1
|
O'Neill DC, Sato EH, Thorne TJ, Mau M, Klonoski JM, Olsen AL, Haller JM. Porcine blast injury model achieves prolonged elevation of intra-compartmental pressures without exogenous pressure manipulation. J Orthop Surg Res 2024; 19:622. [PMID: 39367457 PMCID: PMC11451175 DOI: 10.1186/s13018-024-05131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Most existing animal models of acute compartment syndrome (ACS) rely on exogenous manipulation of intra-compartmental pressures to model ACS. The purpose of the current study was to evaluate the endogenous effect of a blast injury on porcine lower leg intra-compartmental pressures (ICP). METHODS The hindlimb of juvenile Landrace pigs was fractured at the diaphyseal tibia and subjected to blasts of compressed air to mimic a blast injury. Injured and control legs underwent pre-operative continuous ICP monitoring. At 4.5 h post injury, the fracture was stabilized followed by closure of the anterior compartment fascia (continued compartment pressure model, CCPM) or four compartment fasciotomy. Pressure measurements were made after operative fixation. Select pigs in CCPM were harvested between 48 and 72 h post-injury to evaluate the duration of ICP elevation. RESULTS Post-injury, the model created significantly elevated ICP compared to control limbs (54.5 ± 18.2 vs. 18.2 ± 4.9 mmHg; p < 0.001). Operative fixation and anterior compartment fascial closure further increased the ICP (Mean: 87.4 ± 42.5 mmHg) relative to the pre-operative state (p = 0.037). Fasciotomy returned baseline compartment pressures (Mean: 13.7 ± 10.2 mmHg) which were equivalent to control limbs (p = 0.117). Pressure measurements at the time of delayed harvest (48-72 h) demonstrated that elevated ICP persisted following injury (69.7 ± 55.12 mmHg). CONCLUSION The current study demonstrates that a pilot porcine blast model elevates ICP comparable to existing animal models of compartment syndrome without exogenous ICP manipulation. ICP remained elevated at 48-72 h in the absence of fasciotomy.
Collapse
Affiliation(s)
- Dillon C O'Neill
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT, USA.
| | - Eleanor H Sato
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT, USA
| | - Tyler J Thorne
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT, USA
| | - Makoa Mau
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT, USA
| | - Joshua M Klonoski
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Aaron L Olsen
- Animal Care and Use, Utah State University, Logan, UT, USA
| | - Justin M Haller
- Department of Orthopaedic Surgery, University of Utah, 590 Wakara Way, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Oguri G, Ikegami R, Ugawa H, Katoh M, Obi S, Sakuma M, Takeda N, Kano Y, Toyoda S, Nakajima T. Muscle Atrophy and mRNA-miRNA Network Analysis of Vascular Endothelial Growth Factor (VEGF) in a Mouse Model of Denervation-Induced Disuse. Cureus 2024; 16:e68974. [PMID: 39385898 PMCID: PMC11462388 DOI: 10.7759/cureus.68974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Skeletal muscle atrophy is frequently caused by the disuse of muscles. It impacts quality of life, especially in aging populations and those with chronic diseases. Understanding the molecular mechanisms underlying muscle atrophy is crucial for developing effective therapies. OBJECTIVE To investigate the roles of vascular endothelial growth factor (VEGF) and various microRNAs (miRNAs) in muscle atrophy using a mouse model of denervation (DEN)-induced disuse, and to elucidate their interactions and regulatory functions through comprehensive network analysis. METHODS The right sciatic nerve of C57BL/6J mice (n=6) was excised to simulate DEN, with the left serving as a sham surgery control (Sham). Following a two-week period, wet muscle weight was measured. Total RNA was extracted from the tibialis anterior muscle for microarray analysis. Significant expression changes were analyzed via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and miRNet for miRNAs. RESULTS Denervated limbs showed a significant reduction in muscle weight. Over 1,000 genes displayed increased expression, while 527 showed reductions to less than half of control levels. VEGF, along with specific miRNAs such as miR-106a-5p, miR-mir20a-5p, mir93-5p and mir17-5p, occupied central regulatory nodes within the gene network. Functional analysis revealed that these molecules are involved in key biological processes including regulation of cell migration, vasculature development, and regulation of endothelial cell proliferation. The increased miRNAs were subjected to further network analysis that revealed significant regulatory interactions with target mRNAs. CONCLUSION VEGF and miRNAs play crucial roles in the progression of skeletal muscle atrophy, offering potential targets for therapeutic interventions aimed at reducing atrophy and enhancing muscle regeneration.
Collapse
Affiliation(s)
- Gaku Oguri
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Ryo Ikegami
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, JPN
| | - Haruka Ugawa
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, JPN
| | - Manami Katoh
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Syotaro Obi
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Yutaka Kano
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
- Department of Medical KAATSU Training, Dokkyo Medical University Hospital, Mibu, JPN
| |
Collapse
|
3
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
4
|
Haase M, Comlekoglu T, Petrucciani A, Peirce SM, Blemker SS. Agent-based model demonstrates the impact of nonlinear, complex interactions between cytokinces on muscle regeneration. eLife 2024; 13:RP91924. [PMID: 38828844 PMCID: PMC11147512 DOI: 10.7554/elife.91924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Muscle regeneration is a complex process due to dynamic and multiscale biochemical and cellular interactions, making it difficult to identify microenvironmental conditions that are beneficial to muscle recovery from injury using experimental approaches alone. To understand the degree to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we developed an agent-based model (ABM) using the Cellular-Potts framework to simulate the dynamic microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 100 published studies to define over 100 parameters and rules that dictate the behavior of muscle fibers, satellite stem cells (SSCs), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic vessels, as well as their interactions with each other and the microenvironment. We utilized parameter density estimation to calibrate the model to temporal biological datasets describing cross-sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple timepoints following injury. The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, and capillaries counts) to experimental observations. Predictions for eight model perturbations that varied cell or cytokine input conditions were compared to published experimental studies to validate model predictive capabilities. We used Latin hypercube sampling and partial rank correlation coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. These results enable guided development of therapeutic strategies that similarly alter muscle physiology (i.e. converting extracellular matrix [ECM]-bound cytokines into freely diffusible forms as studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance muscle recovery after injury.
Collapse
Affiliation(s)
- Megan Haase
- University of VirginiaCharlottesvilleUnited States
| | | | | | | | | |
Collapse
|
5
|
Ahmad SS, Ahmad K, Lim JH, Shaikh S, Lee EJ, Choi I. Therapeutic applications of biological macromolecules and scaffolds for skeletal muscle regeneration: A review. Int J Biol Macromol 2024; 267:131411. [PMID: 38588841 DOI: 10.1016/j.ijbiomac.2024.131411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Skeletal muscle (SM) mass and strength maintenance are important requirements for human well-being. SM regeneration to repair minor injuries depends upon the myogenic activities of muscle satellite (stem) cells. However, losses of regenerative properties following volumetric muscle loss or severe trauma or due to congenital muscular abnormalities are not self-restorable, and thus, these conditions have major healthcare implications and pose clinical challenges. In this context, tissue engineering based on different types of biomaterials and scaffolds provides an encouraging means of structural and functional SM reconstruction. In particular, biomimetic (able to transmit biological signals) and several porous scaffolds are rapidly evolving. Several biological macromolecules/biomaterials (collagen, gelatin, alginate, chitosan, and fibrin etc.) are being widely used for SM regeneration. However, available alternatives for SM regeneration must be redesigned to make them more user-friendly and economically feasible with longer shelf lives. This review aimed to explore the biological aspects of SM regeneration and the roles played by several biological macromolecules and scaffolds in SM regeneration in cases of volumetric muscle loss.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
6
|
Nguyen TH, Limpens M, Bouhmidi S, Paprzycki L, Legrand A, Declèves AE, Heher P, Belayew A, Banerji CRS, Zammit PS, Tassin A. The DUX4-HIF1α Axis in Murine and Human Muscle Cells: A Link More Complex Than Expected. Int J Mol Sci 2024; 25:3327. [PMID: 38542301 PMCID: PMC10969790 DOI: 10.3390/ijms25063327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent inherited muscle disorders and is linked to the inappropriate expression of the DUX4 transcription factor in skeletal muscles. The deregulated molecular network causing FSHD muscle dysfunction and pathology is not well understood. It has been shown that the hypoxia response factor HIF1α is critically disturbed in FSHD and has a major role in DUX4-induced cell death. In this study, we further explored the relationship between DUX4 and HIF1α. We found that the DUX4 and HIF1α link differed according to the stage of myogenic differentiation and was conserved between human and mouse muscle. Furthermore, we found that HIF1α knockdown in a mouse model of DUX4 local expression exacerbated DUX4-mediated muscle fibrosis. Our data indicate that the suggested role of HIF1α in DUX4 toxicity is complex and that targeting HIF1α might be challenging in the context of FSHD therapeutic approaches.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Maelle Limpens
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Sihame Bouhmidi
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Lise Paprzycki
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Philipp Heher
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Christopher R. S. Banerji
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
- The Alan Turing Institute, The British Library, London NW1 2DB, UK
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
7
|
Haase M, Comlekoglu T, Petrucciani A, Peirce SM, Blemker SS. Agent-based model demonstrates the impact of nonlinear, complex interactions between cytokines on muscle regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.14.553247. [PMID: 37645968 PMCID: PMC10462020 DOI: 10.1101/2023.08.14.553247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Muscle regeneration is a complex process due to dynamic and multiscale biochemical and cellular interactions, making it difficult to identify microenvironmental conditions that are beneficial to muscle recovery from injury using experimental approaches alone. To understand the degree to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we developed an agent-based model (ABM) using the Cellular Potts framework to simulate the dynamic microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 100 published studies to define over 100 parameters and rules that dictate the behavior of muscle fibers, satellite stem cells (SSC), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic vessels, as well as their interactions with each other and the microenvironment. We utilized parameter density estimation to calibrate the model to temporal biological datasets describing cross-sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple time points following injury. The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, and capillaries counts) to experimental observations. Predictions for eight model perturbations that varied cell or cytokine input conditions were compared to published experimental studies to validate model predictive capabilities. We used Latin hypercube sampling and partial rank correlation coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. These results enable guided development of therapeutic strategies that similarly alter muscle physiology (i.e. converting ECM-bound cytokines into freely diffusible forms as studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance muscle recovery after injury.
Collapse
|
8
|
Golding AE, Li W, Blank PS, Cologna SM, Zimmerberg J. Relative quantification of progressive changes in healthy and dysferlin-deficient mouse skeletal muscle proteomes. Muscle Nerve 2023; 68:805-816. [PMID: 37706611 DOI: 10.1002/mus.27975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION/AIMS Individuals with dysferlinopathies, a group of genetic muscle diseases, experience delay in the onset of muscle weakness. The cause of this delay and subsequent muscle wasting are unknown, and there are currently no clinical interventions to limit or prevent muscle weakness. To better understand molecular drivers of dysferlinopathies, age-dependent changes in the proteomic profile of skeletal muscle (SM) in wild-type (WT) and dysferlin-deficient mice were identified. METHODS Quadriceps were isolated from 6-, 18-, 42-, and 77-wk-old C57BL/6 (WT, Dysf+/+ ) and BLAJ (Dysf-/- ) mice (n = 3, 2 male/1 female or 1 male/2 female, 24 total). Whole-muscle proteomes were characterized using liquid chromatography-mass spectrometry with relative quantification using TMT10plex isobaric labeling. Principle component analysis was utilized to detect age-dependent proteomic differences over the lifespan of, and between, WT and dysferlin-deficient SM. The biological relevance of proteins with significant variation was established using Ingenuity Pathway Analysis. RESULTS Over 3200 proteins were identified between 6-, 18-, 42-, and 77-wk-old mice. In total, 46 proteins varied in aging WT SM (p < .01), while 365 varied in dysferlin-deficient SM. However, 569 proteins varied between aged-matched WT and dysferlin-deficient SM. Proteins with significant variation in expression across all comparisons followed distinct temporal trends. DISCUSSION Proteins involved in sarcolemma repair and regeneration underwent significant changes in SM over the lifespan of WT mice, while those associated with immune infiltration and inflammation were overly represented over the lifespan of dysferlin-deficient mice. The proteins identified herein are likely to contribute to our overall understanding of SM aging and dysferlinopathy disease progression.
Collapse
Affiliation(s)
- Adriana E Golding
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Han S, Cruz SH, Park S, Shin SR. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. NANO CONVERGENCE 2023; 10:48. [PMID: 37864632 PMCID: PMC10590364 DOI: 10.1186/s40580-023-00398-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Engineered three-dimensional (3D) tissue constructs have emerged as a promising solution for regenerating damaged muscle tissue resulting from traumatic or surgical events. 3D architecture and function of the muscle tissue constructs can be customized by selecting types of biomaterials and cells that can be engineered with desired shapes and sizes through various nano- and micro-fabrication techniques. Despite significant progress in this field, further research is needed to improve, in terms of biomaterials properties and fabrication techniques, the resemblance of function and complex architecture of engineered constructs to native muscle tissues, potentially enhancing muscle tissue regeneration and restoring muscle function. In this review, we discuss the latest trends in using nano-biomaterials and advanced nano-/micro-fabrication techniques for creating 3D muscle tissue constructs and their regeneration ability. Current challenges and potential solutions are highlighted, and we discuss the implications and opportunities of a future perspective in the field, including the possibility for creating personalized and biomanufacturable platforms.
Collapse
Affiliation(s)
- Seokgyu Han
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sebastián Herrera Cruz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Endo Y, Hwang CD, Zhang Y, Olumi S, Koh DJ, Zhu C, Neppl RL, Agarwal S, Sinha I. VEGFA Promotes Skeletal Muscle Regeneration in Aging. Adv Biol (Weinh) 2023; 7:e2200320. [PMID: 36988414 PMCID: PMC10539483 DOI: 10.1002/adbi.202200320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Aging is associated with loss of skeletal muscle regeneration. Differentially regulated vascular endothelial growth factor (VEGF)A with aging may partially underlies this loss of regenerative capacity. To assess the role of VEGFA in muscle regeneration, young (12-14 weeks old) and old C57BL/6 mice (24,25 months old) are subjected to cryoinjury in the tibialis anterior (TA) muscle to induce muscle regeneration. The average cross-sectional area (CSA) of regenerating myofibers is 33% smaller in old as compared to young (p < 0.01) mice, which correlates with a two-fold loss of muscle VEGFA protein levels (p = 0.02). The capillary density in the TA is similar between the two groups. Young VEGFlo mice, with a 50% decrease in systemic VEGFA activity, exhibit a two-fold reduction in the average regenerating fiber CSA following cryoinjury (p < 0.01) in comparison to littermate controls. ML228, a hypoxia signaling activator known to increase VEGFA levels, augments muscle VEGFA levels and increases average CSA of regenerating fibers in both old mice (25% increase, p < 0.01) and VEGFlo (20% increase, p < 0.01) mice, but not in young or littermate controls. These results suggest that VEGFA may be a therapeutic target in age-related muscle loss.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Charles D. Hwang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Yuteng Zhang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Shayan Olumi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Daniel J. Koh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Christina Zhu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Ronald L. Neppl
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02114
| | - Shailesh Agarwal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| | - Indranil Sinha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard University, Boston, MA, 02115
| |
Collapse
|
11
|
Lee YJ, Moon YS, Kwon DR, Cho SC, Kim EH. Polydeoxyribonucleotide and Shock Wave Therapy Sequence Efficacy in Regenerating Immobilized Rabbit Calf Muscles. Int J Mol Sci 2023; 24:12820. [PMID: 37629001 PMCID: PMC10454565 DOI: 10.3390/ijms241612820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
This study primarily aimed to investigate the combined effects of polydeoxyribonucleotide (PDRN) and extracorporeal shock wave therapy (ESWT) sequences on the regenerative processes in atrophied animal muscles. Thirty male New Zealand rabbits, aged 12 weeks, were divided into five groups: normal saline (Group 1), PDRN (Group 2), ESWT (Group 3), PDRN injection before ESWT (Group 4), and PDRN injection after ESWT (Group 5). After 2 weeks of cast immobilization, the respective treatments were administered to the atrophied calf muscles. Radial ESWT was performed twice weekly. Calf circumference, tibial nerve compound muscle action potential (CMAP), and gastrocnemius (GCM) muscle thickness after 2 weeks of treatment were evaluated. Histological and immunohistochemical staining, as well as Western blot analysis, were conducted 2 weeks post-treatment. Staining intensity and extent were assessed using semi-quantitative scores. Groups 4 and 5 demonstrated significantly greater calf muscle circumference, GCM muscle thickness, tibial nerve CMAP, and GCM muscle fiber cross-sectional area (type I, type II, and total) than the remaining three groups (p < 0.05), while they did not differ significantly in these parameters. Groups 2 and 3 showed higher values for all the mentioned parameters than Group 1 (p < 0.05). Group 4 had the greatest ratio of vascular endothelial growth factor (VEGF) to platelet endothelial cell adhesion molecule-1 (PECAM-1) in the GCM muscle fibers compared to the other four groups (p < 0.05). Western blot analysis revealed significantly higher expression of angiogenesis cytokines in Groups 4 and 5 than in the other groups (p < 0.05). The combination of ESWT and PDRN injection demonstrated superior regenerative efficacy for atrophied calf muscle tissue in rabbit models compared to these techniques alone or saline. In particular, administering ESWT after PDRN injection yielded the most favorable outcomes in specific parameters.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31538, Republic of Korea;
| | - Yong Suk Moon
- Department of Anatomy, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| | - Dong Rak Kwon
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| | - Sung Cheol Cho
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| | - Eun Ho Kim
- Department of Biomedical Engineering & Radiology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
12
|
Johnson AL, Kamal M, Parise G. The Role of Supporting Cell Populations in Satellite Cell Mediated Muscle Repair. Cells 2023; 12:1968. [PMID: 37566047 PMCID: PMC10417507 DOI: 10.3390/cells12151968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Skeletal muscle has a high capacity to repair and remodel in response to damage, largely through the action of resident muscle stem cells, termed satellite cells. Satellite cells are required for the proper repair of skeletal muscle through a process known as myogenesis. Recent investigations have observed relationships between satellite cells and other cell types and structures within the muscle microenvironment. These findings suggest that the crosstalk between inflammatory cells, fibrogenic cells, bone-marrow-derived cells, satellite cells, and the vasculature is essential for the restoration of muscle homeostasis. This review will discuss the influence of the cells and structures within the muscle microenvironment on satellite cell function and muscle repair.
Collapse
Affiliation(s)
| | | | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
13
|
Makar D, Nazemi A, Gong SG, Bhardwaj N, De Guzman R, Sessle BJ, Cioffi I. Development of a model to investigate the effects of prolonged ischaemia on the muscles of mastication of male Sprague Dawley rats. Arch Oral Biol 2023; 146:105602. [PMID: 36543038 DOI: 10.1016/j.archoralbio.2022.105602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aims of this study were to develop a novel rodent model of masticatory muscle ischaemia via unilateral ligation of the external carotid artery (ECA), and to undertake a preliminary investigation to characterize its downstream effects on mechanosensitivity and cellular features of the masseter and temporalis muscles. DESIGN The right ECA of 18 male Sprague-Dawley rats was ligated under general anaesthesia. Mechanical detection thresholds (MDTs) at the masseter and temporalis bilaterally were measured immediately before ECA ligation and after euthanasia at 10-, 20-, and 35-days (n = 6 rats/timepoint). Tissue samples from both muscles and sides were harvested for histological analyses and for assessing changes in the expression of markers of hypoxia and muscle degeneration (Hif-1α, VegfA, and Fbxo32) via real time PCR. Data were analyzed using mixed effect models and non-parametric tests. Statistical significance was set at p < 0.05. RESULTS MDTs were higher in the right than left hemiface (p = 0.009) after 20 days. Histological changes indicative of muscle degeneration and fibrosis were observed in the right muscles. Hif-1α, VegfA, and Fbxo32 were more highly expressed in the masseter than temporalis muscles (all p < 0.05). Hif-1α and, VegfA did not change significantly with time in all muscles (all p > 0.05). Fbxo32 expression gradually increased in the right masseter (p = 0.024) and left temporalis (p = 0.05). CONCLUSIONS ECA ligation in rats induced hyposensitivity in the homolateral hemiface after 20 days accompanied by tissue degenerative changes. Our findings support the use of this model to study pathophysiologic mechanisms of masticatory muscle ischaemia in larger investigations.
Collapse
Affiliation(s)
- D Makar
- University of Toronto, Faculty of Dentistry, Centre for Multimodal Sensorimotor and Pain Research, Toronto, ON, Canada; University of Toronto, Faculty of Dentistry, Graduate Orthodontics, Toronto, ON, Canada
| | - A Nazemi
- University of Toronto, Faculty of Dentistry, Centre for Multimodal Sensorimotor and Pain Research, Toronto, ON, Canada
| | - S G Gong
- University of Toronto, Faculty of Dentistry, Graduate Orthodontics, Toronto, ON, Canada
| | - N Bhardwaj
- University of Toronto, Faculty of Medicine, Department of Comparative Medicine, Toronto, ON, Canada; Peter Gilgan Centre for Research and Learning, Sickkids Hospital, Toronto, ON, Canada
| | - R De Guzman
- University of Toronto, Faculty of Medicine, Department of Comparative Medicine, Toronto, ON, Canada
| | - B J Sessle
- University of Toronto, Faculty of Dentistry, Toronto, ON, Canada; University of Toronto, Faculty of Medicine, Department of Physiology, Toronto, ON, Canada
| | - I Cioffi
- University of Toronto, Faculty of Dentistry, Centre for Multimodal Sensorimotor and Pain Research, Toronto, ON, Canada; Mount Sinai Hospital, Department of Dentistry, Toronto, ON, Canada; University of Toronto, Faculty of Dentistry, Graduate Orthodontics, Toronto, ON, Canada.
| |
Collapse
|
14
|
VEGF-A and FGF4 Engineered C2C12 Myoblasts and Angiogenesis in the Chick Chorioallantoic Membrane. Biomedicines 2022; 10:biomedicines10081781. [PMID: 35892681 PMCID: PMC9330725 DOI: 10.3390/biomedicines10081781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing vessels. Adequate oxygen transport and waste removal are necessary for tissue homeostasis. Restrictions in blood supply can lead to ischaemia which can contribute to disease pathology. Vascular endothelial growth factor (VEGF) is essential in angiogenesis and myogenesis, making it an ideal candidate for angiogenic and myogenic stimulation in muscle. We established C2C12 mouse myoblast cell lines which stably express elevated levels of (i) human VEGF-A and (ii) dual human FGF4-VEGF-A. Both stably transfected cells secreted increased amounts of human VEGF-A compared to non-transfected cells, with the latter greater than the former. In vitro, conditioned media from engineered cells resulted in a significant increase in endothelial cell proliferation, migration, and tube formation. In vivo, this conditioned media produced a 1.5-fold increase in angiogenesis in the chick chorioallantoic membrane (CAM) assay. Delivery of the engineered myoblasts on Matrigel demonstrated continued biological activity by eliciting an almost 2-fold increase in angiogenic response when applied directly to the CAM assay. These studies qualify the use of genetically modified myoblasts in therapeutic angiogenesis for the treatment of muscle diseases associated with vascular defects.
Collapse
|
15
|
Animal models in compartment syndrome: a review of existing literature. OTA Int 2022; 5:e163. [PMID: 35282390 PMCID: PMC8900462 DOI: 10.1097/oi9.0000000000000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
Objective: Extremity compartment syndrome (ECS) is a morbid condition resulting in permanent myoneural damage. Currently, the diagnosis of compartment syndrome relies on clinical symptoms and/or intracompartment pressure measurements, both of which are poor predictors of ECS. Animal models have been used to better define cellular mechanisms, diagnosis, and treatment of ECS. However, no standardized model exists. The purpose of this study was to identify existing animal research on extremity compartment syndrome to summarize the current state of the literature and to identify weaknesses that could be improved with additional research. Methods: A MEDLINE database search and reverse inclusion protocol were utilized. We included all animal models of ECS. Results: Forty-one studies were included. Dogs were the most commonly used model species, followed by pigs and rats. Most studies sought to better define the pathophysiology of compartment syndrome. Other studies evaluated experimental diagnostic modalities or potential treatments. The most common compartment syndrome model was intracompartment infusion, followed by tourniquet and intracompartment balloon models. Few models incorporated additional soft tissue or osseous injury. Only 65.9% of the reviewed studies confirmed that their model created myoneural injury similar to extremity compartment syndrome. Conclusions: Study purpose, methodology, and outcome measures varied widely across included studies. A standardized definition for animal compartment syndrome would direct more consistent research in this field. Few animal models have investigated the pathophysiologic relationship between traumatic injury and the development of compartment syndrome. A validated, clinically relevant animal model of extremity compartment syndrome would spur improvement in diagnosis and therapeutic interventions.
Collapse
|
16
|
Floriano JF, Emanueli C, Vega S, Barbosa AMP, Oliveira RGD, Floriano EAF, Graeff CFDO, Abbade JF, Herculano RD, Sobrevia L, Rudge MVC. Pro-angiogenic approach for skeletal muscle regeneration. Biochim Biophys Acta Gen Subj 2022; 1866:130059. [PMID: 34793875 DOI: 10.1016/j.bbagen.2021.130059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
The angiogenesis process is a phenomenon in which numerous molecules participate in the stimulation of the new vessels' formation from pre-existing vessels. Angiogenesis is a crucial step in tissue regeneration and recovery of organ and tissue function. Muscle diseases affect millions of people worldwide overcome the ability of skeletal muscle to self-repair. Pro-angiogenic therapies are key in skeletal muscle regeneration where both myogenesis and angiogenesis occur. These therapies have been based on mesenchymal stem cells (MSCs), exosomes, microRNAs (miRs) and delivery of biological factors. The use of different calls of biomaterials is another approach, including ceramics, composites, and polymers. Natural polymers are use due its bioactivity and biocompatibility in addition to its use as scaffolds and in drug delivery systems. One of these polymers is the natural rubber latex (NRL) which is biocompatible, bioactive, versatile, low-costing, and capable of promoting tissue regeneration and angiogenesis. In this review, the advances in the field of pro-angiogenic therapies are discussed.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sofia Vega
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | | | | | | | | | - Joelcio Francisco Abbade
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil
| | | | - Luis Sobrevia
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, the Netherlands.
| | | |
Collapse
|
17
|
Nederveen JP, Betz MW, Snijders T, Parise G. The Importance of Muscle Capillarization for Optimizing Satellite Cell Plasticity. Exerc Sport Sci Rev 2021; 49:284-290. [PMID: 34547761 DOI: 10.1249/jes.0000000000000270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Satellite cells are essential for skeletal muscle regeneration, repair, and adaptation. The activity of satellite cells is influenced by their interactions with muscle-resident endothelial cells. We postulate that the microvascular network between muscle fibers plays a critical role in satellite cell function. Exercise-induced angiogenesis can mitigate the decline in satellite cell function with age.
Collapse
Affiliation(s)
- Joshua P Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Milan W Betz
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gianni Parise
- Department of Kinesiology, Faculty of Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
18
|
Nascimento JJAC, Machado ASD, Della-Santa GML, Fernandes DC, Ferreira MC, Machado GAP, Chaves BCG, Costa KB, Rocha-Vieira E, Oliveira MX, Gaiad TP, Santos AP. Effects of photobiomodulation therapy on functional recovery, angiogenesis and redox status in denervated muscle of rats. EINSTEIN-SAO PAULO 2021; 19:eAO6001. [PMID: 34586157 PMCID: PMC8439560 DOI: 10.31744/einstein_journal/2021ao6001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Objective: To evaluate the effects of photobiomodulation therapy in redox status, angiogenesis marker – vascular endothelial growth factor – and in the functional recovery in denervated muscle. Methods: A total of 32 female Wistar rats underwent a crush injury and were randomly divided into four groups: Light Emitting Diode Group 2 and Control Group 2 (muscle collected 2 days after injury), and Light Emitting Diode Group 21 and Control Group 21 (muscle collected 21 days afterinjury). Light Emitting Diode Group 2 and Light Emitting Diode Group 21 received two and ten light emitting diode applications (630±20nm, 9J/cm2, 300mW), respectively, and the Control Group 2 and Control Group 21 did not receive any treatment. The function was evaluated by grasping test at four moments (pre-injury, 2, 10 and 21 post-injury days). The flexor digitorum muscle was collected for analysis of immunolocalization of vascular endothelial growth factor and redox parameters. Results: Functional improvement was observed at the second and tenth post-injury day in treated groups compared to control (p<0.005). The muscle tissue of treated groups presented higher immunohistochemical expression of vascular endothelial growth factor. Photobiomodulation therapy decreased the oxidative damage to lipid in Light Emitting Diode Group 2 compared to Control Group 2 (p=0.023) in the denervated muscle. Conclusion: Photobiomodulation therapy accelerated the functional recovery, increased angiogenesis and reduced lipid peroxidation in the denervated muscle at 2 days after injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karine Beatriz Costa
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Etel Rocha-Vieira
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | | | - Thais Peixoto Gaiad
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Paula Santos
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| |
Collapse
|
19
|
Ciriza J, Rodríguez-Romano A, Nogueroles I, Gallego-Ferrer G, Cabezuelo RM, Pedraz JL, Rico P. Borax-loaded injectable alginate hydrogels promote muscle regeneration in vivo after an injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112003. [PMID: 33812623 PMCID: PMC8085734 DOI: 10.1016/j.msec.2021.112003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 11/25/2022]
Abstract
Muscle tissue possess an innate regenerative potential that involves an extremely complicated and synchronized process on which resident muscle stem cells play a major role: activate after an injury, differentiate and fuse originating new myofibers for muscle repair. Considerable efforts have been made to design new approaches based on material systems to potentiate muscle repair by engineering muscle extracellular matrix and/or including soluble factors/cells in the media, trying to recapitulate the key biophysical and biochemical cues present in the muscle niche. This work proposes a different and simple approach to potentiate muscle regeneration exploiting the interplay between specific cell membrane receptors. The simultaneous stimulation of borate transporter, NaBC1 (encoded by SLC4A11gene), and fibronectin-binding integrins induced higher number and size of focal adhesions, major cell spreading and actin stress fibers, strengthening myoblast attachment and providing an enhanced response in terms of myotube fusion and maturation. The stimulated NaBC1 generated an adhesion-driven state through a mechanism that involves simultaneous NaBC1/α5β1/αvβ3 co-localization. We engineered and characterized borax-loaded alginate hydrogels for an effective activation of NaBC1 in vivo. After inducing an acute injury with cardiotoxin in mice, active-NaBC1 accelerated the muscle regeneration process. Our results put forward a new biomaterial approach for muscle repair.
Collapse
Affiliation(s)
- Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, C/ Miguel de Unamuno, 3, 01006 Vitoria Gasteiz, Spain.
| | - Ana Rodríguez-Romano
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ignacio Nogueroles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Gloria Gallego-Ferrer
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Rubén Martín Cabezuelo
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - José Luis Pedraz
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, C/ Miguel de Unamuno, 3, 01006 Vitoria Gasteiz, Spain.
| | - Patricia Rico
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
20
|
Characterization of encapsulated porcine cardiosphere-derived cells embedded in 3D alginate matrices. Int J Pharm 2021; 599:120454. [PMID: 33676988 DOI: 10.1016/j.ijpharm.2021.120454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Myocardial infarction is caused by an interruption of coronary blood flow, leading to one of the main death causes worldwide. Current therapeutic approaches are palliative and not able to solve the loss of cardiac tissue. Cardiosphere derived cells (CDCs) reduce scarring, and increase viable myocardium, with safety and adequate biodistribution, but show a low rate engraftment and survival after implantation. In order to solve the low retention, we propose the encapsulation of CDCs within three-dimensional alginate-poly-L-lysine-alginate matrix as therapy for cardiac regeneration. In this work, we demonstrate the encapsulation of CDCs in alginate matrix, with no decrease in viability over a month, and showing the preservation of CDCs phenotype, differentiation potential, gene expression profile and growth factor release after encapsulation, moving a step forward to clinical translation of CDCs therapy in regeneration in heart failure.
Collapse
|
21
|
Narayanan N, Calve S. Extracellular matrix at the muscle - tendon interface: functional roles, techniques to explore and implications for regenerative medicine. Connect Tissue Res 2021; 62:53-71. [PMID: 32856502 PMCID: PMC7718290 DOI: 10.1080/03008207.2020.1814263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The muscle-tendon interface is an anatomically specialized region that is involved in the efficient transmission of force from muscle to tendon. Due to constant exposure to loading, the interface is susceptible to injury. Current treatment methods do not meet the socioeconomic demands of reduced recovery time without compromising the risk of reinjury, requiring the need for developing alternative strategies. The extracellular matrix (ECM) present in muscle, tendon, and at the interface of these tissues consists of unique molecules that play significant roles in homeostasis and repair. Better, understanding the function of the ECM during development, injury, and aging has the potential to unearth critical missing information that is essential for accelerating the repair at the muscle-tendon interface. Recently, advanced techniques have emerged to explore the ECM for identifying specific roles in musculoskeletal biology. Simultaneously, there is a tremendous increase in the scope for regenerative medicine strategies to address the current clinical deficiencies. Advancements in ECM research can be coupled with the latest regenerative medicine techniques to develop next generation therapies that harness ECM for treating defects at the muscle-tendon interface. The current work provides a comprehensive review on the role of muscle and tendon ECM to provide insights about the role of ECM in the muscle-tendon interface and discusses the latest research techniques to explore the ECM to gathered information for developing regenerative medicine strategies.
Collapse
Affiliation(s)
- Naagarajan Narayanan
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| |
Collapse
|
22
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
23
|
Smoak M, Mikos A. Advances in biomaterials for skeletal muscle engineering and obstacles still to overcome. Mater Today Bio 2020; 7:100069. [PMID: 32695987 PMCID: PMC7363708 DOI: 10.1016/j.mtbio.2020.100069] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022] Open
Abstract
Repair of injured skeletal muscle is a sophisticated process that uses immune, muscle, perivascular, and neural cells. In acute injury, the robust endogenous repair process can facilitate complete regeneration with little to no functional deficit. However, in severe injury, the damage is beyond the capacity for self-repair, often resulting in structural and functional deficits. Aside from the insufficiencies in muscle function, the aesthetic deficits can impact quality of life. Current clinical treatments are significantly limited in their capacity to structurally and functionally repair the damaged skeletal muscle. Therefore, alternative approaches are needed. Biomaterial therapies for skeletal muscle engineering have leveraged natural materials with sophisticated scaffold fabrication techniques to guide cell infiltration, alignment, and differentiation. Advances in biomaterials paired with a standardized and rigorous assessment of resulting tissue formation have greatly advanced the field of skeletal muscle engineering in the last several years. Herein, we discuss the current trends in biomaterials-based therapies for skeletal muscle regeneration and present the obstacles still to be overcome before clinical translation is possible. With millions of people affected by muscle trauma each year, the development of a therapy that can repair the structural and functional deficits after severe muscle injury is pivotal.
Collapse
Affiliation(s)
- M.M. Smoak
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - A.G. Mikos
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| |
Collapse
|
24
|
Etienne J, Liu C, Skinner CM, Conboy MJ, Conboy IM. Skeletal muscle as an experimental model of choice to study tissue aging and rejuvenation. Skelet Muscle 2020; 10:4. [PMID: 32033591 PMCID: PMC7007696 DOI: 10.1186/s13395-020-0222-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is among the most age-sensitive tissues in mammal organisms. Significant changes in its resident stem cells (i.e., satellite cells, SCs), differentiated cells (i.e., myofibers), and extracellular matrix cause a decline in tissue homeostasis, function, and regenerative capacity. Based on the conservation of aging across tissues and taking advantage of the relatively well-characterization of the myofibers and associated SCs, skeletal muscle emerged as an experimental system to study the decline in function and maintenance of old tissues and to explore rejuvenation strategies. In this review, we summarize the approaches for understanding the aging process and for assaying the success of rejuvenation that use skeletal muscle as the experimental system of choice. We further discuss (and exemplify with studies of skeletal muscle) how conflicting results might be due to variations in the techniques of stem cell isolation, differences in the assays of functional rejuvenation, or deciding on the numbers of replicates and experimental cohorts.
Collapse
Affiliation(s)
- Jessy Etienne
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Colin M Skinner
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA.
| |
Collapse
|
25
|
Dissecting cell diversity and connectivity in skeletal muscle for myogenesis. Cell Death Dis 2019; 10:427. [PMID: 31160550 PMCID: PMC6546706 DOI: 10.1038/s41419-019-1647-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/25/2019] [Accepted: 05/06/2019] [Indexed: 12/28/2022]
Abstract
Characterized by their slow adhering property, skeletal muscle myogenic progenitor cells (MPCs) have been widely utilized in skeletal muscle tissue engineering for muscle regeneration, but with limited efficacy. Skeletal muscle regeneration is regulated by various cell types, including a large number of rapidly adhering cells (RACs) where their functions and mechanisms are still unclear. In this study, we explored the function of RACs by co-culturing them with MPCs in a biomimetic skeletal muscle organoid system. Results showed that RACs promoted the myogenic potential of MPCs in the organoid. Single-cell RNA-Seq was also performed, classifying RACs into 7 cell subtypes, including one newly described cell subtype: teno-muscular cells (TMCs). Connectivity map of RACs and MPCs subpopulations revealed potential growth factors (VEGFA and HBEGF) and extracellular matrix (ECM) proteins involvement in the promotion of myogenesis of MPCs during muscle organoid formation. Finally, trans-well experiments and small molecular inhibitors blocking experiments confirmed the role of RACs in the promotion of myogenic differentiation of MPCs. The RACs reported here revealed complex cell diversity and connectivity with MPCs in the biomimetic skeletal muscle organoid system, which not only offers an attractive alternative for disease modeling and in vitro drug screening but also provides clues for in vivo muscle regeneration.
Collapse
|
26
|
Nakayama KH, Quarta M, Paine P, Alcazar C, Karakikes I, Garcia V, Abilez OJ, Calvo NS, Simmons CS, Rando TA, Huang NF. Treatment of volumetric muscle loss in mice using nanofibrillar scaffolds enhances vascular organization and integration. Commun Biol 2019; 2:170. [PMID: 31098403 PMCID: PMC6505043 DOI: 10.1038/s42003-019-0416-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Traumatic skeletal muscle injuries cause irreversible tissue damage and impaired revascularization. Engineered muscle is promising for enhancing tissue revascularization and regeneration in injured muscle. Here we fabricated engineered skeletal muscle composed of myotubes interspersed with vascular endothelial cells using spatially patterned scaffolds that induce aligned cellular organization, and then assessed their therapeutic benefit for treatment of murine volumetric muscle loss. Murine skeletal myoblasts co-cultured with endothelial cells in aligned nanofibrillar scaffolds form endothelialized and aligned muscle with longer myotubes, more synchronized contractility, and more abundant secretion of angiogenic cytokines, compared to endothelialized engineered muscle formed from randomly-oriented scaffolds. Treatment of traumatically injured muscle with endothelialized and aligned skeletal muscle promotes the formation of highly organized myofibers and microvasculature, along with greater vascular perfusion, compared to treatment of muscle derived from randomly-oriented scaffolds. This work demonstrates the potential of endothelialized and aligned engineered skeletal muscle to promote vascular regeneration following transplantation.
Collapse
Affiliation(s)
- Karina H. Nakayama
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305 USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Marco Quarta
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304 USA
| | - Patrick Paine
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304 USA
| | - Cynthia Alcazar
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
| | - Ioannis Karakikes
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305 USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305 USA
| | - Victor Garcia
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
| | - Oscar J. Abilez
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305 USA
| | - Nicholas S. Calvo
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainsville, FL 32611 USA
| | - Chelsey S. Simmons
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainsville, FL 32611 USA
| | - Thomas A. Rando
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304 USA
| | - Ngan F. Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305 USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
27
|
Podkalicka P, Mucha O, Dulak J, Loboda A. Targeting angiogenesis in Duchenne muscular dystrophy. Cell Mol Life Sci 2019; 76:1507-1528. [PMID: 30770952 PMCID: PMC6439152 DOI: 10.1007/s00018-019-03006-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) represents one of the most devastating types of muscular dystrophies which affect boys already at early childhood. Despite the fact that the primary cause of the disease, namely the lack of functional dystrophin is known already for more than 30 years, DMD still remains an incurable disease. Thus, an enormous effort has been made during recent years to reveal novel mechanisms that could provide therapeutic targets for DMD, especially because glucocorticoids treatment acts mostly symptomatic and exerts many side effects, whereas the effectiveness of genetic approaches aiming at the restoration of functional dystrophin is under the constant debate. Taking into account that dystrophin expression is not restricted to muscle cells, but is present also in, e.g., endothelial cells, alterations in angiogenesis process have been proposed to have a significant impact on DMD progression. Indeed, already before the discovery of dystrophin, several abnormalities in blood vessels structure and function have been revealed, suggesting that targeting angiogenesis could be beneficial in DMD. In this review, we will summarize current knowledge about the angiogenesis status both in animal models of DMD as well as in DMD patients, focusing on different organs as well as age- and sex-dependent effects. Moreover, we will critically discuss some approaches such as modulation of vascular endothelial growth factor or nitric oxide related pathways, to enhance angiogenesis and attenuate the dystrophic phenotype. Additionally, we will suggest the potential role of other mediators, such as heme oxygenase-1 or statins in those processes.
Collapse
Affiliation(s)
- Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
28
|
Zhang R, Liang Y, Wei S. The expressions of NGF and VEGF in the fracture tissues are closely associated with accelerated clavicle fracture healing in patients with traumatic brain injury. Ther Clin Risk Manag 2018; 14:2315-2322. [PMID: 30538487 PMCID: PMC6254501 DOI: 10.2147/tcrm.s182325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Angiogenesis and bone formation are vital for fracture healing. Nerve growth factor (NGF) not only promotes neuronal survival but also enhances the proliferation and differentiation of osteoblasts. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis. However, the potential correlation of NGF and VEGF levels with fracture healing in patients with traumatic brain injury (TBI) remains unclear. Methods This study enrolled 22 patients with clavicle fracture and concomitant TBI (CFT group) and 25 patients with clavicle fracture alone (CF group). Serum NGF levels were measured with ELISA. The expressions of NGF, VEGF, and CD31 in callus tissues were measured with immunohistochemistry. Results The fracture healing time in CFT group (82.22±13.61 days) was significantly shorter than that in CF group (127±25.05 days; P<0.001). The expression of CD31, marker of blood vessels, in callus tissues of CFT group was higher compared with that of CF group. Serum NGF levels and the expression of NGF in callus tissues of CFT group were higher than those in CF group (P<0.01). The expressions of CD31, NGF, and VEGF are correlated with shorter fracture healing time. Conclusion The formation of blood vessels was increased in CFT group compared with CF group. NGF and VEGF levels were higher in CFT group than in CF group and correlated with shorter fracture healing time. Accelerated fracture healing in patients with TBI may be due to NGF- and VEGF-mediated angiogenesis at the fracture site.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Orthopedics, Liuzhou General Hospital, Liuzhou 545006, Guangxi, China, .,The Department of Orthopedics, The Affiliated Liuzhou General Hospital of Guangxi University of Technology, Liuzhou 545006, Guangxi, China,
| | - Yi Liang
- Department of Orthopedics, Liuzhou General Hospital, Liuzhou 545006, Guangxi, China,
| | - Shuxiang Wei
- Department of Orthopedics, Liuzhou General Hospital, Liuzhou 545006, Guangxi, China,
| |
Collapse
|
29
|
Current Methods for Skeletal Muscle Tissue Repair and Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1984879. [PMID: 29850487 PMCID: PMC5926523 DOI: 10.1155/2018/1984879] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022]
Abstract
Skeletal muscle has the capacity of regeneration after injury. However, for large volumes of muscle loss, this regeneration needs interventional support. Consequently, muscle injury provides an ongoing reconstructive and regenerative challenge in clinical work. To promote muscle repair and regeneration, different strategies have been developed within the last century and especially during the last few decades, including surgical techniques, physical therapy, biomaterials, and muscular tissue engineering as well as cell therapy. Still, there is a great need to develop new methods and materials, which promote skeletal muscle repair and functional regeneration. In this review, we give a comprehensive overview over the epidemiology of muscle tissue loss, highlight current strategies in clinical treatment, and discuss novel methods for muscle regeneration and challenges for their future clinical translation.
Collapse
|
30
|
Wang L, Shi Q, Dai J, Gu Y, Feng Y, Chen L. Increased vascularization promotes functional recovery in the transected spinal cord rats by implanted vascular endothelial growth factor-targeting collagen scaffold. J Orthop Res 2018; 36:1024-1034. [PMID: 28786500 DOI: 10.1002/jor.23678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/01/2017] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) is global health concern. The effective strategies for SCI are relevant to the improvement on nerve regeneration microenvironment. Vascular endothelial growth factor (VEGF) is an important cytokine for inducing angiogenesis and accelerating nerve system function recovery from injury. We proposed that VEGF could improve nerve regeneration in SCI. However, an uncontrolled delivery system target to injury site not only decreases the therapeutic efficacy but also increases the risk of tumor information. We implanted collagen scaffold (CS) targeted with a constructed protein, collagen-binding VEGF (CBD-VEGF), to bridge transected spine cord gap in a rat transected SCI model. Functional and histological examinations were conducted to assess the repair capacity of the delivery system CS/CBD-VEGF. The results indicated that the implantation of CS/CBD-VEGF into the model rats improved the survival rate and exerted beneficial effect on functional recovery. The controlled intervention improved the microenvironment, guided axon growth, and promoted neovascularization at the injury site. Therefore, the delivery system with stable binding of VEGF potentially provides a better therapeutic option for SCI. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1024-1034, 2018.
Collapse
Affiliation(s)
- Lingjun Wang
- Department of Orthopedic, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Qin Shi
- Department of Orthopedic, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Beijing, 100000, P.R. China
| | - Yong Gu
- Department of Orthopedic, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Yu Feng
- Department of Orthopedic, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Liang Chen
- Department of Orthopedic, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| |
Collapse
|
31
|
Mizuno S, Yoda M, Shimoda M, Chiba K, Nakamura M, Horiuchi K. Inhibition of ADAM10 in satellite cells accelerates muscle regeneration following muscle injury. J Orthop Res 2018; 36:2259-2265. [PMID: 29464750 DOI: 10.1002/jor.23878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/15/2018] [Indexed: 02/04/2023]
Abstract
Muscle injury is one of the most common orthopedic and sports disorders. For severe cases, surgical repair may be indicated; however, other than immobilization and the administration of anti-inflammatory drugs there is currently no effective conservative treatment for this condition. Satellite cells (SCs) are muscle-specific stem cells and are indispensable for muscle regeneration after muscle injury. SCs are activated upon muscle injury to proliferate and differentiate into myoblasts, which subsequently fuse into myofibers and regenerate the damaged muscle. We have previously shown that ADAM10, a membrane-anchored proteolytic enzyme, is essential for the maintenance of SC quiescence by activating the Notch signaling pathway in SCs. Because suppression of ADAM10 activity in SCs can activate SC differentiation, we asked whether inactivation of ADAM10 in SCs after muscle injury could enhance muscle regeneration. Using Adam10 conditional knockout mice, in which ADAM10 activity can specifically be suppressed in SCs, we found that partial inactivation of ADAM10 accelerates muscle regeneration after muscle injury. Nearly identical results were obtained by the administration of GI254023X, a selective ADAM10 inhibitor. The findings of the present study thus indicate that transient enhancement of SC differentiation after muscle injury expedites muscle regeneration and that ADAM10 can be a potential molecular target in treating muscle injuries. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Sakiko Mizuno
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Orthopedics, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa City, Chiba, 272-8513, Japan
| | - Masaki Yoda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Orthopedic Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
32
|
Lewis FC, Cottle BJ, Shone V, Marazzi G, Sassoon D, Tseng CCS, Dankers PYW, Chamuleau SAJ, Nadal-Ginard B, Ellison-Hughes GM. Transplantation of Allogeneic PW1 pos/Pax7 neg Interstitial Cells Enhance Endogenous Repair of Injured Porcine Skeletal Muscle. ACTA ACUST UNITED AC 2017; 2:717-736. [PMID: 30062184 PMCID: PMC6059014 DOI: 10.1016/j.jacbts.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
Abstract
Allogeneic PICs express and secrete an array of pro-regenerative paracrine factors that stimulate a regenerative response in a preclinical muscle injury model applicable to humans. Paracrine factors secreted by allogeneic PICs stimulate endogenous progenitor cell activation and differentiation, leading to accelerated and improved myofiber regeneration and microvessel formation. Allogeneic PICs survive long enough to exert their action before being cleared by the host immune system. Therefore, the cells transplanted are allogeneic but the regeneration is completely autologous. Administration of HGF and IGF-1 improves skeletal muscle regeneration, but not to the same extent as PIC transplantation.
Skeletal muscle-derived PW1pos/Pax7neg interstitial cells (PICs) express and secrete a multitude of proregenerative growth factors and cytokines. Utilizing a porcine preclinical skeletal muscle injury model, delivery of allogeneic porcine PICs (pPICs) significantly improved and accelerated myofiber regeneration and neocapillarization, compared with saline vehicle control-treated muscles. Allogeneic pPICs did not contribute to new myofibers or capillaries and were eliminated by the host immune system. In conclusion, allogeneic pPIC transplantation stimulated the endogenous stem cell pool to bring about enhanced autologous skeletal muscle repair and regeneration. This allogeneic cell approach is considered a cost-effective, easy to apply, and readily available regenerative therapeutic strategy.
Collapse
Key Words
- BrdU, 5-bromo-2′-deoxyuridine
- CM, pPIC conditioned medium
- CSA, cross sectional area
- CSC, cardiac stem cell
- CTRL, control
- CTX, cardiotoxin
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco’s Modified Eagle's medium
- FBS, fetal bovine serum
- GFPpPIC, GFP-positive porcine PW1pos/Pax7neg interstitial cell
- GM, growth medium
- HUVEC, human umbilical vein endothelial cell
- HVG, hematoxylin and van Gieson
- ICM, heat-inactivated conditioned medium
- IV, intravenous
- MHC, myosin heavy chain
- MI, myocardial infarction
- P, passage
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate buffered saline
- PIC, PW1pos/Pax7neg interstitial cell
- PICs
- TA, tibialis anterior
- UM, unconditioned medium
- allogeneic progenitor cells
- growth factors
- nMHC, neonatal myosin heavy chain
- pPIC, porcine PW1pos/Pax7neg interstitial cell
- porcine preclinical model
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
- regeneration
- skeletal muscle
- vWF, Von Willebrand factor
Collapse
Affiliation(s)
- Fiona C Lewis
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Beverley J Cottle
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Victoria Shone
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine UMRS 1166, Institute of Cardiometabolism and Nutrition, Université de Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - David Sassoon
- Stem Cells and Regenerative Medicine UMRS 1166, Institute of Cardiometabolism and Nutrition, Université de Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Cheyenne C S Tseng
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patricia Y W Dankers
- Supramolecular Biomaterials for Translational Biomedical Science, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bernardo Nadal-Ginard
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Georgina M Ellison-Hughes
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| |
Collapse
|
33
|
van Steenberghe M, Schubert T, Guiot Y, Goebbels RM, Gianello P. Improvement of mesh recolonization in abdominal wall reconstruction with adipose vs. bone marrow mesenchymal stem cells in a rodent model. J Pediatr Surg 2017; 52:1355-1362. [PMID: 27939203 DOI: 10.1016/j.jpedsurg.2016.11.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/03/2016] [Accepted: 11/27/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND Reconstruction of muscle defects remains a challenge. Our work assessed the potential of an engineered construct made of a human acellular collagen matrix (HACM) seeded with porcine mesenchymal stem cells (MSCs) to reconstruct abdominal wall muscle defects in a rodent model. METHODS This study compared 2 sources of MSCs (bone-marrow, BMSCs, and adipose, ASCs) in vitro and in vivo for parietal defect reconstruction. Cellular viability and growth factor release (VEGF, FGF-Beta, HGF, IGF-1, TGF-Beta) were investigated under normoxic/hypoxic culture conditions. Processed and recellularized HACMs were mechanically assessed. The construct was tested in vivo in full thickness abdominal wall defect treated with HACM alone vs. HACM+ASCs or BMSCs (n=14). Tissue remodeling was studied at day 30 for neo-angiogenesis and muscular reconstruction. RESULTS A significantly lower secretion of IGF was observed with ASCs vs. BMSCs under hypoxic conditions (-97.6%, p<0.005) whereas significantly higher VEGF/FGF secretions were found with ASCs (+92%, p<0.001 and +72%, p<0.05, respectively). Processing and recellularization did not impair the mechanical properties of the HACM. In vivo, angiogenesis and muscle healing were significantly improved by the HACM+ASCs in comparison to BMSCs (p<0.05) at day 30. CONCLUSION A composite graft made of an HACM seeded with ASCs can improve muscle repair by specific growth factor release in hypoxic conditions and by in vivo remodeling (neo-angiogenesis/graft integration) while maintaining mechanical properties.
Collapse
Affiliation(s)
- M van Steenberghe
- Université catholique de Louvain, Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle de Chirurgie Expérimentale et Transplantation (CHEX), Avenue Mounier 55, B-1200 Brussels, Belgium; Cardiac Surgery Department, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - T Schubert
- Université catholique de Louvain, Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle de Chirurgie Expérimentale et Transplantation (CHEX), Avenue Mounier 55, B-1200 Brussels, Belgium; Cliniques universitaires Saint-Luc, Service d'orthopédie et de traumatologie de l'appareil locomoteur, Avenue Hippocrate 10, B-1200 Brussels, Belgium
| | - Y Guiot
- Cliniques universitaires Saint-Luc, Service d'anatomopathologie, Avenue Hippocrate 10, B-1200 Brussels, Belgium
| | - R M Goebbels
- Université catholique de Louvain, Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle de Chirurgie Expérimentale et Transplantation (CHEX), Avenue Mounier 55, B-1200 Brussels, Belgium
| | - P Gianello
- Université catholique de Louvain, Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle de Chirurgie Expérimentale et Transplantation (CHEX), Avenue Mounier 55, B-1200 Brussels, Belgium
| |
Collapse
|
34
|
Gigliotti D, Xu MC, Davidson MJ, Macdonald PB, Leiter JRS, Anderson JE. Fibrosis, low vascularity, and fewer slow fibers after rotator-cuff injury. Muscle Nerve 2017; 55:715-726. [PMID: 27571286 DOI: 10.1002/mus.25388] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Rotator-cuff injury (RCI) represents 50% of shoulder injuries, and prevalence increases with age. Even with successful tendon repair, muscle and joint function may not return. METHODS To explore the dysfunction, supraspinatus and ipsilateral deltoid (control) muscles were biopsied during arthroscopic RCI repair for pair-wise histological and protein-expression studies. RESULTS Supraspinatus showed fiber atrophy (P < 0.0001), fibrosis (by Sirius Red, P = 0.05), reduced vascular density (P < 0.001), and a lower proportion of slow fibers (P < 0.0001) compared with the ipsilateral control muscle. There were also higher levels of atrogin-1 (P = 0.05), vascular endothelial growth factor (VEGF, P < 0.01), and dystrophin (P < 0.008, relative to fiber diameter) versus control. CONCLUSIONS Adaptive changes in vascular endothelial growth factor and dystrophin were likely associated with reduced vascular supply, fatigue resistance, and fibrosis, accompanied by disuse atrophy from mechanical unloading of supraspinatus after tendon tear. Treatment to promote growth and vascularity in atrophic supraspinatus muscle may help improve functional outcome after surgical repair. Muscle Nerve 55: 715-726, 2017.
Collapse
Affiliation(s)
- Deanna Gigliotti
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 212 Biological Sciences Building, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| | - Mark C Xu
- Faculty of Health Sciences College of Medicine Departments of Surgery (Orthopedics) at the University of Manitoba, Winnipeg, Canada
| | - Michael J Davidson
- Faculty of Health Sciences College of Medicine Department of Radiology at the University of Manitoba, Winnipeg, Canada
| | - Peter B Macdonald
- Faculty of Health Sciences College of Medicine Departments of Surgery (Orthopedics) at the University of Manitoba, Winnipeg, Canada.,Pan Am Clinic, Winnipeg, Canada
| | - Jeff R S Leiter
- Faculty of Health Sciences College of Medicine Departments of Surgery (Orthopedics) at the University of Manitoba, Winnipeg, Canada.,Pan Am Clinic, Winnipeg, Canada
| | - Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 212 Biological Sciences Building, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
35
|
Chongsatientam A, Yimlamai T. Therapeutic Pulsed Ultrasound Promotes Revascularization and Functional Recovery of Rat Skeletal Muscle after Contusion Injury. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2938-2949. [PMID: 27665217 DOI: 10.1016/j.ultrasmedbio.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
The mechanism by which therapeutic pulsed ultrasound (TPU) promotes the repair of damaged gastrocnemius muscle was investigated. Male Wistar rats were divided into uninjured, sham-treated injured and TPU-treated injured (TPU) groups. Injury was induced by mass-drop technique. TPU was applied to the injured muscle for 5 min, daily, started at day 1 post-injury and continuing for 3, 7 and 14 d. For 3 d post-injury, a significant reduction in muscle force was observed in both the sham-treated injured and TPU groups. TPU treatment significantly increased recovery force of the injured muscle after day 7 post-injury. This effect of TPU is associated with increased centronucleated fibers and cross-sectional area, mRNA expression of the vascular endothelial growth factor and capillary density of the regenerated fibers, but not with mRNA expression of nitric oxide synthase. We conclude that TPU hastens muscle recovery, at least in part, by upregulating angiogenesis.
Collapse
Affiliation(s)
| | - Tossaporn Yimlamai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
36
|
Laumonier T, Menetrey J. Muscle injuries and strategies for improving their repair. J Exp Orthop 2016; 3:15. [PMID: 27447481 PMCID: PMC4958098 DOI: 10.1186/s40634-016-0051-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/15/2016] [Indexed: 12/31/2022] Open
Abstract
Satellite cells are tissue resident muscle stem cells required for postnatal skeletal muscle growth and repair through replacement of damaged myofibers. Muscle regeneration is coordinated through different mechanisms, which imply cell-cell and cell-matrix interactions as well as extracellular secreted factors. Cellular dynamics during muscle regeneration are highly complex. Immune, fibrotic, vascular and myogenic cells appear with distinct temporal and spatial kinetics after muscle injury. Three main phases have been identified in the process of muscle regeneration; a destruction phase with the initial inflammatory response, a regeneration phase with activation and proliferation of satellite cells and a remodeling phase with maturation of the regenerated myofibers. Whereas relatively minor muscle injuries, such as strains, heal spontaneously, severe muscle injuries form fibrotic tissue that impairs muscle function and lead to muscle contracture and chronic pain. Current therapeutic approaches have limited effectiveness and optimal strategies for such lesions are not known yet. Various strategies, including growth factors injections, transplantation of muscle stem cells in combination or not with biological scaffolds, anti-fibrotic therapies and mechanical stimulation, may become therapeutic alternatives to improve functional muscle recovery.
Collapse
Affiliation(s)
- Thomas Laumonier
- Department of Orthopaedic Surgery, Geneva University Hospitals & Faculty of Medicine, 4, Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland.
| | - Jacques Menetrey
- Department of Orthopaedic Surgery, Geneva University Hospitals & Faculty of Medicine, 4, Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland
| |
Collapse
|
37
|
Smythe G. Role of Growth Factors in Modulation of the Microvasculature in Adult Skeletal Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:161-83. [PMID: 27003400 DOI: 10.1007/978-3-319-27511-6_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-natal skeletal muscle is a highly plastic tissue that has the capacity to regenerate rapidly following injury, and to undergo significant modification in tissue mass (i.e. atrophy/hypertrophy) in response to global metabolic changes. These processes are reliant largely on soluble factors that directly modulate muscle regeneration and mass. However, skeletal muscle function also depends on an adequate blood supply. Thus muscle regeneration and changes in muscle mass, particularly hypertrophy, also demand rapid changes in the microvasculature. Recent evidence clearly demonstrates a critical role for soluble growth factors in the tight regulation of angiogenic expansion of the muscle microvasculature. Furthermore, exogenous modulation of these factors has the capacity to impact directly on angiogenesis and thus, indirectly, on muscle regeneration, growth and performance. This chapter reviews recent developments in understanding the role of growth factors in modulating the skeletal muscle microvasculature, and the potential therapeutic applications of exogenous angiogenic and anti-angiogenic mediators in promoting effective growth and regeneration, and ameliorating certain diseases, of skeletal muscle.
Collapse
Affiliation(s)
- Gayle Smythe
- Faculty of Science, Charles Sturt University, Albury, NSW, 789, 2640, Australia.
| |
Collapse
|
38
|
Grasman JM, Zayas MJ, Page RL, Pins GD. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomater 2015. [PMID: 26219862 DOI: 10.1016/j.actbio.2015.07.038] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. STATEMENT OF SIGNIFICANCE Volumetric muscle loss (VML) injuries result from traumatic incidents such as those presented from combat missions, where soft-tissue extremity injuries are represented in one of four cases. These injuries remove or destroy large amounts of skeletal muscle including the basement membrane and connective tissue, removing the structural, mechanical, and biochemical cues that usually direct its repair. This results in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. In this review, we examine current strategies for the development of scaffold materials designed for skeletal muscle regeneration, highlighting advances and limitations associated with these methodologies. Finally, we identify future approaches to enhance skeletal muscle regeneration.
Collapse
|
39
|
Wang B, Tan L, Deng D, Lu T, Zhou C, Li Z, Tang Z, Wu Z, Tang H. Novel stable cytokine delivery system in physiological pH solution: chitosan oligosaccharide/heparin nanoparticles. Int J Nanomedicine 2015; 10:3417-27. [PMID: 26056441 PMCID: PMC4431508 DOI: 10.2147/ijn.s82091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Cell therapy is a promising strategy for tissue regeneration. Key to this strategy is mobilization and recruitment of exogenous or autologous stem/progenitor cells by cytokines. However, there is no effective cytokine delivery system available for clinic application, in particular for myocardial regeneration. The aim of this study was to develop a novel cytokine delivery system that is stable in solution at physiological pH. Methods Four groups of self-assembled chitosan oligosaccharide/heparin (CSO/H) nanoparticles were prepared with various volume ratios of chitosan oligosaccharide to heparin (5:2, 5:4, 4:15, 1:5) and characterized by laser diffraction, particle size analysis, and transmission electron microscopy. The encapsulation efficiency and loading content of two cytokines, ie, stromal cell-derived factor (SDF)-1α and vascular endothelial growth factor (VEGF) were quantified using an enzyme-linked immunosorbent assay. The biological activity of the loaded SDF-1α and VEGF was evaluated using the transwell migration assay and MTT assay. The dispersion profiles for the cytokine-loaded nanoparticles were quantified using fluorescence molecular tomography. Results CSO/H nanoparticles were prepared successfully in solution with physiological pH. The particle sizes in the four treatment groups were in the range of 96.2–210.5 nm and the zeta potential ranged from −29.4 mV to 24.2 mV. The loading efficiency in the CSO/H nanoparticle groups with the first three ratios was more than 90%. SDF-1α loaded into CSO/H nanoparticles retained its migration activity and VEGF loaded into CSO/H nanoparticles continued to show proliferation activity. The in vivo dispersion test showed that the CSO/H nanoparticles enabled to VEGF to accumulate locally for a longer period of time. Conclusion CSO/H nanoparticles have a high cytokine loading capacity and allow cytokines to maintain their bioactivity for longer, are stable in an environment with physiological pH, and may be a promising cytokine delivery system for tissue regeneration.
Collapse
Affiliation(s)
- Bin Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Ling Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Dengpu Deng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Changwei Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhongkui Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Hao Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
40
|
Kipryushina YO, Yakovlev KV, Odintsova NA. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates. Cytokine Growth Factor Rev 2015; 26:687-95. [PMID: 26066416 DOI: 10.1016/j.cytogfr.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia; Far Eastern Federal University, Sukhanova Str. 8, 690950 Vladivostok, Russia.
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia
| | - Nelly A Odintsova
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia; Far Eastern Federal University, Sukhanova Str. 8, 690950 Vladivostok, Russia
| |
Collapse
|
41
|
Ma F, Xiao Z, Meng D, Hou X, Zhu J, Dai J, Xu R. Use of natural neural scaffolds consisting of engineered vascular endothelial growth factor immobilized on ordered collagen fibers filled in a collagen tube for peripheral nerve regeneration in rats. Int J Mol Sci 2014; 15:18593-609. [PMID: 25322152 PMCID: PMC4227234 DOI: 10.3390/ijms151018593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023] Open
Abstract
The search for effective strategies for peripheral nerve regeneration has attracted much attention in recent years. In this study, ordered collagen fibers were used as intraluminal fibers after nerve injury in rats. Vascular endothelial growth factor (VEGF) plays an important role in nerve regeneration, but its very fast initial burst of activity within a short time has largely limited its clinical use. For the stable binding of VEGF to ordered collagen fibers, we fused a collagen-binding domain (CBD) to VEGF through recombinant DNA technology. Then, we filled the ordered collagen fibers-CBD-VEGF targeting delivery system in a collagen tube to construct natural neural scaffolds, which were then used to bridge transected nerve stumps in a rat sciatic nerve transection model. After transplantation, the natural neural scaffolds showed minimal foreign body reactions and good integration into the host tissue. Oriented collagen fibers in the collagen tube could guide regenerating axons in an oriented manner to the distal, degenerating nerve segment, maximizing the chance of target reinnervation. Functional and histological analyses indicated that the recovery of nerve function in the natural neural scaffolds-treated group was superior to the other grafted groups. The guiding of oriented axonal regeneration and effective delivery systems surmounting the otherwise rapid and short-lived diffusion of growth factors in body fluids are two important strategies in promoting peripheral nerve regeneration. The natural neural scaffolds described take advantage of these two aspects and may produce synergistic effects. These properties qualified the artificial nerve conduits as a putative candidate system for the fabrication of peripheral nerve reconstruction devices.
Collapse
Affiliation(s)
- Fukai Ma
- Fudan University Huashan Hospital, Department of Neurosurgery, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, 12 Wulumuqi Zhong Rd., Shanghai 200040, China.
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Danqing Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Jianhong Zhu
- Fudan University Huashan Hospital, Department of Neurosurgery, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College-Fudan University, 12 Wulumuqi Zhong Rd., Shanghai 200040, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China.
| | - Ruxiang Xu
- The Affiliated Bayi Brain Hospital, the Military General Hospital of Beijing People's Liberation Army, No. 5 Nanmen Cang, Dongcheng District, Beijing 100700, China.
| |
Collapse
|
42
|
Age-dependent changes cooperatively impact skeletal muscle regeneration after compartment syndrome injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2225-36. [PMID: 24909508 DOI: 10.1016/j.ajpath.2014.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/21/2014] [Accepted: 03/27/2014] [Indexed: 11/23/2022]
Abstract
Declining skeletal muscle function, due to injury and aging (sarcopenia), results in a significantly decreased quality of life and is a major cause of disability in the United States. Studies examining recovery from muscle injury in models of older animals principally used insults that primarily affect only the myofibers without affecting the muscle tissue microenvironment. This type of injury does not adequately represent the full extent of tissue damage observed in older humans, which encompasses injury not only to the muscle fibers, but also to the surrounding tissue components, such as the vasculature and nerves. Previously, we described a novel rat model of compression-induced muscle injury that results in multicomponent injury to the muscle and adequately mimics compartment syndrome injuries seen in patients. Herein, we characterized tissue regeneration in young, adult, and aged rats after compartment syndrome injury. We observed significant differences between the regeneration process in the different aged rats that involved muscle function, tissue anatomical features, neovascularization, and innervation. Compared to young rats, adult rats had delayed functional recovery, whereas the aged rats were deficient in their regenerative capacity. Age-dependent changes in both the ability to restore the contractile apparatus and myogenesis are important, and must be taken into consideration when designing therapies for the treatment of muscle injury.
Collapse
|
43
|
Sassoli C, Nosi D, Tani A, Chellini F, Mazzanti B, Quercioli F, Zecchi-Orlandini S, Formigli L. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells. Exp Cell Res 2014; 323:297-313. [PMID: 24631289 DOI: 10.1016/j.yexcr.2014.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 03/01/2014] [Accepted: 03/03/2014] [Indexed: 12/11/2022]
Abstract
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7(+) satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration.
Collapse
Affiliation(s)
- Chiara Sassoli
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Daniele Nosi
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Alessia Tani
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Flaminia Chellini
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Benedetta Mazzanti
- Dept. of Experimental and Clinical Medicine-Section of Haematology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Franco Quercioli
- CNR-National Institute of Optics (INO), Largo Enrico Fermi 6, 50125 Arcetri-Florence, Italy
| | - Sandra Zecchi-Orlandini
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy
| | - Lucia Formigli
- Dept. of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence, Italy.
| |
Collapse
|
44
|
Veeranki S, Givvimani S, Pushpakumar S, Tyagi SC. Hyperhomocysteinemia attenuates angiogenesis through reduction of HIF-1α and PGC-1α levels in muscle fibers during hindlimb ischemia. Am J Physiol Heart Circ Physiol 2014; 306:H1116-27. [PMID: 24585779 DOI: 10.1152/ajpheart.00003.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyperhomocysteinemia (HHcy) is associated with elderly frailty, skeletal muscle injury and malfunction, reduced vascular integrity and function, and mortality. Although HHcy has been implicated in the impairment of angiogenesis after hindlimb ischemia in murine models, the underlying mechanisms are still unclear. We hypothesized that HHcy compromises skeletal muscle perfusion, collateral formation, and arteriogenesis by diminishing postischemic vasculogenic responses in muscle fibers. To test this hypothesis, we created femoral artery ligation in wild-type and heterozygous cystathionine β-synthase (CBS(+/-)) mice (a model for HHcy) and assessed tissue perfusion, collateral vessel formation, and skeletal muscle function using laser-Doppler perfusion imaging, barium angiography, and fatigue tests. In addition, we assessed postischemic levels of VEGF and levels of its muscle-specific regulators: hypoxia-inducible factor (HIF)-1α and peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α. The observations indicated dysregulation of VEGF, HIF-1α, and PGC-1α levels in ischemic skeletal muscles of CBS(+/-) mice. Concomitant with the reduced ischemic angiogenic responses, we also observed diminished leptin expression and attenuated Akt signaling in ischemic muscle fibers of CBS(+/-) mice. Moreover, there was enhanced atrogene, ubiquitin ligases that conjugate proteins for degradation during muscle atrophy, transcription, and reduced muscle function after ischemia in CBS(+/-) mice. These results suggest that HHcy adversely affects muscle-specific ischemic responses and contributes to muscle frailty.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky
| | | | | | | |
Collapse
|
45
|
Moimas S, Novati F, Ronchi G, Zacchigna S, Fregnan F, Zentilin L, Papa G, Giacca M, Geuna S, Perroteau I, Arnež ZM, Raimondo S. Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Ther 2013; 20:1014-21. [PMID: 23719064 PMCID: PMC3795473 DOI: 10.1038/gt.2013.26] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/11/2013] [Accepted: 04/24/2013] [Indexed: 12/27/2022]
Abstract
Functional recovery after peripheral nerve injury depends on both improvement of nerve regeneration and prevention of denervation-related skeletal muscle atrophy. To reach these goals, in this study we overexpressed vascular endothelial growth factor (VEGF) by means of local gene transfer with adeno-associated virus (AAV). Local gene transfer in the regenerating peripheral nerve was obtained by reconstructing a 1-cm-long rat median nerve defect using a vein segment filled with skeletal muscle fibers that have been previously injected with either AAV2-VEGF or AAV2-LacZ, and the morphofunctional outcome of nerve regeneration was assessed 3 months after surgery. Surprisingly, results showed that overexpression of VEGF in the muscle-vein-combined guide led to a worse nerve regeneration in comparison with AAV-LacZ controls. Local gene transfer in the denervated muscle was obtained by direct injection of either AAV2-VEGF or AAV2-LacZ in the flexor digitorum sublimis muscle after median nerve transection and results showed a significantly lower progression of muscle atrophy in AAV2-VEGF-treated muscles in comparison with muscles treated with AAV2-LacZ. Altogether, our results suggest that local delivery of VEGF by AAV2-VEGF-injected transplanted muscle fibers do not represent a rational approach to promote axonal regeneration along a venous nerve guide. By contrast, AAV2-VEGF direct local injection in denervated skeletal muscle significantly attenuates denervation-related atrophy, thus representing a promising strategy for improving the outcome of post-traumatic neuromuscular recovery after nerve injury and repair.
Collapse
Affiliation(s)
- S Moimas
- 1] Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy [2] Department of Medical Sciences, Faculty of Medicine, University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Garcia LA, Ferrini MG, Norris KC, Artaza JN. 1,25(OH)(2)vitamin D(3) enhances myogenic differentiation by modulating the expression of key angiogenic growth factors and angiogenic inhibitors in C(2)C(12) skeletal muscle cells. J Steroid Biochem Mol Biol 2013; 133:1-11. [PMID: 22982629 PMCID: PMC3513642 DOI: 10.1016/j.jsbmb.2012.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
Abstract
Vitamin D is mostly recognized for its regulation of calcium homeostasis in relation to the intestine, kidney, and bone. Although clinical studies have linked vitamin D with increased muscle function and strength, little is known of its underlying molecular mechanism. We recently demonstrated that 1,25-D3 exerts a direct pro-myogenic effect on skeletal muscle cells; this has provoked our investigation of 1,25-D's effect on angiogenesis, a vital process for new capillary development and tissue repair. In this study, we examined the mechanism by which 1,25-D3 modulates key angiogenic growth factors and angiogenic inhibitors. C(2)C(12) myoblasts were incubated with 100 nM 1,25-D3 or placebo for 1, 4 and 10 days. At the end of the respective incubation time, total RNA was isolated for PCR arrays and for qRT-PCR. Total proteins were isolated for Western blots and proteome profiler arrays. The addition of 1,25-D3 to C(2)C(12) myoblasts increased VEGFa and FGF-1: two pro-angiogenic growth factors that promote neo-vascularization and tissue regeneration, and decreased FGF-2 and TIMP-3: two myogenic and/or angiogenic inhibitors. Our previous study demonstrated that 1,25-D3 altered IGF-I/II expression, consistent with the observed changes in VEGFa and FGF-2 expression. These results extend our previous findings and demonstrate the modulation of angiogenesis which may be an additional mechanism by which 1,25-D3 promotes myogenesis. This study supports the mechanistic rationale for assessing the administration of vitamin D and/or vitamin D analogs to treat select muscle disorders and may also provide an alternative solution for therapies that directly manipulate VEGF and FGF's to promote angiogenesis.
Collapse
Affiliation(s)
- Leah A. Garcia
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
| | - Monica G. Ferrini
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Keith C. Norris
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jorge N. Artaza
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Corresponding author and reprint requests to: Jorge N. Artaza, MS., Ph.D., Department of Internal Medicine, Charles R. Drew University of Medicine & Science; 1731 East 120th Street, Los Angeles, California, 90059, USA. Phone: 323-563-4915; FAX: 323-563-9352;
| |
Collapse
|
47
|
Trophic actions of bone marrow-derived mesenchymal stromal cells for muscle repair/regeneration. Cells 2012; 1:832-50. [PMID: 24710532 PMCID: PMC3901134 DOI: 10.3390/cells1040832] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 12/30/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) represent the leading candidate cell in tissue engineering and regenerative medicine. These cells can be easily isolated, expanded in vitro and are capable of providing significant functional benefits after implantation in the damaged muscle tissues. Despite their plasticity, the participation of BM-MSCs to new muscle fiber formation is controversial; in fact, emerging evidence indicates that their therapeutic effects occur without signs of long-term tissue engraftment and involve the paracrine secretion of cytokines and growth factors with multiple effects on the injured tissue, including modulation of inflammation and immune reaction, positive extracellular matrix (ECM) remodeling, angiogenesis and protection from apoptosis. Recently, a new role for BM-MSCs in the stimulation of muscle progenitor cells proliferation has been demonstrated, suggesting the potential ability of these cells to influence the fate of local stem cells and augment the endogenous mechanisms of repair/regeneration in the damaged tissues.
Collapse
|