1
|
Zhang H, Zhang Q, Tu J, You Q, Wang L. Dual function of protein phosphatase 5 (PPP5C): An emerging therapeutic target for drug discovery. Eur J Med Chem 2023; 254:115350. [PMID: 37054560 DOI: 10.1016/j.ejmech.2023.115350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Phosphorylation of proteins is reversibly controlled by the kinases and phosphatases in many posttranslational regulation patterns. Protein phosphatase 5 (PPP5C) is a serine/threonine protein phosphatase showing dual function by simultaneously exerting dephosphorylation and co-chaperone functions. Due to this special role, PPP5C was found to participate in many signal transductions related to various diseases. Abnormal expression of PPP5C results in cancers, obesity, and Alzheimer's disease, making it a potential drug target. However, the design of small molecules targeting PPP5C is struggling due to its special monomeric enzyme form and low basal activity by a self-inhibition mechanism. Through realizing the PPP5C's dual function as phosphatase and co-chaperone, more and more small molecules were found to regulate PPP5C with a different mechanism. This review aims to provide insights into PPP5C's dual function from structure to function, which could provide efficient design strategies for small molecules targeting PPP5C as therapeutic candidates.
Collapse
Affiliation(s)
- Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Tu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
3
|
Leśniak W, Wilanowski T, Filipek A. S100A6 - focus on recent developments. Biol Chem 2017; 398:1087-1094. [PMID: 28343163 DOI: 10.1515/hsz-2017-0125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/21/2017] [Indexed: 01/08/2023]
Abstract
The Ca2+-binding protein, S100A6, belongs to the S100 family. Binding of Ca2+ induces a conformational change, which causes an increase in the overall S100A6 hydrophobicity and allows it to interact with many targets. S100A6 is expressed in different normal tissues and in many tumors. Up to now it has been shown that S100A6 is involved in cell proliferation, cytoskeletal dynamics and tumorigenesis, and that it might have some extracellular functions. In this review, we summarize novel discoveries concerning S100A6 targets, its involvement in cellular signaling pathways, and presence in stem/progenitor cells, extracellular matrix and body fluids of diseased patients.
Collapse
|
4
|
Pazdrak K, Straub C, Maroto R, Stafford S, White WI, Calhoun WJ, Kurosky A. Cytokine-Induced Glucocorticoid Resistance from Eosinophil Activation: Protein Phosphatase 5 Modulation of Glucocorticoid Receptor Phosphorylation and Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:3782-3791. [PMID: 27742828 DOI: 10.4049/jimmunol.1601029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023]
Abstract
The mechanisms contributing to persistent eosinophil activation and poor eosinopenic response to glucocorticoids in severe asthma are poorly defined. We examined the effect of cytokines typically overexpressed in the asthmatic airways on glucocorticoid signaling in in vitro activated eosinophils. An annexin V assay used to measure eosinophil apoptosis showed that cytokine combinations of IL-2 plus IL-4 as well as TNF-α plus IFN-γ, or IL-3, GM-CSF, and IL-5 alone significantly diminished the proapoptotic response to dexamethasone. We found that IL-2 plus IL-4 resulted in impaired phosphorylation and function of the nuclear glucocorticoid receptor (GCR). Proteomic analysis of steroid sensitive and resistant eosinophils identified several differentially expressed proteins, namely protein phosphatase 5 (PP5), formyl peptide receptor 2, and annexin 1. Furthermore, increased phosphatase activity of PP5 correlated with impaired phosphorylation of the GCR. Importantly, suppression of PP5 expression with small interfering RNA restored proper phosphorylation and the proapoptotic function of the GCR. We also examined the effect of lipoxin A4 on PP5 activation by IL-2 plus IL-4. Similar to PP5 small interfering RNA inhibition, pretreatment of eosinophils with lipoxin A4 restored GCR phosphorylation and the proaptoptotic function of GCs. Taken together, our results showed 1) a critical role for PP5 in cytokine-induced resistance to GC-mediated eosinophil death, 2) supported the dependence of GCR phosphorylation on PP5 activity, and 3) revealed that PP5 is a target of the lipoxin A4-induced pathway countering cytokine-induced resistance to GCs in eosinophils.
Collapse
Affiliation(s)
- Konrad Pazdrak
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | - Christof Straub
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Rosario Maroto
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | - Susan Stafford
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | | | - William J Calhoun
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555.,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555; .,National Heart, Lung, and Blood Institute Proteomics Center Program in Airway Inflammation, The University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
5
|
Neumann TS, Span EA, Kalous KS, Bongard R, Gastonguay A, Lepley MA, Kutty RG, Nayak J, Bohl C, Lange RG, Sarker MI, Talipov MR, Rathore R, Ramchandran R, Sem DS. Identification of inhibitors that target dual-specificity phosphatase 5 provide new insights into the binding requirements for the two phosphate pockets. BMC BIOCHEMISTRY 2015; 16:19. [PMID: 26286528 PMCID: PMC4545774 DOI: 10.1186/s12858-015-0048-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/04/2015] [Indexed: 12/02/2022]
Abstract
BACKGROUND Dual-specificity phosphatase-5 (DUSP5) plays a central role in vascular development and disease. We present a p-nitrophenol phosphate (pNPP) based enzymatic assay to screen for inhibitors of the phosphatase domain of DUSP5. METHODS pNPP is a mimic of the phosphorylated tyrosine on the ERK2 substrate (pERK2) and binds the DUSP5 phosphatase domain with a Km of 7.6 ± 0.4 mM. Docking followed by inhibitor verification using the pNPP assay identified a series of polysulfonated aromatic inhibitors that occupy the DUSP5 active site in the region that is likely occupied by the dual-phosphorylated ERK2 substrate tripeptide (pThr-Glu-pTyr). Secondary assays were performed with full length DUSP5 with ERK2 as substrate. RESULTS The most potent inhibitor has a naphthalene trisulfonate (NTS) core. A search for similar compounds in a drug database identified suramin, a dimerized form of NTS. While suramin appears to be a potent and competitive inhibitor (25 ± 5 μM), binding to the DUSP5 phosphatase domain more tightly than the monomeric ligands of which it is comprised, it also aggregates. Further ligand-based screening, based on a pharmacophore derived from the 7 Å separation of sulfonates on inhibitors and on sulfates present in the DUSP5 crystal structure, identified a disulfonated and phenolic naphthalene inhibitor (CSD (3) _2320) with IC₅₀ of 33 μM that is similar to NTS and does not aggregate. CONCLUSIONS The new DUSP5 inhibitors we identify in this study typically have sulfonates 7 Å apart, likely positioning them where the two phosphates of the substrate peptide (pThr-Glu-pTyr) bind, with one inhibitor also positioning a phenolic hydroxyl where the water nucleophile may reside. Polysulfonated aromatic compounds do not commonly appear in drugs and have a tendency to aggregate. One FDA-approved polysulfonated drug, suramin, inhibits DUSP5 and also aggregates. Docking and modeling studies presented herein identify polysulfonated aromatic inhibitors that do not aggregate, and provide insights to guide future design of mimics of the dual-phosphate loops of the ERK substrates for DUSPs.
Collapse
Affiliation(s)
- Terrence S Neumann
- Department of Chemistry and Biochemistry, Texas Wesleyan University, 1201 Wesleyan Ave., Fort Worth, TX, 76105, USA.
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, and School of Pharmacy, Concordia University of Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA.
| | - Elise A Span
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, and School of Pharmacy, Concordia University of Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA.
| | - Kelsey S Kalous
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, and School of Pharmacy, Concordia University of Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA.
| | - Robert Bongard
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, and School of Pharmacy, Concordia University of Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA.
| | - Adam Gastonguay
- Department of Pediatrics, Department of Obstetrics and Gynecology, Medical College of Wisconsin, Children's Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, WI 53226, USA.
| | - Michael A Lepley
- Department of Pediatrics, Department of Obstetrics and Gynecology, Medical College of Wisconsin, Children's Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, WI 53226, USA.
| | - Raman G Kutty
- Department of Pediatrics, Department of Obstetrics and Gynecology, Medical College of Wisconsin, Children's Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, WI 53226, USA.
| | - Jaladhi Nayak
- Department of Pediatrics, Department of Obstetrics and Gynecology, Medical College of Wisconsin, Children's Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, WI 53226, USA.
| | - Chris Bohl
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, and School of Pharmacy, Concordia University of Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA
| | - Rachel G Lange
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, and School of Pharmacy, Concordia University of Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA
| | - Majher I Sarker
- Department of Chemistry, Wehr Chemistry Building, P.O. Box 1881, 535 N. 14th Street, Milwaukee, WI 53201, USA.
| | - Marat R Talipov
- Department of Chemistry, Wehr Chemistry Building, P.O. Box 1881, 535 N. 14th Street, Milwaukee, WI 53201, USA.
| | - Rajendra Rathore
- Department of Chemistry, Wehr Chemistry Building, P.O. Box 1881, 535 N. 14th Street, Milwaukee, WI 53201, USA.
| | - Ramani Ramchandran
- Department of Pediatrics, Department of Obstetrics and Gynecology, Medical College of Wisconsin, Children's Research Institute (CRI) Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, WI 53226, USA.
| | - Daniel S Sem
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, and School of Pharmacy, Concordia University of Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA.
| |
Collapse
|
6
|
Abstract
The prevalence of diabetes is increasing rapidly worldwide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to the stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating the phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein, we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis.
Collapse
Affiliation(s)
- Henrik Ortsäter
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Nina Grankvist
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Richard E Honkanen
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| | - Åke Sjöholm
- Biovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, SwedenBiovation Park TelgeSödertälje, SwedenResearch UnitSödertälje Hospital, SE-152 86 Södertälje, SwedenDegenerative Disease ProgramSanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, 10901 North Torrey Pines Road, La Jolla, California 92037, USADepartment of Biochemistry and Molecular BiologyCollege of Medicine, University of South Alabama, Mobile, Alabama 36688, USADepartment of Internal MedicineSödertälje Hospital, Södertälje, Sweden
| |
Collapse
|