional de Trujillo (UNT), Trujillo, Peru
| |
Collapse
|
6
|
Effect of pomegranate supplementation on the wine yeast response to acidic and osmotic stresses. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe aim of the present work was to verify in winemaking the anti-stress efficacy due to the integration of the grape must with two protectants: pomegranate albedo and pomegranate arils; these substances had displayed in vitro anti-stress effects. The effect of pomegranate supplementation on stress tolerance of five strains of Saccharomyces cerevisiae, one wild type and four descendants, against fermentation in grape must with high sugar content (30°brix) and high acidity (pH 3.00) was studied. So, micro-winemaking trials were carried out using grape must, as it is or supplemented at 2% with pomegranate albedo or with pomegranate arils, inoculated in duplicate with the yeast strains. At the end of winemaking, ethanol and acetic acid content, colour intensity, total phenolic content, and total antioxidant activity by DPPH and ABTS assays were analysed. The results shown the possibility to use pomegranate as protective agent in winemaking with high sugar content and high acidity giving wines in which the fermentable sugars will be fermented with acceptable acetic acid content, very high colour intensity values, very high total phenolic content, and very high antioxidant activity, expressed as DPPH and ABTS values.
Collapse
|
7
|
Tahmaz H, Yüksel Küskü D. Does u.v. light affect the total phenolic compound, anthocyanin, antioxidant capacity, and sensory profiles in wines? Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hande Tahmaz
- Department of Horticulture Faculty of Agriculture Ankara University Ankara 06110 Turkey
| | - Damla Yüksel Küskü
- Landscape and Ornamental Plants Vocational High School Bilecik Seyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
8
|
Revisiting the use of pectinases in enology: A role beyond facilitating phenolic grape extraction. Food Chem 2022; 372:131282. [PMID: 34638064 DOI: 10.1016/j.foodchem.2021.131282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/25/2023]
Abstract
With the objective of improving both the extraction of phenolic compounds from grapes and their maintenance in the final wine, we compared the effect of favoring phenolic extraction with a pectolytic-based maceration enzyme with that of favoring both phenolic extraction and the partial elimination of the suspended material using a pectolytic-based clarification enzyme. The phenolic composition of the final wines and those adsorbed to the precipitated lees were analyzed. Both enzymes increased wine color intensity and phenolic content, but the best results were observed when the clarification enzyme was used. This enzyme generated the largest losses of phenolics bound to precipitated lees. However, this resulted in a positive effect, the precipitation of lees rich in phenolic compounds probably created a pronounced gradient of phenolic compounds from grapes to must/wine and better chromatic characteristics in the final wine, compared with the wine made using a traditional maceration enzyme.
Collapse
|
9
|
Pérez-Porras P, Bautista-Ortín AB, Jurado R, Gómez-Plaza E. Combining high-power ultrasound and enological enzymes during winemaking to improve the chromatic characteristics of red wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
KONG WQ, LIU MW, WANG ST, GAO HH, QIN Z, LIU HM, WANG XD, HE JR. Enhancing extraction of proanthocyanidins from Chinese quince fruit by ball-milling and enzyme hydrolysis: yield, structure, and bioactivities. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.94422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Zhao QIN
- Henan University of Technology, China
| | | | | | - Jing-Ren HE
- Wuhan Polytechnic University, China; Wuhan Polytechnic University, China
| |
Collapse
|
11
|
The Application of Ultrasound and Enzymes Could Be Promising Tools for Recovering Polyphenols during the Aging on Lees Process in Red Winemaking. Foods 2021; 11:foods11010019. [PMID: 35010145 PMCID: PMC8750087 DOI: 10.3390/foods11010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
The final concentration of phenolic compounds in wines is usually lower than what might be expected, given their concentration in grapes. This is in part due to the interactions between cell walls from grapes and yeast with phenolics during red winemaking. Most of these aggregates are insoluble and end up precipitating, forming part of the lees. The objective of this study is to determine the capacity of ultrasounds and/or enzymes treatments (β-glucanase and a pectolytic enzyme) to release the anthocyanins and tannins adsorbed in the lees. The ultrasound (US) applied for 120 min slightly favored the extraction of anthocyanins and doubled tannin extraction. Shorter sonication times did not show any positive effect. The combination of β-glucanase and pectolytic enzyme was always more effective in the liberation of anthocyanins (both no-acylated and acylated anthocyanins) and tannins than the enzymes acting separately. The combination of US (120 min), β-glucanase and pectolytic enzyme showed an additive effect, increasing the extraction of phenolic compounds with respect to the individual treatments and also releasing a large quantity of low molecular weight polysaccharides, compounds of enological importance. These results of this study could be of enological interest, facilitating and accelerating the aging on lees process, through the liberation of polysaccharides and the recovery of the phenolic compounds lost during vinification.
Collapse
|
12
|
Garrido-Bañuelos G, Buica A, Kuhlman B, Schückel J, Zietsman AJJ, Willats WGT, Moore JP, du Toit WJ. Untangling the impact of red wine maceration times on wine ageing. A multidisciplinary approach focusing on extended maceration in Shiraz wines. Food Res Int 2021; 150:110697. [PMID: 34865745 DOI: 10.1016/j.foodres.2021.110697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/04/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
Phenolic composition of young red wines has been shown to play an important role in their ageing potential. Therefore, the modulation of phenolic extraction during maceration may influence the subsequent phenolic evolution of these wines. The present work aimed to evaluate the impact of three different maceration times on the phenolic levels and evolution observed over time, using spectrophotometric and chromatography methods, and the effect on the aroma, taste, and mouthfeel sensory properties using Projective Mapping. Additionally, grape cell wall deconstruction was monitored during the extended maceration phase by GC-MS and Comprehensive Comprehensive Microarray Polymer Profiling (CoMPP). Our findings demonstrated that longer maceration times did not always correspond to an increase in wine phenolic concentration, although the level of complexity of these molecules seemed to be higher. Additionally, continuous depectination and possible solubilisation of the pectin is observed during the extended maceration which may be influencing the sensory perception of these wines. Maceration time was also shown to influence the evolution of the polymeric fraction and sensory perception of the wines.
Collapse
Affiliation(s)
- Gonzalo Garrido-Bañuelos
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa
| | - Astrid Buica
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa.
| | - Brock Kuhlman
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa
| | - Julia Schückel
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1001, Denmark
| | - Anscha J J Zietsman
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa
| | - William G T Willats
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1001, Denmark; School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John P Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa
| | - Wessel J du Toit
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa
| |
Collapse
|
13
|
Emerging Non-Thermal Technologies for the Extraction of Grape Anthocyanins. Antioxidants (Basel) 2021; 10:antiox10121863. [PMID: 34942965 PMCID: PMC8698441 DOI: 10.3390/antiox10121863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Anthocyanins are flavonoid pigments broadly distributed in plants with great potential to be used as food colorants due to their range of colors, innocuous nature, and positive impact on human health. However, these molecules are unstable and affected by pH changes, oxidation and high temperatures, making it very important to extract them using gentle non-thermal technologies. The use of emerging non-thermal techniques such as High Hydrostatic Pressure (HHP), Ultra High Pressure Homogenization (UHPH), Pulsed Electric Fields (PEFs), Ultrasound (US), irradiation, and Pulsed Light (PL) is currently increasing for many applications in food technology. This article reviews their application, features, advantages and drawbacks in the extraction of anthocyanins from grapes. It shows how extraction can be significantly increased with many of these techniques, while decreasing extraction times and maintaining antioxidant capacity.
Collapse
|
14
|
Caridi A. Selection of Calabrian strains of Saccharomyces sensu stricto for red wines. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Phenolic compounds provide important quality attributes to red wines interacting with the organoleptic impact of wines. Yeast mannoproteins can interact with grape phenolic compounds, responsible for colour and antioxidant activity of wines. The aim of this work was to perform oenological characterisation and specific selection of Calabrian strains of Saccharomyces sensu stricto. Among the considered traits, the aptitude of the yeast to preserve grape pigments and colour intensity was included. Among the best six yeast strains – Sc2731, Sc2742, Sc2756, Sc2773, Sc2774, and Sc2823 – strain Sc2742 exhibits the highest Folin–Ciocalteu index and strain Sc2774 the highest colour intensity. These two selected yeasts may be used as starter for the production of red wines in order to preserve grape pigments and colour intensity.
Collapse
Affiliation(s)
- A. Caridi
- Department of Agriculture, Mediterranea University of Reggio Calabria, Via Feo di Vito s/n, I-89122 Reggio Calabria, Italy
| |
Collapse
|
15
|
Sindhu RK, Najda A, Kaur P, Shah M, Singh H, Kaur P, Cavalu S, Jaroszuk-Sierocińska M, Rahman MH. Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5965. [PMID: 34683560 PMCID: PMC8539628 DOI: 10.3390/ma14205965] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023]
Abstract
Studies from past years have observed various enzymes that are artificial, which are issued to mimic naturally occurring enzymes based on their function and structure. The nanozymes possess nanomaterials that resemble natural enzymes and are considered an innovative class. This innovative class has achieved a brilliant response from various developments and researchers owing to this unique property. In this regard, numerous nanomaterials are inspected as natural enzyme mimics for multiple types of applications, such as imaging, water treatment, therapeutics, and sensing. Nanozymes have nanomaterial properties occurring with an inheritance that provides a single substitute and multiple platforms. Nanozymes can be controlled remotely via stimuli including heat, light, magnetic field, and ultrasound. Collectively, these all can be used to increase the therapeutic as well as diagnostic efficacies. These nanozymes have major biomedical applications including cancer therapy and diagnosis, medical diagnostics, and bio sensing. We summarized and emphasized the latest progress of nanozymes, including their biomedical mechanisms and applications involving synergistic and remote control nanozymes. Finally, we cover the challenges and limitations of further improving therapeutic applications and provide a future direction for using engineered nanozymes with enhanced biomedical and diagnostic applications.
Collapse
Affiliation(s)
- Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna St., 20-280 Lublin, Poland
| | - Prabhjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Harmanpreet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Monika Jaroszuk-Sierocińska
- Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, 7 Leszczyńskiego St., 20-069 Lublin, Poland;
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| |
Collapse
|
16
|
Martínez-Lapuente L, Guadalupe Z, Pérez-Porras P, Bautista-Ortín AB, Gómez-Plaza E, Ayestarán B. Effect of Sonication Treatment and Maceration Time in the Extraction of Polysaccharide Compounds during Red Wine Vinification. Molecules 2021; 26:molecules26154452. [PMID: 34361607 PMCID: PMC8348054 DOI: 10.3390/molecules26154452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
The application of high-power ultrasounds (US) at 28 kHz to the crushed grapes and the use of different pomace contact times caused changes in the content and composition of monosaccharides and polysaccharides in the musts and wines. These differences were maintained from the moment of pressing (end of maceration) until the end of the alcoholic fermentation. The US increased the content of monosaccharides and polysaccharides in the musts by facilitating their extraction from the solid parts during maceration. The application of medium maceration time (3 days) to sonicated grapes led to an extraction of polysaccharides rich in arabinose and galactose, rhamnogalacturonan type II (RG-II) and mannoproteins (MP), similar to that observed in the control wines made with an extended maceration of 7 days (968.21 vs. 1029.45; 895.04 vs. 1700.50; 356.81 vs. 343.95, respectively). This fact was attributed to a higher extraction in the must during the sonication process and to an important release of pectic polysaccharides during the pressing of the sonicated pomace, which is reported here for the first time. Therefore, the US technology could be useful for increasing the polysaccharide content in the wines or for reducing the maceration time needed to achieve certain levels of wine polysaccharides.
Collapse
Affiliation(s)
- Leticia Martínez-Lapuente
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, 26007 Logroño, Spain; (L.M.-L.); (Z.G.); (B.A.)
| | - Zenaida Guadalupe
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, 26007 Logroño, Spain; (L.M.-L.); (Z.G.); (B.A.)
| | - Paula Pérez-Porras
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (P.P.-P.); (A.B.B.-O.)
| | - Ana Belén Bautista-Ortín
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (P.P.-P.); (A.B.B.-O.)
| | - Encarna Gómez-Plaza
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (P.P.-P.); (A.B.B.-O.)
- Correspondence: ; Tel.: +34-868-88-7323
| | - Belén Ayestarán
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, 26007 Logroño, Spain; (L.M.-L.); (Z.G.); (B.A.)
| |
Collapse
|
17
|
Development of a Pressure Control System According to Paste Rheology for Ultrasound Processing in Industrial Olive Oil Extraction. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02674-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractRecent research has demonstrated how ultrasound can benefit the industrial processing of olive paste before oil extraction. However, the absence of a device for controlling pressure inside the sonication cell is a major hindrance to its application. To address this problem, a pneumatic device with a programmable logic controller was implemented to automatically adjust pressure in the sonication cell according to a preset value: its functionality was tested in industrial oil extraction. An experiment was conducted to compare device performance when applied to olive batches with different solid/liquid ratios and differing rheology. The control system adjusted the flow section of the valve at the outlet of the sonication cell and the mass flow rate of the feed pump in order to maintain the pressure preset by the operator. Results indicate that the pressure was 3.0 ± 0.2 bar, 3.5 ± 0.2 bar, and 4.0 ± 0.2 bar when the set point was 3.0 bar, 3.5 bar, and 4.0 bar, respectively: there was thus no significant difference between controlled and set values. This indicates that the device is able to control pressure inside the sonication cell with a maximum deviation of 0.2 bar. In this case, the sonication intensity was stabilized at 135 W/cm2, 150 W/cm2, and 165 W/cm2 at 3.0 bar, 3.5 bar, and 4.0 bar, respectively. This study presents an advancement in ultrasound applications for industrial olive oil extraction: optimal pressure control in the sonication cell.
Collapse
|
18
|
|
19
|
Pérez-Porras P, Bautista-Ortín AB, Jurado R, Gómez-Plaza E. Using high-power ultrasounds in red winemaking: Effect of operating conditions on wine physico-chemical and chromatic characteristics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110645] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Su CH, Pham TTT, Cheng HH. Aqueous enzymatic extraction of rosmarinic acid from Salvia officinalis: optimisation using response surface methodology. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:575-582. [PMID: 31997419 DOI: 10.1002/pca.2922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/10/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Rosmarinic acid is a bioactive compound with various pharmaceutical effects and applications. OBJECTIVE This work developed a new approach for aqueous enzymatic extraction of rosmarinic acid from the leaves of Salvia officinalis. METHODS Different enzymes (proteases and cellulase) were evaluated for their extraction activity. Response surface methodology (RSM) was subsequently employed to optimise the extraction conditions. Thin layer chromatography was also used to identify rosmarinic acid in the extract of S. officinalis. RESULTS Among the tested enzymes, a Cellulase A and Protamex mixture (1:1, w/w) exhibited maximum effectiveness in the extraction. Through the use of RSM, the maximum rosmarinic acid content of 28.23 ± 0.41 mg/g was obtained with enzyme loading of 4.49%, water-to-sample ratio of 25.76 mL/g, temperature of 54.3°C, and extraction time of 2 h. CONCLUSION This study suggests that S. officinalis is a promising source of rosmarinic acid and aqueous enzymatic extraction is an efficient and ecofriendly method for extracting rosmarinic acid, with a short extraction time and without the contamination of a toxic solvent.
Collapse
Affiliation(s)
- Chia-Hung Su
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Thi Thanh Truc Pham
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hsien-Hao Cheng
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
21
|
Scutarașu EC, Luchian CE, Vlase L, Colibaba LC, Gheldiu AM, Cotea VV. Evolution of phenolic profile of white wines treated with enzymes. Food Chem 2020; 340:127910. [PMID: 32882475 DOI: 10.1016/j.foodchem.2020.127910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study is to monitor the evolution of the principal phenolic compounds throughout the fermentation stage of white wines treated with different enzymes. The effect of five commercial enzymes on the evolution of the phenolic profile during the alcoholic fermentation of white wines obtained from Fetească regală and Sauvignon blanc varieties was evaluated. Physicochemical properties of resulted wine samples have been analyzed according to OIV standards and regulations. The evolution of the principal phenolic compounds was carried out using HPLC method. Enzymatic treatments did not significantly affect the physicochemical composition of the obtained wines. The analyzed samples showed different variations on the phenolic compound content, depending on the type of added enzyme and grape variety. The statistical analysis confirms that enzymes significantly contributed to the enrichment of the wines with phenolic compounds, especially with p-coumaric, gentisic, caftaric, and protocatechuic acids.
Collapse
Affiliation(s)
- Elena-Cristina Scutarașu
- University of Agricultural Sciences and Veterinary Medicine "Ion Ionescu de la Brad", 3(rd) Mihail Sadoveanu Alley, Iași 700489, Romania
| | - Camelia Elena Luchian
- University of Agricultural Sciences and Veterinary Medicine "Ion Ionescu de la Brad", 3(rd) Mihail Sadoveanu Alley, Iași 700489, Romania.
| | - Laurian Vlase
- University of Medicine and Pharmacy "Iuliu Hațieganu", 8(th) Victor Babeș Street, Cluj-Napoca 400000, Romania
| | - Lucia Cintia Colibaba
- University of Agricultural Sciences and Veterinary Medicine "Ion Ionescu de la Brad", 3(rd) Mihail Sadoveanu Alley, Iași 700489, Romania
| | - Ana Maria Gheldiu
- University of Medicine and Pharmacy "Iuliu Hațieganu", 8(th) Victor Babeș Street, Cluj-Napoca 400000, Romania
| | - Valeriu V Cotea
- University of Agricultural Sciences and Veterinary Medicine "Ion Ionescu de la Brad", 3(rd) Mihail Sadoveanu Alley, Iași 700489, Romania
| |
Collapse
|
22
|
Management of high-quality dehydrated grape in vinification to produce dry red wines. Food Chem 2020; 338:127623. [PMID: 32861132 DOI: 10.1016/j.foodchem.2020.127623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022]
Abstract
Grape controlled dehydration of "Cesanese" and "Sangiovese" wine grapes, followed by an innovative vinification protocol, was studied. Fresh grapes of both varieties were processed into basic wines (IW = initial wine). 'Cesanese' must from pressed dehydrated grapes (solid and liquid) was directly added (15 and 30% v/v) into the IW activating a refermentation. 'Sangiovese' must (solid and liquid) from pressed dehydrated grapes was fermented and, when the wine reached 5% alcohol concentration, every day, the IW was added until a final concentration of 40 or 60% (v/v). The produced "blended wines" (BW) had significantly higher alcohol, glycerol, extract, and polyphenol concentration. Malolactic fermentation was completely ended in all BW with no malic acid and formation of lactic acid (0.5-1 g/L). All wines showed a significant higher concentration in 4-vinylguaiacol, acetovanillone, and 3-oxo-α-ionol, providing spicy and fruity notes at the sensory analyses, and being appreciated for their body balance, less acidity, and flavor intensity.
Collapse
|
23
|
Dzah CS, Duan Y, Zhang H, Authur DA, Ma H. Ultrasound-, subcritical water- and ultrasound assisted subcritical water-derived Tartary buckwheat polyphenols show superior antioxidant activity and cytotoxicity in human liver carcinoma cells. Food Res Int 2020; 137:109598. [PMID: 33233198 DOI: 10.1016/j.foodres.2020.109598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022]
Abstract
The effects of ultrasound-assisted (UAE), subcritical water (SWE) and ultrasound assisted-subcritical water (UA-SWE) treatments on tartary buckwheat polyphenol yield, composition, antioxidant activity and cytotoxicity in human liver carcinoma cells were studied. Folin Ciocalteu assay was used to measure total free phenol content (TFPC), and ABTS, DPPH, FRAP and TEAC assays were used to measure antioxidant activity (AA). Polyphenol characterization was done by LC-MS and cell antioxidant activity (CAA) and cytotoxicity were done using the 2,2'-Azobis-(2-amidinopropane) dihydrochloride [ABAP] and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide [MTT] assays respectively. The highest polyphenol yield was obtained by SWE (53.3 mg g-1), followed by UA-SWE (31.8 mg g-1), UAE (19.3 mg g-1) and HWE (4.2 mg g-1). Also, SWE had the highest TFPC (7.9 mgGAE/gdw). UAE and UA-SWE showed no differences with TFPC being 6.6 and 6.8 mgGAE/gdw, respectively. The control method (HWE) had the largest number of phenolic compounds identified (25), followed by UAE, SWE and UA-SWE which had 20, 13 and 11 phenolics respectively. Beside phenolic acids, all treatments extracted a number of flavonoids such as flavan-3-ols (catechin-7-O-glucoside, epigallocatechin-3-gallate, epigallocatechin, epicatechin), flavonols (kaempferol-3-O-glucoside, kaempferol, kaempferol-3-rutinoside, rutin, quercetin, quercetin-3-O-glucuronide hyperin), flavones (vitexin, isovitexin, orientin, isoorientin) and anthocyanins (cyanidin-3-O-rutinoside, Cyanidin 3-O-galactoside, cyanidin-3-O-glucoside). SWE gave the highest AA for all tests. However, the AA of those obtained by UAE and UA-SWE did not vary (P < 0.05), but were higher than HWE. Different extracts had best AA at different concentrations (HWE, 300; UAE, 250; SWE, 150; UA-SWE, 200 μg/mL). The IC50 of AA were 270.8 ± 21.3, 198.1 ± 16.0, 97.9 ± 13.5, and 150.4 ± 12.8 μg/mL, respectively for HWE, UAE, SWE and UA-SWE. Generally, SWE and UA-SWE showed the highest cytotoxic activities, followed by UAE, with HWE being the lowest. IC50 of cytotoxicity were 76.1 ± 3.3, 79.5 ± 7.0 and 92.6 ± 4.9 µg/mL for SWE, UA-SWE and UAE, respectively. SWE is a promising method for polyphenol extraction and its combination with ultrasound should be optimized for high yield and conservation of bioactivity.
Collapse
Affiliation(s)
- Courage Sedem Dzah
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Department of Food Science and Technology, Faculty of Applied Sciences and Technology, Ho Technical University, Ho HP217, Volta Region, Ghana
| | - Yuqing Duan
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Haihui Zhang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Desmond Antwi Authur
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Haile Ma
- Department of Food Science and Engineering, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
24
|
Huang L, Sun DW, Pu H, Wei Q. Development of Nanozymes for Food Quality and Safety Detection: Principles and Recent Applications. Compr Rev Food Sci Food Saf 2019; 18:1496-1513. [PMID: 33336906 DOI: 10.1111/1541-4337.12485] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/10/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022]
Abstract
The public concerns about agrifood safety call for innovative and reformative analytical techniques to meet the inspection requirements of high sensitivity, specificity, and reproducibility. Enzyme-mimetic nanomaterials or nanozymes, which combine enzyme-like properties with nanoscale features, emerge as an excellent tool for quality and safety detection in the agrifood sector, due to not only their robust capacity in detection but also their attraction in future-oriented exploitations. However, in-depth understanding about the fundamental principles of nanozymes for food quality and safety detection remains limited, which makes their applications largely empirical. This review provides a comprehensive overview of the principles, designs, and applications of nanozyme-based detection technique in the agrifood industry. The discussion mainly involves three mimicking types, that is, peroxidase, oxidase, and catalase-like nanozymes, capable of detecting major agrifood analytes. The current principles and strategies are classified and then discussed in details through discriminating the roles of nanozymes in diverse detection platforms. Thereafter, recent applications of nanozymes in detecting various endogenous ingredients and exogenous contaminants in foods are reviewed, and the outlook of profound developments are explained. Evidenced by the increasing publications, nanozyme-based detection techniques are narrowing the gap to practical-oriented food analytical methods, while some challenges in optimization of nanozymes, diversification of recognition-to-signal manners, and sustainability of methodology need to conquer in the future.
Collapse
Affiliation(s)
- Lunjie Huang
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, Univ. College Dublin, Natl. Univ. of Ireland, Belfield, Dublin 4, Ireland
| | - Hongbin Pu
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510641, China.,Academy of Contemporary Food Engineering, South China Univ. of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|