1
|
Adetunji AI, Olaniran AO. Biocatalytic Profiling of Free and Immobilized Partially Purified Alkaline Protease from an Autochthonous Bacillus aryabhattai Ab15-ES. REACTIONS 2023. [DOI: 10.3390/reactions4020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Partially purified alkaline protease produced by an indigenous bacterial strain, Bacillus aryabhattai Ab15-ES, was insolubilized in alginate beads using an entrapment technique. Maximum entrapped enzyme activities of 68.76% and 71.06% were recorded at optimum conditions of 2% (w/v) sodium alginate and 0.3 M calcium chloride. Biochemical profiling of free and immobilized proteases was investigated by determining their activity and stability as well as kinetic properties. Both enzyme preparations exhibited maximum activity at the optimum pH and temperature of 8.0 and 50 °C, respectively. However, in comparison to the free enzyme, the immobilized protease showed improved pH stability at 8.0–9.0 and thermal stability at 40–50 °C. In addition, the entrapped protease exhibited a higher Vmax and increased affinity to the substrate (1.65-fold) than the soluble enzyme. The immobilized protease was found to be more stable than the free enzyme, retaining 80.88% and 38.37% of its initial activity when stored at 4 °C and 25 °C, respectively, for 30 d. After repeated use seven times, the protease entrapped in alginate beads maintained 32.93% of its original activity. These findings suggest the efficacy and sustainability of the developed immobilized catalytic system for various biotechnological applications.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
- Department of Biological Sciences, Summit University, Offa 250101, Nigeria
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein 9031, South Africa
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
2
|
Zhou W, Zeng S, Yu J, Xiang J, Zhang F, Takriff MS, Ding G, Ma Z, Zhou X. Complete genome sequence of Bacillus Licheniformis NWMCC0046, a candidate for the laundry industry. J Basic Microbiol 2023; 63:223-234. [PMID: 36538731 DOI: 10.1002/jobm.202200528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/14/2022] [Accepted: 10/29/2022] [Indexed: 12/24/2022]
Abstract
In this study, selected properties of protease and the complete genome sequence of Bacillus licheniformis NWMCC0046 were investigated, to discover laundry applications and other potential probiotic properties of this strain. Partial characterization of B. licheniformis NWMCC0046 showed that its protease has good activity both in alkaline environments and at low temperatures. Also, the protease is compatible with commercial detergents and can be used as a detergent additive for effective stain removal at low temperatures. The complete genome sequence of B. licheniformis NWMCC0046 is comprised of a 4,321,565 bp linear chromosome with a G + C content of 46.78% and no plasmids. It had 4504 protein-encoding genes, 81 transfer RNA (tRNA) genes, and 24 ribosomal RNA (rRNA) genes. Genomic analysis revealed genes involved in exocellular enzyme production and probiotic properties. In addition, genomic sequence analysis revealed specific genes encoding carbohydrate metabolism pathways, resistance, and cold adaptation capacity. Overall, protease properties show its potential as a detergent additive enzyme. The complete genome sequence information of B. licheniformis NWMCC0046 was obtained, and functional prediction revealed its numerous probiotic properties.
Collapse
Affiliation(s)
- Wei Zhou
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Songyu Zeng
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jinfeng Yu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jun Xiang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Fumei Zhang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Mohd S Takriff
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Gongtao Ding
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xueyan Zhou
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,Life Science and Engineering College, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
3
|
Production, Optimization, and Partial Purification of Alkali-Thermotolerant Proteases from Newly Isolated Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12. Processes (Basel) 2022. [DOI: 10.3390/pr10061050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Proteases that can remain active under extreme conditions such as high temperature, pH, and salt concentration are widely applicable in the commercial sector. The majority of the proteases are rendered useless under harsh conditions in industries. Therefore, there is a need to search for new proteases that can tolerate and function in harsh conditions, thus improving their commercial value. In this study, 142 bacterial isolates were isolated from diverse alkaline soil habitats. The two highest protease-producing bacterial isolates were identified as Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12, respectively, based on 16S rRNA sequencing. Optimal protease production was detected at pH 8, 37 °C, 48 h, 5% (w/v) NaCl for Bacillus subtilis S1 (99.8 U/mL) and pH 9, 37 °C, 72 h, 10% (w/v) NaCl for Bacillus amyloliquefaciens KSM12 (94.6 U/mL). The molecular weight of these partially purified proteases was then assessed on SDS-PAGE (17 kDa for Bacillus subtilis S1 and 65 kDa for Bacillus amyloliquefaciens KSM12), respectively. The maximum protease activity for Bacillus subtilis S1 was detected at pH 8, 40 °C, and for Bacillus amyloliquefaciens KSM12 at pH 9, 60 °C. These results suggest that the proteases secreted by Bacillus subtilis S1 and Bacillus amyloliquefaciens KSM12 are suitable for industries working in a highly alkaline environment.
Collapse
|
4
|
Baeghbali S, Shahriari S, Pazuki G. Effect of pressure homogenization and modified starch on the viscosity of ketchup: Experimental and modeling. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saeed Baeghbali
- Department of Food Science and Technology, Shahr‐e‐Qods Branch Islamic Azad University Tehran Iran
| | - Shahla Shahriari
- Department of Chemical Engineering, Shahr‐e‐Qods Branch Islamic Azad University Tehran Iran
| | - Gholamreza Pazuki
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
5
|
How stable are the collagen and ferritin proteins for application in bioelectronics? PLoS One 2021; 16:e0246180. [PMID: 33513177 PMCID: PMC7845979 DOI: 10.1371/journal.pone.0246180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
One major obstacle in development of biomolecular electronics is the loss of function of biomolecules upon their surface-integration and storage. Although a number of reports on solid-state electron transport capacity of proteins have been made, no study on whether their functional integrity is preserved upon surface-confinement and storage over a long period of time (few months) has been reported. We have investigated two specific cases—collagen and ferritin proteins, since these proteins exhibit considerable potential as bioelectronic materials as we reported earlier. Since one of the major factors for protein degradation is the proteolytic action of protease, such studies were made under the action of protease, which was either added deliberately or perceived to have entered in the reaction vial from ambient environment. Since no significant change in the structural characteristics of these proteins took place, as observed in the circular dichroism and UV-visible spectrophotometry experiments, and the electron transport capacity was largely retained even upon direct protease exposure as revealed from the current sensing atomic force spectroscopy experiments, we propose that stable films can be formed using the collagen and ferritin proteins. The observed protease-resistance and robust nature of these two proteins support their potential application in bioelectronics.
Collapse
|
6
|
Wu X, Ahmed S, Cui X, Hang J, Wang S, Liu S, Fang Y. Expression and characterization of a novel organic solvent tolerant protease from Bacillus sphaericus DS11. Prep Biochem Biotechnol 2020; 51:28-34. [PMID: 32633612 DOI: 10.1080/10826068.2020.1786839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Organic solvent-tolerant proteases have many applications in the synthesis of peptides. In this study, we have developed a low-cost and convenient method to produce highly concentrated organic solvent-tolerant protease. Organic solvent tolerant protease (OSP) gene from Bacillus sphaericus DS11 was cloned and expressed in Bacillus subtilis WB800. The optimum pH of the recombinant protease was 9.0. The optimum temperature of the recombinant protease was 40 °C. The recombinant protease was purified by ethanol with the yield of (87.33%). The yield of OSP enriched by ethanol was higher than that of by Ni-chelating affinity chromatography, which indicated that precipitation of the recombinant OSP with ethanol is a relatively low-cost and fast method for organic solvent -tolerant protease preparation. These results showed that this enzyme could be very useful in different industrial applications.
Collapse
Affiliation(s)
- Xincai Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Sibtain Ahmed
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Xiaolin Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jiahao Hang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
7
|
Enhancement of Hydrolysis and Biogas Production of Primary Sludge by Use of Mixtures of Protease and Lipase. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0302-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Enhancement of Z-aspartame synthesis by rational engineering of metalloprotease. Food Chem 2018; 253:30-36. [DOI: 10.1016/j.foodchem.2018.01.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
|
9
|
Boulkour Touioui S, Zaraî Jaouadi N, Bouacem K, Ben Ayed R, Rekik H, Zenati B, Kourdali S, Boudjella H, Sabaou N, Bejar S, El Hattab M, Badis A, Annane R, Jaouadi B. Biochemical and molecular characterization of a novel metalloprotease from Pseudomonas fluorescens strain TBS09. Int J Biol Macromol 2018; 107:2351-2363. [DOI: 10.1016/j.ijbiomac.2017.10.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
10
|
Zhu F, Liu F, Wu B, He B. Efficient Extracellular Expression of Metalloprotease for Z-Aspartame Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9631-9638. [PMID: 27966925 DOI: 10.1021/acs.jafc.6b04164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metalloprotease PT121 and its mutant Y114S (Tyr114 was substituted to Ser) are effective catalysts for the synthesis of Z-aspartame (Z-APM). This study presents the selection of a suitable signal peptide for improving expression and extracellular secretion of proteases PT121 and Y114S by Escherichia coli. Co-inducers containing IPTG and arabinose were used to promote protease production and cell growth. Under optimal conditions, the expression levels of PT121 and Y114S reached >500 mg/L, and the extracellular activity of PT121/Y114S accounted for 87/82% of the total activity of proteases. Surprisingly, purer protein was obtained in the supernatant, because arabinose reduced cell membrane permeability, avoiding cell lysis. Comparison of Z-APM synthesis and caseinolysis between proteases PT121 and Y114S showed that mutant Y114S presented remarkably higher activity of Z-APM synthesis and considerably lower activity of caseinolysis. The significant difference in substrate specificity renders these enzymes promising biocatalysts.
Collapse
Affiliation(s)
- Fucheng Zhu
- College of Biotechnology and Pharmaceutical Engineering and ‡School of Pharmaceutical Sciences, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Feng Liu
- College of Biotechnology and Pharmaceutical Engineering and ‡School of Pharmaceutical Sciences, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering and ‡School of Pharmaceutical Sciences, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering and ‡School of Pharmaceutical Sciences, Nanjing Tech University , No. 30 Puzhu South Road, Nanjing 211816, China
| |
Collapse
|
11
|
Patil U, Mokashe N, Chaudhari A. Detergent-compatible, organic solvent-tolerant alkaline protease from Bacillus circulans MTCC 7942: Purification and characterization. Prep Biochem Biotechnol 2016; 46:56-64. [PMID: 25356983 DOI: 10.1080/10826068.2014.979205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60 °C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (<3.2) log P value (acetone, butanol, benzene, chloroform, toluene). Remarkably, the protease showed profound stability even in the presence of organic solvents with less log P values (glycerol, dimethyl sulfate [DMSO], p-xylene), indicating the possibility of nonaqueous enzymatic applications. Also, protease activity was improved in the presence of metal ions (Ca(2+), Mg(2+), Mn(2+)); enhanced by biosurfactants; hardly affected by bleaching agents, oxidizing agents, and chemical surfactants; and stable in commercial detergents. In addition, a protease-detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water.
Collapse
Affiliation(s)
- Ulhas Patil
- a Department of Microbiology , R. C. Patel A. C. S. College , Shirpur , India
| | - Narendra Mokashe
- a Department of Microbiology , R. C. Patel A. C. S. College , Shirpur , India
| | - Ambalal Chaudhari
- b School of Life Sciences , North Maharashtra University , Jalgaon , India
| |
Collapse
|
12
|
Alves MP, Salgado RL, Eller MR, Vidigal PMP, Fernandes de Carvalho A. Characterization of a heat-resistant extracellular protease from Pseudomonas fluorescens 07A shows that low temperature treatments are more effective in deactivating its proteolytic activity. J Dairy Sci 2016; 99:7842-7851. [PMID: 27497896 DOI: 10.3168/jds.2016-11236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/11/2016] [Indexed: 01/25/2023]
Abstract
This work discusses the biological and biochemical characterization of an extracellular protease produced by Pseudomonas fluorescens. The enzyme has a molecular weight of 49.486 kDa and hydrolyzes gelatin, casein, and azocasein, but not BSA. Its maximum activity is found at 37°C and pH 7.5, but it retained almost 70% activity at pH 10.0. It was shown to be a metalloprotease inhibited by Cu(2+), Ni(2+), Zn(2+), Hg(2+), Fe(2+), and Mg(2+), but induced by Mn(2+). After incubation at 100°C for 5min, the enzyme presented over 40% activity, but only 14 to 30% when submitted to milder heat treatments. This behavior may cause significant problems under conditions commonly used for the processing and storage of milk and dairy products, particularly UHT milk. A specific peptide sequenced by mass spectrometer analysis allowed the identification of gene that encodes this extracellular protease in the genome of Pseudomonas fluorescens 07A strain. The enzyme has 477 AA and highly conserved Ca(2+)- and Zn(2+)-binding domains, indicating that Ca(2+), the main ion in milk, is also a cofactor. This work contributes to the understanding of the biochemical aspects of enzyme activity and associates them with its sequence and structure. These findings are essential for the full understanding and control of these enzymes and the technological problems they cause in the dairy industry.
Collapse
Affiliation(s)
- Maura P Alves
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570000
| | - Rafael L Salgado
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570000
| | - Monique R Eller
- Department of Food Technology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570000
| | - Pedro Marcus P Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570000
| | - Antonio Fernandes de Carvalho
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil, 36570000.
| |
Collapse
|
13
|
Long A, Rothenberg P, Patel D, MacDougall J, Hartings MR. The structure and peroxidase activity of myoglobin in alcoholic solvents. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Highly efficient enzymatic synthesis of Z-aspartame in aqueous medium via in situ product removal. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Saxena R, Singh R. MALDI-TOF MS and CD spectral analysis for identification and structure prediction of a purified, novel, organic solvent stable, fibrinolytic metalloprotease from Bacillus cereus B80. BIOMED RESEARCH INTERNATIONAL 2015; 2015:527015. [PMID: 25802851 PMCID: PMC4352737 DOI: 10.1155/2015/527015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/25/2014] [Accepted: 09/30/2014] [Indexed: 12/01/2022]
Abstract
The ability to predict protein function from structure is becoming increasingly important; hence, elucidation and determination of protein structure become the major steps in proteomics. The present study was undertaken for identification of metalloprotease produced by Bacillus cereus B80 and recognition of characteristics that can be industrially exploited. The enzyme was purified in three steps combining precipitation and chromatographic methods resulting in 33.5% recovery with 13.1-fold purification of enzyme which was detected as a single band with a molecular mass of 26 kDa approximately in SDS-PAGE and zymogram. The MALDI-TOF MS showed that the enzyme exhibited 70-93% similarity with zinc metalloproteases from various strains Bacillus sp. specifically from Bacillus cereus group. The sequence alignment revealed the presence of zinc-binding region VVVHEMCHMV in the most conserved C terminus region. Secondary structure of the enzyme was obtained by CD spectra and I-TASSER. The enzyme kinetics revealed a Michaelis constant (Km) of 0.140 μmol/ml and Vmax of 2.11 μmol/min. The application studies showed that the enzyme was able to hydrolyze various proteins with highest affinity towards casein followed by BSA and gelatin. The enzyme exhibited strong fibrinolytic, collagenolytic, and gelatinolytic properties and stability in various organic solvents.
Collapse
Affiliation(s)
- Rajshree Saxena
- Amity Institute of Microbial Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Rajni Singh
- Amity Institute of Microbial Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| |
Collapse
|
16
|
Enhanced expression of recombinant elastase in Pichia pastoris through the substitution of Thr for Ser in Asn-Xaa-Ser sequons. Appl Biochem Biotechnol 2014; 175:428-35. [PMID: 25308616 DOI: 10.1007/s12010-014-1284-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
N-glycosylation usually occurs at the Asn-Xaa-Ser/Thr sequon of glycoproteins in Pichia pastoris, exerting great effects on expression efficiency; however, Asn-Xaa-Thr is more efficiently glycosylated than Asn-Xaa-Ser. In this study, the role of the two sequons in the expression of recombinant elastase (rPAE) was investigated. At N43, N212, and N280 of rPAE, Asn-Xaa-Thr was substituted for the native Asn-Xaa-Ser sequon through site-directed mutagenesis, and the two sequon forms were introduced into rPAE at N36 and N264. As expected, substitution at N36, N43, N212, and N280 enhanced the degree of N-glycosylation. At N212 or N280, substitution increased rPAE production effectively by 43 and 25 %, respectively. In comparison, at N36, N43, and N264, the change inhibited rPAE expression to varying extents; specifically, substitution at N36 resulted in a 31 % decrease, while substitution at N43 or N264 resulted in a decrease of less than 9 %. It is suggested that the effect of the substitution of Asn-Xaa-Thr for Asn-Xaa-Ser on rPAE expression is roughly related to the role of the original Asn-Xaa-Ser sequon. As the conversion of Ser to Thr at N-glycosylation sites through site-directed mutagenesis is easily achieved, it is a feasible means of improving the expression of recombinant proteins in P. pastoris.
Collapse
|
17
|
Halder SK, Jana A, Das A, Paul T, Das Mohapatra PK, Pati BR, Mondal KC. Appraisal of antioxidant, anti-hemolytic and DNA shielding potentialities of chitosaccharides produced innovatively from shrimp shell by sequential treatment with immobilized enzymes. Food Chem 2014; 158:325-34. [PMID: 24731350 DOI: 10.1016/j.foodchem.2014.02.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/25/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
Abstract
Chitosaccharides (CS) of varied size were prepared from shrimp shell through sequential catalysis, using crude protease and chitinase enzymes immobilized on agar beads. In the optimized state, immobilization yield and activity yield for protease were 84% and 62%, and for chitinase were 75% and 57%, respectively. Immobilized protease and chitinase treatment improved CS yields (101 μg/ml) and retained 63% and 52% of activities after 10 reuses, respectively. Stronger radical-scavenging activity (RSA) of CS against ABTS, DPPH and hydroxyl radical was noted with EC50 values 19.1, 26.4 and 29.6 μg/ml, respectively. Peroxyl and superoxide RSAs of 96.8% and 88.6% were noticed at 70 μg/ml of CS. Singlet oxygen quenching, reducing power and ferrous ion-chelating activities of CS were also pronounced. CS reasonably reduced oxidative damage of DNA, protein and RBC by inhibiting H2O2 and AAPH radicals. Reversible CS-DNA condensation leads to DNA stabilization without changing its conformation and advocates its employment in gene therapy.
Collapse
Affiliation(s)
- Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, West Bengal 721102, India
| | - Arijit Jana
- Department of Microbiology, Vidyasagar University, West Bengal 721102, India
| | - Arpan Das
- Department of Microbiology, Vidyasagar University, West Bengal 721102, India
| | - Tanmay Paul
- Department of Microbiology, Vidyasagar University, West Bengal 721102, India
| | | | - Bikas Ranjan Pati
- Department of Microbiology, Vidyasagar University, West Bengal 721102, India
| | | |
Collapse
|
18
|
Cow Dung Substrate for the Potential Production of Alkaline Proteases by Pseudomonas putida Strain AT in Solid-State Fermentation. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/217434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cow dung and agroresidues were used as the substrates for the production of alkaline proteases by Pseudomonas putida strain AT in solid-state fermentation. Among the various substrates evaluated, cow dung supported maximum (1351±217 U/g) protease production. The optimum conditions for the production of alkaline proteases were a fermentation period of 48 h, 120% (v/w) moisture, pH 9, and the addition of 6% (v/w) inoculum, 1.5% (w/w) trehalose, and 2.0% (w/w) yeast extract to the cow dung substrate. The enzyme was active over a range of temperatures (50–70°C) and pHs (8–10), with maximum activity at 60°C and pH 9. These enzymes showed stability towards surfactants, detergents, and solvent and digested various natural proteins.
Collapse
|
19
|
Han M, Wang X, Yan G, Wang W, Tao Y, Liu X, Cao H, Yu X. Modification of recombinant elastase expressed in Pichia pastoris by introduction of N-glycosylation sites. J Biotechnol 2013; 171:3-7. [PMID: 24333122 DOI: 10.1016/j.jbiotec.2013.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 01/17/2023]
Abstract
A novel N-glycosylation site was introduced into recombinant elastase (rPAE) at N36, N67, or N264 through the site-directed mutagenesis of I38T, A69T, or N266T, respectively. The A69T mutation completely inhibited the expression of rPAE. As expected, the I38T and N266T mutant proteins exhibited higher degrees of N-glycosylation compared with the wild type rPAE. The I38T mutant was more efficient in the hydrolysis of casein in aqueous medium and exhibited higher specific activity and k(cat) values and a lower K(m) value. In contrast, the N266T mutant and the wild type displayed similar values. Importantly, the I38T mutant achieved in higher rates and yields of peptide synthesis in 50% (v/v) dimethylsulfoxide, whereas the N266T mutant was similar to the wild type rPAE. Furthermore, the maximum yield of Z-Ala-Phe-NH2 synthesis catalyzed by the I38T mutant protein (87%) was higher than those achieved by the wild type (78%) and N266T mutant (78%) proteins. Neither the I38T nor the N266T mutation exerted significant effects on the rPAE solvent stability. In aqueous medium, the I38T mutation decreased the rPAE thermostability, and the N266T mutation slightly improved that. In conclusion, the I38T mutation improved the potential of rPAE in industrial applications.
Collapse
Affiliation(s)
- Minghai Han
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China.
| | - Xinfeng Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Guilong Yan
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Weixian Wang
- Huaian Institute of Supervision & Inspection on Product Quality, Huaian 223300, China
| | - Yuan Tao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Xin Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Hui Cao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Xiaobin Yu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Han M, Wang X, Ding H, Jin M, Yu L, Wang J, Yu X. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris. Enzyme Microb Technol 2013; 54:32-7. [PMID: 24267565 DOI: 10.1016/j.enzmictec.2013.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/13/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
Abstract
The Pseudomonas aeruginosa elastase (PAE), produced by Pseudomonas aeruginosa (P. aeruginosa), is a promising biocatalyst for peptide synthesis in organic solvents. As P. aeruginosa is an opportunistic pathogen, the enzyme has been heterologously over-expressed in the safe and efficient host, Pichia pastoris (P. pastoris) for its industrial application. The recombinant elastase (rPAE) contains three potential N-glycosylation sites (Asn-Xaa-Ser/Thr consensus sequences), and is heterogeneously N-glycosylated. To investigate the role of N-glycosylation in the activity, stability, and expression of rPAE, these potential N-glycosylation sites (N43, N212, and N280) were mutated using site-directed mutagenesis. Specifically the asparagine (Asn, N) residues were converted to glutamine (Gln, Q). The enzymatic activity and stability of non-glycosylated and glycosylated rPAE were then compared. The results indicated that the influence of N-glycosylation on its activity was insignificant. The non- and glycosylated isoforms of rPAE displayed similar kinetic parameters for hydrolyzing casein in aqueous medium, and when catalyzing bipeptide synthesis in 50% (v/v) DMSO, they exhibited identical substrate specificity and activity, and produced similar yields. However, N-glycosylation improved rPAE stability both in aqueous medium and in 50% (v/v) organic solvents. The half-lives of the glycosylated and non-glycosylated forms of rPAE at 70°C were 32.2 and 23.1 min, respectively. Mutation of any potential N-glycosylation site was detrimental to its expression in P. pastoris. There was a 23.9% decrease in expression of the N43Q mutant, 63.6% of the N212Q mutant, and 63.7% of the N280Q mutant compared with the wild type. Furthermore, combined mutation of these sites resulted in an additional decrease in the caseinolytic activities of the mutants. These results indicated that all of the N-glycosylation sites were necessary for high-level expression of rPAE.
Collapse
Affiliation(s)
- Minghai Han
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Jaouadi B, Zaraî Jaouadi N, Rekik H, Naili B, Beji A, Dhouib A, Bejar S. Biochemical and molecular characterization of Pseudomonas aeruginosa CTM50182 organic solvent-stable elastase. Int J Biol Macromol 2013; 60:165-77. [DOI: 10.1016/j.ijbiomac.2013.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 11/15/2022]
|
22
|
Han M, Ding H, Wang J, Jin M, Yu X. Expression of the lasB gene encoding an organic solvent-stable elastase in Pichia pastoris and potential applications of the recombinant enzymes in peptide synthesis. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Bose A, Chawdhary V, Keharia H, Subramanian RB. Production and characterization of a solvent-tolerant protease from a novel marine isolate Bacillus tequilensis P15. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0669-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
24
|
Xu J, Sun H, He X, Bai Z, He B. Highly efficient synthesis of endomorphin-2 under thermodynamic control catalyzed by organic solvent stable proteases with in situ product removal. BIORESOURCE TECHNOLOGY 2013; 129:663-666. [PMID: 23305895 DOI: 10.1016/j.biortech.2012.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
An efficient enzymatic synthesis of endomorphin-2 (EM-2) was achieved using organic solvent stable proteases in nonaqeous media, based on thermodynamic control and an in situ product removal methodology. The high stability of biocatalysts in organic solvents enabled the aleatoric modulation of the nonaqueous reaction media to shift thermodynamic equilibrium toward synthesis. Peptide Boc-Phe-Phe-NH2 was synthesized with a high yield of 96% by the solvent stable protease WQ9-2 in monophase medium with an economical molar ratio of the substrate of 1:1. The tetrapeptide Boc-Tyr-Pro-Phe-Phe-NH2 was synthesized with a yield of 88% by another organic solvent tolerant protease PT121 from Boc-Tyr-Pro-OH and Phe-Phe-NH2 in an organic-aqueous biphasic system. The reaction-separation coupling in both enzymatic processes provides "driving forces" for the synthetic reactions and gives a high yield and high productivity without purification of the intermediate, thereby making the synthesis more amenable to scale-up.
Collapse
Affiliation(s)
- Jiaxing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, 30 Puzhunan Road, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
25
|
Identification of a Bacterium Isolated from Soil of Ahvaz Contaminated by Oil and Determination of its Protease Stability in Organic Solvents. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.4575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Liszka MJ, Clark ME, Schneider E, Clark DS. Nature Versus Nurture: Developing Enzymes That Function Under Extreme Conditions. Annu Rev Chem Biomol Eng 2012; 3:77-102. [DOI: 10.1146/annurev-chembioeng-061010-114239] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Elizabeth Schneider
- Department of Chemical and Biomolecular Engineering,
- UC Berkeley and UCSF Graduate Program in Bioengineering, University of California, Berkeley, California 94720; , , ,
| | | |
Collapse
|
27
|
Ghorbel-Bellaaj O, Hayet BK, Bayoudh A, Younes I, Hmidet N, Jellouli K, Nasri M. Pseudomonas aeruginosa A2 elastase: Purification, characterization and biotechnological applications. Int J Biol Macromol 2012; 50:679-86. [DOI: 10.1016/j.ijbiomac.2012.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 12/25/2022]
|
28
|
Jaouadi NZ, Jaouadi B, Aghajari N, Bejar S. The overexpression of the SAPB of Bacillus pumilus CBS and mutated sapB-L31I/T33S/N99Y alkaline proteases in Bacillus subtilis DB430: new attractive properties for the mutant enzyme. BIORESOURCE TECHNOLOGY 2012; 105:142-151. [PMID: 22178490 DOI: 10.1016/j.biortech.2011.11.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/24/2011] [Accepted: 11/27/2011] [Indexed: 05/31/2023]
Abstract
The sapB gene encoding for Bacillus pumilus CBS protease (SAPB) and the triple mutated sapB-L31I/T33S/N99Y gene were cloned and overexpressed in the protease-deficient Bacillus subtilis DB430 using an Escherichia coli-Bacillus shuttle vector pBSMuL2. The 34,625.13 and 34,675.11-Da enzymes were purified from the culture supernatant of B. subtilis expressing the wild-type and mutated genes, respectively. The purified proteases showed the same N-terminal sequences and biochemical properties of those expressed in E. coli. Further investigations demonstrated that, compared to wild-type and other proteases, SAPB-L31I/T33S/N99Y had the highest catalytic efficiency and the best degree of hydrolysis. The mutant enzyme was also noted to exhibit a number of newly explored properties that are highly valued in the marketplace, namely considerable stability to detergents, higher resistance towards organic solvents, and potent dehairing ability. Overall, the findings indicated that SAPB-L31I/T33S/N99Y is a promising candidate for future use in a wide range of industrial and commercial applications.
Collapse
Affiliation(s)
- Nadia Zaraî Jaouadi
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | | | | | | |
Collapse
|
29
|
Xu J, Jiang M, Sun H, He B. An organic solvent-stable protease from organic solvent-tolerant Bacillus cereus WQ9-2: purification, biochemical properties, and potential application in peptide synthesis. BIORESOURCE TECHNOLOGY 2010; 101:7991-7994. [PMID: 20541397 DOI: 10.1016/j.biortech.2010.05.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 05/29/2023]
Abstract
An extracellular solvent-stable protease producing bacterium WQ9-2 was isolated and identified taxonomically as Bacillus cereus. The protease from strain WQ9-2 was purified to homogeneity with an estimated molecular mass of 37 kDa. The purified protease showed maximum activity at 50 °C and pH 8.0. The protease may be classified as a metalloprotease since it was strongly inhibited by EDTA and 1,10-phenanthroline. The protease showed extreme activity and stability in the presence of both 50% (v/v) hydrophilic or hydrophobic solvents. The synthesis of the precursor (Cbz-Ala-Phe-NH₂) of a bitter dipeptide could be catalyzed by the protease in the presence of 50% dimethylsulfoxide with the product crystals separating directly. The protease displayed broad catalysis specificity for carboxyl component and different substrate preferences in various solvent media, thus confirming its potential application in peptide synthesis.
Collapse
Affiliation(s)
- Jiaxing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009, Jiangsu, China
| | | | | | | |
Collapse
|
30
|
Yadav JS, Chowdhury S, Chaudhuri SR. Purification and Characterization of an Extracellular Protease from Pseudomonas aeruginosa Isolated from East Calcutta Wetland. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/jbs.2010.424.431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|