1
|
Zhao X, Liu Y, Xie L, Fu X, Wang L, Gao MT, Hu J. Biochar promotes microbial CO 2 fixation by regulating feedback inhibition of metabolites. BIORESOURCE TECHNOLOGY 2024; 406:130990. [PMID: 38885727 DOI: 10.1016/j.biortech.2024.130990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Chemoautotrophs, the crucial contributors to biological carbon fixation, derive energy from reducing specific inorganic substances and utilize CO2 for growth. However, the release of extracellular free organic carbon (EFOC) by chemoautotrophic microorganisms can inhibit their own growth and metabolism. To reduce the feedback inhibition effect, a low-release biochar (BC-LR) was applied to adsorb EFOC. BC-LR not only adsorbed EFOC, but also selectively adsorbed the main inhibitory component, low molecular weight organics, in EFOC. In contrast, ordinary biochar could not effectively adsorb EFOC and its addition inhibited microbial growth and CO2 fixation. In Transwell culture, BC-LR promoted microbial growth by 190% and CO2 fixation by 29%, and exhibited better economic advantage, when compared with granular activated carbon. These findings provide a novel insight into the interaction between biochar and autotrophic microbial metabolism, offering an economically feasible approach to mitigate feedback inhibition of metabolites and promoting biological CO2 fixation.
Collapse
Affiliation(s)
- Xiaodi Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai City 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai City 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai City 200444, China
| | - Yundong Liu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai City 200444, China
| | - Li Xie
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai City 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai City 200092, China
| | - Xiaohua Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai City 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai City 200092, China
| | - Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai City 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, Shanghai City 200092, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai City 200444, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai City 200444, China.
| |
Collapse
|
2
|
Liu Y, Zhang B, Yao Y, Wang B, Cao Y, Shen Y, Jia X, Xu F, Song Z, Zhao C, Gao H, Guo P. Insight into the plant-associated bacterial interactions: Role for plant arsenic extraction and carbon fixation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164960. [PMID: 37348724 DOI: 10.1016/j.scitotenv.2023.164960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
This study investigated the interactions between rhizosphere and endosphere bacteria during phytoextraction and how the interactions affect arsenic (As) extraction and carbon (C) fixation of plants. Pot experiments, high-throughput sequencing, metabonomics, and network analysis were integrated. Results showed that positive correlations dominated the interconnections within modules (>95 %), among modules (100 %), and among keystone taxa (>72 %) in the bacterial networks of plant rhizosphere, root endosphere, and shoot endosphere. This confirmed that cooperative interactions occurred between bacteria in the rhizosphere and endosphere during phytoextraction. Modules and keystone taxa positively correlating with plant As extraction and C fixation were identified, indicating that modules and keystone taxa promoted plant As extraction and C fixation simultaneously. This is mainly because modules and keystone taxa in plant rhizosphere, root endosphere, and shoot endosphere carried arsenate reduction and C fixation genes. Meanwhile, they up-regulated the significant metabolites related to plant As tolerance. Additionally, shoot C fixation increased peroxidase activity and biomass thereby facilitating plant As extraction was confirmed. This study revealed the mechanisms of plant-associated bacterial interactions contributing to plant As extraction and C fixation. More importantly, this study provided a new angle of view that phytoextraction can be applied to achieve multiple environmental goals, such as simultaneous soil remediation and C neutrality.
Collapse
Affiliation(s)
- Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| | - Ye Yao
- College of Physics, Jilin University, Changchun 130012, PR China
| | - Bo Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Yiqi Cao
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Xiaohui Jia
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Fukai Xu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Ziwei Song
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Chengpeng Zhao
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - HongJie Gao
- Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
3
|
Guo J, Wang XY, Li T, Gao MT, Hu J, Li J. Effect of micro-nanobubbles with different gas sources on the growth and metabolism of chemoautotrophic microorganisms. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Hu J, Tang H, Wang YZ, Yang C, Gao MT, Tsang YF, Li J. Effect of dissolved solids released from biochar on soil microbial metabolism. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:598-608. [PMID: 35332912 DOI: 10.1039/d2em00036a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dissolved solids released from biochar (DSRB), including organic and inorganic compounds, may affect the role of biochar as a soil amendment. In this study, the effects of DSRB on soil microbe metabolism, especially CO2 fixation, were evaluated in liquid soil extract. DSRB were found to be released in large amounts (289.05 mg L-1 at 1 hour) from biochar over a short period of time before their rate of release slowed to a gradual pace. They increased the microbial biomass and provided energy and reducing power to microbes, while reducing their metabolic output of extracellular proteins and polysaccharides. DSRB inputs led to the redistribution of metabolic flux in soil microorganisms and an increased organic carbon content in the short term. This content gradually decreased as it was utilized. DSRB did not improve microbial CO2 fixation but, rather, enhanced its release, while promoting specific soil microorganism genera, including Cupriavidus, Flavisolibacter, and Pseudoxanthomonas. These heterotrophic genera may compete with autotrophic microorganisms for nutrients but have positive synergistic relationships with autotrophs during CO2 fixation. These results demonstrated that reducing the DSRB in biochar can improve its role as a soil amendment by enhancing soil carbon storage and CO2 fixation capabilities.
Collapse
Affiliation(s)
- Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Han Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Ya Zhu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Chen Yang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
5
|
Interaction and Assembly of Bacterial Communities in High-Latitude Coral Habitat Associated Seawater. Microorganisms 2022; 10:microorganisms10030558. [PMID: 35336132 PMCID: PMC8955259 DOI: 10.3390/microorganisms10030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Threatened by climate change and ocean warming, coral reef ecosystems have been shifting in geographic ranges toward a higher latitude area. The water-associated microbial communities and their potential role in primary production contribution are well studied in tropical coral reefs, but poorly defined in high-latitude coral habitats to date. In this study, amplicon sequencing of 16S rRNA and cbbL gene, co-occurrence network, and βNTI were used. The community structure of bacterial and carbon-fixation bacterial communities showed a significant difference between the center of coral, transitional, and non-coral area. Nitrite, DOC, pH, and coral coverage ratio significantly impacted the β-diversity of bacterial and carbon-fixation communities. The interaction of heterotrophs and autotrophic carbon-fixers was more complex in the bottom than in surface water. Carbon-fixers correlated with diverse heterotrophs in surface water but fewer lineages of heterotrophic taxa in the bottom. Bacterial community assembly showed an increase by deterministic process with decrease of coral coverage in bottom water, which may correlate with the gradient of nitrite and pH in the habitat. A deterministic process dominated the assembly of carbon-fixation bacterial community in surface water, while stochastic process dominated t the bottom. In conclusion, the structure and assembly of bacterial and carbon-fixer community were affected by multi-environmental variables in high-latitude coral habitat-associated seawater.
Collapse
|
6
|
Sun S, Huang L, Song X, Zhou P. An external magnetic field moderating Cr(VI) stress for simultaneous enhanced acetate production and Cr(VI) removal in microbial electrosynthesis system. ENVIRONMENTAL RESEARCH 2021; 193:110550. [PMID: 33271144 DOI: 10.1016/j.envres.2020.110550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
A stressful heavy metal circumstance disfavors production of acetate from bicarbonate reduction in the biocathode of microbial electrosynthesis system (MES) with simultaneous function of heavy metal removal/recovery. It is of great interest to explore effective approaches to moderate the heavy metal stress with achievement of simultaneous enhanced acetate production and heavy metal removal in MES. Herein, a magnetic field strength of 100 mT was successfully employed to moderate Cr(VI) stress, achieving simultaneous production of acetate at a rate of 1.48 ± 0.01 mg/L/h and Cr(VI) removal at a rate of 1.67-2.42 mg/L/h in the Serratia marcescens Q1 catalyzed cathode of MES under periodical addition of bicarbonate and Cr(VI), 1.35-fold (acetate production) and 1.34-1.46 times (Cr(VI) removal) of those in the controls in the absence of magnetic field. This simultaneous efficient acetate production and Cr(VI) removal was regulated by the magnetic field and the stressful Cr(VI), which induced the S. marcescens to physiologically release additive amounts of extracellular polymeric substances with a compositional diversity and containing the electrochemically active c-type cytochromes to facilitate extracellular electron transfer. This study confirmed the importance of magnetic field in developing the S. marcescens catalytic activity for moderating Cr(VI) stress, and thus provided a feasible approach for simultaneous efficient acetate production and Cr(VI) removal/recovery in MES, from waters contaminated with Cr(VI).
Collapse
Affiliation(s)
- Shanshan Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Xu Song
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Fermentation of organic wastes and CO2 + H2 off-gas by microbiotas provides short-chain fatty acids and ethanol for n-caproate production. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Song X, Huang L, Lu H, Zhou P, Wang M, Li N. An external magnetic field for efficient acetate production from inorganic carbon in Serratia marcescens catalyzed cathode of microbial electrosynthesis system. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Hou J, Huang L, Zhou P, Qian Y, Li N. Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems. CHEMOSPHERE 2020; 243:125317. [PMID: 31722262 DOI: 10.1016/j.chemosphere.2019.125317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Metallurgical microbial electrosynthesis systems (MES) are holding great promise for simultaneous heavy metal removal and acetate production from heavy metal-contaminated and organics-barren waters. How critical parameters of strain of electrotroph, cathode potential and initial heavy metal concentration affect MES performance, however, is not yet fully understood. Heavy metal of Cu(II) and four Cu(II)-tolerant electrotrophs (Stenotrophomonas maltophilia JY1, Citrobacter sp. JY3, Pseudomonas aeruginosa JY5 and Stenotrophomonas sp. JY6) were employed to evaluate MES performance at various cathode potentials (-900 or -600 mV vs. standard hydrogen electrode) and initial Cu(II) concentrations (60-120 mg L-1). Each electrotrophs exhibited incremental Cu(II) removals with increased Cu(II) at -900 mV, higher than at -600 mV or in the abiotic controls. Acetate production by JY1 and JY6 decreased with the increase in initial Cu(II), compared to an initial increase and a decrease thereafter for JY3 and JY5. For each electrotrophs, the biofilms than the planktonic cells released more amounts of extracellular polymeric substances (EPS) with a compositional diversity and stronger Cu(II) complexation at -900 mV. These were higher than at -600 mV, or in the controls either under open circuit conditions or in the absence of Cu(II). This work demonstrates the interdependence of strain of electrotroph, cathode potential and initial Cu(II) on simultaneous Cu(II) removal and acetate production through the release of different amounts of EPS with diverse composites, contributing to enhancing the controlled MES for efficient recovery of value-added products from Cu(II)-contaminated and organics-barren waters.
Collapse
Affiliation(s)
- Jiaxin Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yitong Qian
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
10
|
Hou X, Huang L, Zhou P, Tian F, Tao Y, Li Puma G. Electrosynthesis of acetate from inorganic carbon (HCO 3-) with simultaneous hydrogen production and Cd(II) removal in multifunctional microbial electrosynthesis systems (MES). JOURNAL OF HAZARDOUS MATERIALS 2019; 371:463-473. [PMID: 30875574 DOI: 10.1016/j.jhazmat.2019.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The simultaneous production of acetate from bicarbonate (from CO2 sequestration) and hydrogen gas, with concomitant removal of Cd(II) heavy metal in water is demonstrated in multifunctional metallurgical microbial electrosynthesis systems (MES) incorporating Cd(II) tolerant electrochemically active bacteria (EAB) (Ochrobactrum sp. X1, Pseudomonas sp. X3, Pseudomonas delhiensis X5, and Ochrobactrum anthropi X7). Strain X5 favored the production of acetate, while X7 preferred the production of hydrogen. The rate of Cd(II) removal by all EAB (1.20-1.32 mg/L/h), and the rates of acetate production by X5 (29.4 mg/L/d) and hydrogen evolution by X7 (0.0187 m3/m3/d) increased in the presence of a circuital current. The production of acetate and hydrogen was regulated by the release of extracellular polymeric substances (EPS), which also exhibited invariable catalytic activity toward the reduction of Cd(II) to Cd(0). The intracellular activities of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and dehydrogenase were altered by the circuital current and Cd(II) concentration, and these regulated the products distribution. Such understanding enables the targeted manipulation of the MES operational conditions that favor the production of acetate from CO2 sequestration with simultaneous hydrogen production and removal/recovery of Cd(II) from metal-contaminated and organics-barren waters.
Collapse
Affiliation(s)
- Xia Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Fuping Tian
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ye Tao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
11
|
Qian Y, Huang L, Zhou P, Tian F, Puma GL. Reduction of Cu(II) and simultaneous production of acetate from inorganic carbon by Serratia Marcescens biofilms and plankton cells in microbial electrosynthesis systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:114-125. [PMID: 30798222 DOI: 10.1016/j.scitotenv.2019.02.267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Simultaneous Cu(II) reduction (6.42 ± 0.02 mg/L/h), acetate production (1.13 ± 0.02 mg/L/h) from inorganic carbon (i.e., CO2 sequestration), and hydrogen evolution (0.0315 ± 0.0005 m3/m3/d) were achieved in a Serratia marcescens Q1 catalyzed microbial electrosynthesis system (MES). The biofilms released increasing amounts of extracellular polymeric substances (EPS) with a higher compositional diversity and stronger Cu(II) complexation, compared to the plankton cells, at higher Cu(II) concentrations (up to 80 mg/L) and circuital currents (cathodic potential of -900 mV vs. standard hydrogen electrode (SHE)). Moreover, the biofilms reduced Cu(II) to Cu(0) more effectively than the plankton cells. At Cu(II) concentrations below 80 mg/L, the dehydrogenase activity in the biofilms was higher than in the plankton cells, and increased with circuital current, which was converse to the lower activities of catalase (CAT), superoxide dismutase (SOD) and antioxidative glutathione (GSH) in the biofilms than the plankton cells, although all these physiological activities were positively correlated with the concentration of Cu(II). This is the first study that evaluates the EPS constituents and the physiological activities of the biofilms and the plankton cells in the MESs, that favors the production of acetate from CO2 sequestration and the simultaneous reduction of Cu(II) from organics-barren waters contaminated with heavy metals.
Collapse
Affiliation(s)
- Yitong Qian
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Fuping Tian
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
12
|
Enhanced roles of biochar and organic fertilizer in microalgae for soil carbon sink. Biodegradation 2017; 29:313-321. [PMID: 28321595 DOI: 10.1007/s10532-017-9790-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/12/2017] [Indexed: 10/19/2022]
Abstract
Improved soil carbon sink capability is important for the mitigation of carbon dioxide emissions and the enhancement of soil productivity. Biochar and organic fertilizer (OF) showed a significant improving effect on microalgae in soil carbon sink capacity, and the ultimate soil total organic carbons with microalgae-OF, microalgae-biochar, microalgae-OF-biochar were about 16, 67 and 58% higher than that with microalgae alone, respectively, indicating that carbon fixation efficiency of microalgae applied in soil was improved with biochar and OF whilst the soil carbon capacity was promoted, the mechanism of which is illustrated through simulative experiments. Organic fertilizer could spur algal conversion of carbon into cell molecules by increasing intracellular polysaccharide production of microalgae. Biochar could change carbon metabolism pathway of microalgae through altering the yield of intracellular saccharides, and yield and type of extracellular saccharides. There was a superimposition effect on the soil carbon sink when biochar and OF were both present with microalgae.
Collapse
|
13
|
Ou C, Shen J, Zhang S, Mu Y, Han W, Sun X, Li J, Wang L. Coupling of iron shavings into the anaerobic system for enhanced 2,4-dinitroanisole reduction in wastewater. WATER RESEARCH 2016; 101:457-466. [PMID: 27295620 DOI: 10.1016/j.watres.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Packing of iron powder into anaerobic system is attractive for enhancing removal of recalcitrant pollutants from wastewater, but is limited by various inherent drawbacks of iron powder, such as easy precipitation and poor mass transfer. To address the above issues, iron shavings were packed into an upflow anaerobic sludge blanket (UASB) for enhancing 2,4-dinitroanisole (DNAN) reduction in this study, with system stability and microbial biodiversity emphasized. The results showed that both DNAN reduction and 2,4-diaminoanisole (DAAN) formation could be notably improved in the iron shavings coupled UASB system. Moreover, the ability to resist environmental stress was also strengthened through the addition of iron shavings in the UASB reactor. Compared with a loose and rough surface of the sludge in the control UASB reactor, the sludge in the coupled system presented a compact, rigid and granular appearance under iron shavings simulation. Furthermore, high throughput sequencing analysis indicated that the diversity of microbial community in the iron shavings coupled UASB system was significantly higher than that of the control UASB reactor. Additionally, species related to DNAN reduction and methane production were enriched in the coupled system. The observed long-term stable performance highlights the full-scale application potential of iron shavings coupled anaerobic sludge process for the treatment of nitroaromatic compounds containing wastewater.
Collapse
Affiliation(s)
- Changjin Ou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shuai Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Changhuan Environmental Science Co. LTD, Changzhou 213022, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|