1
|
Guo D, Li Q, Zhang Y, Duan J. Microbial remediation and deteriorated corrosion in marine oil pollution remediation engineering: A critical review. MARINE POLLUTION BULLETIN 2024; 209:117051. [PMID: 39393248 DOI: 10.1016/j.marpolbul.2024.117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024]
Abstract
Research on mechanism of microbial deteriorated corrosion in oil-pollution remediation is limited. This paper discusses principles and technical methods of the cost-effective and environmental-friendly bioremediation in marine oil pollution control including the highly efficient microbial resources and bioenhancement technology. Deteriorated corrosion is creatively put forward to interpret the corrosion phenomenon under pollutant-degrading conditions, primarily induced by anaerobic electroactive microorganisms via electron transfer. It summarizes the potential link of microorganisms between oil pollutant degradation and corrosion destruction and illustrates the importance of screening microorganisms with hydrocarbon degradation and corrosion inhibition functions. We critically point out that the severe damage of metal materials in the oil-containing environment is related to the service environment and the interactions between microbial interspecies. The study of the material failure mechanism and the microbial protection technology in the oil-contaminated environment contributes to the sustainability of safe and clean marine ecological restoration engineering.
Collapse
Affiliation(s)
- Ding Guo
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Qiuyue Li
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Jizhou Duan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
2
|
D'Almeida AP, de Albuquerque TL, Rocha MVP. Recent advances in Emulsan production, purification, and application: Exploring bioemulsifiers unique potentials. Int J Biol Macromol 2024; 278:133672. [PMID: 38971276 DOI: 10.1016/j.ijbiomac.2024.133672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Bioemulsifiers are compounds produced by microorganisms that reduce the interfacial forces between hydrophobic substances and water. Due to their potential in the pharmaceutical and food industries and their efficiency in oil spill remediation, they have been the subject of study in the scientific community while being safe, biodegradable, and sustainable compared to synthetic options. These biomolecules have high molecular weight and polymeric structures, distinguishing them from traditional biosurfactants. Emulsan, a bioemulsifier exopolysaccharide, is produced by Acinetobacter strains and is highly efficient in forming stable emulsions. Its low toxicity and high potential as an emulsifying agent promote its application in pharmaceutical and food industries as a drug-delivery vehicle and emulsion stabilizer. Due to the high environmental impact of oil spills, bioemulsifiers have great potential for environmental applications, such as bioremediation. This unique feature gives them a distinct mechanism of action in forming emulsions, resulting in minimal environmental impact. A better understanding of these aspects can improve the use of bioemulsifiers and environmental remediation in various industries. This review will discuss the production and characterization of Emulsan, focusing on recent advancements in cultivation conditions, purification techniques, compound identification, and ecotoxicity.
Collapse
|
3
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Thundiparambil Venu A, Vijayan J, Ammanamveetil MHA, Kottekkattu Padinchati K. An Insightful Overview of Microbial Biosurfactant: A Promising Next-Generation Biomolecule for Sustainable Future. J Basic Microbiol 2024; 64:e2300757. [PMID: 38934506 DOI: 10.1002/jobm.202300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 06/28/2024]
Abstract
Microbial biosurfactant is an emerging vital biomolecule of the 21st century. They are amphiphilic compounds produced by microorganisms and possess unique properties to reduce surface tension activity. The use of microbial surfactants spans most of the industrial fields due to their biodegradability, less toxicity, being environmentally safe, and being synthesized from renewable sources. These would be highly efficient eco-friendly alternatives to petroleum-derived surfactants that would open up new approaches to research on the production of biosurfactants. In the upcoming era, biobased surfactants will become a dominating multifunctional compound in the world market. Research on biosurfactants ranges from the search for novel microorganisms that can produce new molecules, structural and physiochemical characterization of biosurfactants, and fermentation process for enhanced large-scale productivity and green applications. The main goal of this review is to provide an overview of the recent state of knowledge and trends about microbially derived surfactants, various aspects of biosurfactant production, definition, properties, characteristics, diverse advances, and applications. This would lead a long way in the production of biosurfactants as globally successful biomolecules of the current century.
Collapse
Affiliation(s)
- Athira Thundiparambil Venu
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Jasna Vijayan
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Mohamed Hatha Abdulla Ammanamveetil
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, India
- CUSAT-NCPOR Centre for Polar Science, Kochi, Kerala, India
| | - Krishnan Kottekkattu Padinchati
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India
| |
Collapse
|
5
|
Bastos CG, Livio DF, de Oliveira MA, Meira HGR, Tarabal VS, Colares HC, Parreira AG, Chagas RCR, Speziali MG, da Silva JA, Granjeiro JM, Millán RDS, Gonçalves DB, Granjeiro PA. Exploring the biofilm inhibitory potential of Candida sp. UFSJ7A glycolipid on siliconized latex catheters. Braz J Microbiol 2024; 55:2119-2130. [PMID: 38954220 PMCID: PMC11405650 DOI: 10.1007/s42770-024-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Biosurfactants, sustainable alternatives to petrochemical surfactants, are gaining attention for their potential in medical applications. This study focuses on producing, purifying, and characterizing a glycolipid biosurfactant from Candida sp. UFSJ7A, particularly for its application in biofilm prevention on siliconized latex catheter surfaces. The glycolipid was extracted and characterized, revealing a critical micellar concentration (CMC) of 0.98 mg/mL, indicating its efficiency at low concentrations. Its composition, confirmed through Fourier transform infrared spectroscopy (FT-IR) and thin layer chromatography (TLC), identified it as an anionic biosurfactant with a significant ionic charge of -14.8 mV. This anionic nature contributes to its biofilm prevention capabilities. The glycolipid showed a high emulsification index (E24) for toluene, gasoline, and soy oil and maintained stability under various pH and temperature conditions. Notably, its anti-adhesion activity against biofilms formed by Escherichia coli, Enterococcus faecalis, and Candida albicans was substantial. When siliconized latex catheter surfaces were preconditioned with 2 mg/mL of the glycolipid, biofilm formation was reduced by up to 97% for E. coli and C. albicans and 57% for E. faecalis. These results are particularly significant when compared to the efficacy of conventional surfactants like SDS, especially for E. coli and C. albicans. This study highlights glycolipids' potential as a biotechnological tool in reducing biofilm-associated infections on medical devices, demonstrating their promising applicability in healthcare settings.
Collapse
Affiliation(s)
- Cibele Garcia Bastos
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Diego Fernandes Livio
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Maria Auxiliadora de Oliveira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Hiure Gomes Ramos Meira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Vinícius Souza Tarabal
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Heloísa Carneiro Colares
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Adriano Guimarães Parreira
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Rafael César Russo Chagas
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Marcelo Gomes Speziali
- Chemistry Department, Federal University of Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - José Antônio da Silva
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - José Mauro Granjeiro
- National Institute of Metrology, Quality, and Technology, Duque de Caxias, RJ, 25250-020, Brazil
| | | | - Daniel Bonoto Gonçalves
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil
| | - Paulo Afonso Granjeiro
- Campus Centro Oeste, Federal University of São João del-Rei, Sebastião Gonçalves Coelho St., 400, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
6
|
Singh N, Hu XH, Kumar V, Solanki MK, Kaushik A, Singh VK, Singh SK, Yadav P, Singh RP, Bhardwaj N, Wang Z, Kumar A. Microbially derived surfactants: an ecofriendly, innovative, and effective approach for managing environmental contaminants. Front Bioeng Biotechnol 2024; 12:1398210. [PMID: 39253704 PMCID: PMC11381421 DOI: 10.3389/fbioe.2024.1398210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The natural environment is often contaminated with hydrophobic pollutants such as long-chain hydrocarbons, petrochemicals, oil spills, pesticides, and heavy metals. Hydrophobic pollutants with a toxic nature, slow degradation rates, and low solubility pose serious threats to the environment and human health. Decontamination based on conventional chemical surfactants has been found to be toxic, thereby limiting its application in pharmaceutical and cosmetic industries. In contrast, biosurfactants synthesized by various microbial species have been considered superior to chemical counterparts due to their non-toxic and economical nature. Some biosurfactants can withstand a wide range of fluctuations in temperature and pH. Recently, biosurfactants have emerged as innovative biomolecules not only for solubilization but also for the biodegradation of environmental pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and oil spills. Biosurfactants have been well documented to function as emulsifiers, dispersion stabilizers, and wetting agents. The amphiphilic nature of biosurfactants has the potential to enhance the solubility of hydrophobic pollutants such as petroleum hydrocarbons and oil spills by reducing interfacial surface tension after distribution in two immiscible surfaces. However, the remediation of contaminants using biosurfactants is affected considerably by temperature, pH, media composition, stirring rate, and microorganisms selected for biosurfactant production. The present review has briefly discussed the current advancements in microbially synthesized biosurfactants, factors affecting production, and their application in the remediation of environmental contaminants of a hydrophobic nature. In addition, the latest aspect of the circular bioeconomy is discussed in terms of generating biosurfactants from waste and the global economic aspects of biosurfactant production.
Collapse
Affiliation(s)
- Navdeep Singh
- Department of Chemistry, N.A.S.College, Meerut, India
| | - Xiao-Hu Hu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Vikash Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Amit Kaushik
- College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Hisar, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | | | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| | - Priya Yadav
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Rahul Prasad Singh
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Nikunj Bhardwaj
- Department of Zoology, Maharaj Singh College, Maa Shakumbhari University, Saharanpur, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, China
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
7
|
Behzadnia A, Moosavi-Nasab M, Oliyaei N. Anti-biofilm activity of marine algae-derived bioactive compounds. Front Microbiol 2024; 15:1270174. [PMID: 38680918 PMCID: PMC11055458 DOI: 10.3389/fmicb.2024.1270174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
A large number of microbial species tend to communicate and produce biofilm which causes numerous microbial infections, antibiotic resistance, and economic problems across different industries. Therefore, advanced anti-biofilms are required with novel attributes and targets, such as quorum sensing communication system. Meanwhile, quorum sensing inhibitors as promising anti-biofilm molecules result in the inhibition of particular phenotype expression blocking of cell-to-cell communication, which would be more acceptable than conventional strategies. Many natural products are identified as anti-biofilm agents from different plants, microorganisms, and marine extracts. Marine algae are promising sources of broadly novel compounds with anti-biofilm activity. Algae extracts and their metabolites such as sulfated polysaccharides (fucoidan), carotenoids (zeaxanthin and lutein), lipid and fatty acids (γ-linolenic acid and linoleic acid), and phlorotannins can inhibit the cell attachment, reduce the cell growth, interfere in quorum sensing pathway by blocking related enzymes, and disrupt extracellular polymeric substances. In this review, the mechanisms of biofilm formation, quorum sensing pathway, and recently identified marine algae natural products as anti-biofilm agents will be discussed.
Collapse
Affiliation(s)
- Asma Behzadnia
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Najmeh Oliyaei
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Li L, Gao X, Li M, Liu Y, Ma J, Wang X, Yu Z, Cheng W, Zhang W, Sun H, Song X, Wang Z. Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. Front Cell Infect Microbiol 2024; 14:1324895. [PMID: 38465230 PMCID: PMC10920351 DOI: 10.3389/fcimb.2024.1324895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen.
Collapse
Affiliation(s)
- Lifeng Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingchao Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yuchun Liu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Jiayue Ma
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Weyland Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Wancun Zhang
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Huiqing Sun
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Miao Y, To MH, Siddiqui MA, Wang H, Lodens S, Chopra SS, Kaur G, Roelants SLKW, Lin CSK. Sustainable biosurfactant production from secondary feedstock-recent advances, process optimization and perspectives. Front Chem 2024; 12:1327113. [PMID: 38312346 PMCID: PMC10834756 DOI: 10.3389/fchem.2024.1327113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Biosurfactants have garnered increased attention lately due to their superiority of their properties over fossil-derived counterparts. While the cost of production remains a significant hurdle to surpass synthetic surfactants, biosurfactants have been anticipated to gain a larger market share in the coming decades. Among these, glycolipids, a type of low-molecular-weight biosurfactant, stand out for their efficacy in reducing surface and interfacial tension, which made them highly sought-after for various surfactant-related applications. Glycolipids are composed of hydrophilic carbohydrate moieties linked to hydrophobic fatty acid chains through ester bonds that mainly include rhamnolipids, trehalose lipids, sophorolipids, and mannosylerythritol lipids. This review highlights the current landscape of glycolipids and covers specific glycolipid productivity and the diverse range of products found in the global market. Applications such as bioremediation, food processing, petroleum refining, biomedical uses, and increasing agriculture output have been discussed. Additionally, the latest advancements in production cost reduction for glycolipid and the challenges of utilizing second-generation feedstocks for sustainable production are also thoroughly examined. Overall, this review proposes a balance between environmental advantages, economic viability, and societal benefits through the optimized integration of secondary feedstocks in biosurfactant production.
Collapse
Affiliation(s)
- Yahui Miao
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Ming Ho To
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Muhammad Ahmar Siddiqui
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
- Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, China
| | - Huaimin Wang
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, United States
| | - Sofie Lodens
- Bio Base Europe Pilot Plant, Ghent, Belgium
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON, Canada
| | - Sophie L K W Roelants
- Bio Base Europe Pilot Plant, Ghent, Belgium
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| |
Collapse
|
10
|
Ng YJ, Chan SS, Khoo KS, Munawaroh HSH, Lim HR, Chew KW, Ling TC, Saravanan A, Ma Z, Show PL. Recent advances and discoveries of microbial-based glycolipids: Prospective alternative for remediation activities. Biotechnol Adv 2023; 68:108198. [PMID: 37330152 DOI: 10.1016/j.biotechadv.2023.108198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/22/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Surfactants have always been a prominent chemical that is useful in various sectors (e.g., cleaning agent production industry, textile industry and painting industry). This is due to the special ability of surfactants to reduce surface tension between two fluid surfaces (e.g., water and oil). However, the current society has long omitted the harmful effects of petroleum-based surfactants (e.g., health issues towards humans and reducing cleaning ability of water bodies) due to their usefulness in reducing surface tension. These harmful effects will significantly damage the environment and negatively affect human health. As such, there is an urgency to secure environmentally friendly alternatives such as glycolipids to reduce the effects of these synthetic surfactants. Glycolipids is a biomolecule that shares similar properties with surfactants that are naturally synthesized in the cell of living organisms, glycolipids are amphiphilic in nature and can form micelles when glycolipid molecules clump together, reducing surface tension between two surfaces as how a surfactant molecule is able to achieve. This review paper aims to provide a comprehensive study on the recent advances in bacteria cultivation for glycolipids production and current lab scale applications of glycolipids (e.g., medical and waste bioremediation). Studies have proven that glycolipids are effective anti-microbial agents, subsequently leading to an excellent anti-biofilm forming agent. Heavy metal and hydrocarbon contaminated soil can also be bioremediated via the use of glycolipids. The major hurdle in the commercialization of glycolipid production is that the cultivation stage and downstream extraction stage of the glycolipid production process induces a very high operating cost. This review provides several solutions to overcome this issue for glycolipid production for the commercialization of glycolipids (e.g., developing new cultivating and extraction techniques, using waste as cultivation medium for microbes and identifying new strains for glycolipid production). The contribution of this review aims to serve as a future guideline for researchers that are dealing with glycolipid biosurfactants by providing an in-depth review on the recent advances of glycolipid biosurfactants. By summarizing the points discussed as above, it is recommended that glycolipids can substitute synthetic surfactants as an environmentally friendly alternative.
Collapse
Affiliation(s)
- Yan Jer Ng
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Sook Sin Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Heli Siti Halimatul Munawaroh
- Chemistry Program, Department of Chemistry Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Anbalagan Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS Chennai, India
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, People's Republic of China.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
11
|
Chen Y, Ma F, Wu Y, Tan S, Niu A, Qiu W, Wang G. Biosurfactant from Pseudomonas fragi enhances the competitive advantage of Pseudomonas but reduces the overall spoilage ability of the microbial community in chilled meat. Food Microbiol 2023; 115:104311. [PMID: 37567617 DOI: 10.1016/j.fm.2023.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/07/2023] [Accepted: 06/01/2023] [Indexed: 08/13/2023]
Abstract
Biosurfactants from Pseudomonas spp. have been reported to exhibit antibacterial and anti-adhesive properties, but their role during meat spoilage remains unclear. In this study, the biosurfactant was isolated from an isolate of Pseudomonas fragi with strong spoilage potential, and its surface tension and emulsification ability were determined. The chemical and microbial characteristics of the biosurfactant-treated meat samples were periodically analyzed. The results demonstrated that the biosurfactant produced by P. fragi could reduce surface tension and showed good emulsification properties. For the in situ spoilage trials, biosurfactant from P. fragi changed the microbial diversity on meat, helping Pseudomonas establish a dominant position in the population. However, biosurfactant treatment caused chicken meat to exhibit a weaker spoilage state, as indicated by the growth of psychrophilic microorganisms, total volatile basic nitrogen (TVBN) and meat color. These results provide practical information for understanding the role of P. fragi biosurfactant during chilled meat storage.
Collapse
Affiliation(s)
- Yuping Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yajie Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Song Tan
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Ajuan Niu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Weifen Qiu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Guangyu Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
12
|
Gharaie S, Ohadi M, Hassanshahian M, Shakibaie M, Shahriary P, Forootanfar H. Glycolipopeptide biosurfactant from Bacillus pumilus SG: physicochemical characterization, optimization, antibiofilm and antimicrobial activity evaluation. 3 Biotech 2023; 13:321. [PMID: 37649591 PMCID: PMC10462595 DOI: 10.1007/s13205-023-03728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
The Bacillus pumilus SG isolated from soil samples at the Persian Gulf was analyzed for its ability to produce biosurfactant. Various screening techniques were used for evaluating biosurfactant production and confirming biosurfactant presence in the culture supernatant. Most n-alkanes in the bacterial culture media were effectively degraded in the presence of biosurfactant acquired from the bacteria. The highest interfacial tension (IT) reduction (42 mN/m) was obtained at 24-h fermentation time (exponential phase) and did not change significantly afterwards. The glycolipid structure of the biosurfactant was revealed through NMR and FTIR spectroscopy analysis. Two-level factorial design was then applied for optimization of biosurfactant production, where a maximal reduction of culture broth IT (30 mN/m) acquired in the presence of crude oil (0.5%, v/v), NaNO3 (1 g/L), yeast extract (1 g/L), peptone (2 g/L) and temperature of 25 °C. The produced biosurfactant that exhibited a critical micelle concentration of 0.1 mg/ml was thermally stable. The glycolipid biosurfactant also displayed significant antibacterial activities against both Gram-positive and Gram-negative bacteria. The maximum inhibition of glycolipids biosurfactant was found against Acinetobacter strains (zone of inhibition, 45 mm). In addition, antibiofilm activities with a 50-90% biofilm reduction percent were indicated by the glycolipid biosurfactant. In conclusion, the glycolipid biosurfactant produced by B. pumilus SG revealed a wide range of functional properties and was verified as a good candidate for biomedical application. In conclusion, the glycolipid biosurfactant produced by B. pumilus SG showed a wide range of functional properties in this study, and in the case of further in vivo studies, it can be investigated a good candidate for biomedical applications such as use against biofilm or in pharmaceutical formulations.
Collapse
Affiliation(s)
- Sanaz Gharaie
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Poorandokht Shahriary
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Qi Z, Wang Z, Yu Y, Yu X, Sun R, Wang K, Xiong D. Formation of oil-particle aggregates in the presence of marine algae. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1438-1448. [PMID: 37424387 DOI: 10.1039/d3em00092c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
After an oil spill, the formation of oil-particle aggregates (OPAs) is associated with the interaction between dispersed oil and marine particulate matter such as phytoplankton, bacteria and mineral particles. Until recently, the combined effect of minerals and marine algae in influencing oil dispersion and OPA formation has rarely been investigated in detail. In this paper, the impacts of a species of flagellate algae Heterosigma akashiwo on oil dispersion and aggregation with montmorillonite were investigated. This study has found that oil coalescence is inhibited due to the adhesion of algal cells on the droplet surface, causing fewer large droplets to be dispersed into the water column and small OPAs to form. Due to the role of biosurfactants in the algae and the inhibition of algae on the swelling of mineral particles, both the oil dispersion efficiency and oil sinking efficiency were improved, which reached 77.6% and 23.5%, respectively at an algal cell concentration (Ca) of 1.0 × 106 cells per mL and a mineral concentration of 300 mg L-1. The volumetric mean diameter of the OPAs decreased from 38.4 μm to 31.5 μm when Ca increased from 0 to 1.0 × 106 cells per mL. At higher turbulent energy, more oil tended to form larger OPAs. The findings may add knowledge about the fate and transport of spilled oil and provide fundamental data for oil spill migration modelling.
Collapse
Affiliation(s)
- Zhixin Qi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Zhennan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Yue Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
- National Maritime Environmental Monitoring Center, Dalian 116023, China
| | - Xinping Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Ruiyang Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Kaiming Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
14
|
Ceresa C, Fracchia L, Sansotera AC, De Rienzo MAD, Banat IM. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:2156. [PMID: 37631370 PMCID: PMC10457971 DOI: 10.3390/pharmaceutics15082156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biosurfactants (BSs) are microbial compounds that have emerged as potential alternatives to chemical surfactants due to their multifunctional properties, sustainability and biodegradability. Owing to their amphipathic nature and distinctive structural arrangement, biosurfactants exhibit a range of physicochemical properties, including excellent surface activity, efficient critical micelle concentration, humectant properties, foaming and cleaning abilities and the capacity to form microemulsions. Furthermore, numerous biosurfactants display additional biological characteristics, such as antibacterial, antifungal and antiviral effects, and antioxidant, anticancer and immunomodulatory activities. Over the past two decades, numerous studies have explored their potential applications, including pharmaceuticals, cosmetics, antimicrobial and antibiofilm agents, wound healing, anticancer treatments, immune system modulators and drug/gene carriers. These applications are particularly important in addressing challenges such as antimicrobial resistance and biofilm formations in clinical, hygiene and therapeutic settings. They can also serve as coating agents for surfaces, enabling antiadhesive, suppression, or eradication strategies. Not least importantly, biosurfactants have shown compatibility with various drug formulations, including nanoparticles, liposomes, micro- and nanoemulsions and hydrogels, improving drug solubility, stability and bioavailability, and enabling a targeted and controlled drug release. These qualities make biosurfactants promising candidates for the development of next-generation antimicrobial, antibiofilm, anticancer, wound-healing, immunomodulating, drug or gene delivery agents, as well as adjuvants to other antibiotics. Analysing the most recent literature, this review aims to update the present understanding, highlight emerging trends, and identify promising directions and advancements in the utilization of biosurfactants within the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Andrea Chiara Sansotera
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | | | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
15
|
Giugliano R, Della Sala G, Buonocore C, Zannella C, Tedesco P, Palma Esposito F, Ragozzino C, Chianese A, Morone MV, Mazzella V, Núñez-Pons L, Folliero V, Franci G, De Filippis A, Galdiero M, de Pascale D. New Imidazolium Alkaloids with Broad Spectrum of Action from the Marine Bacterium Shewanella aquimarina. Pharmaceutics 2023; 15:2139. [PMID: 37631353 PMCID: PMC10458398 DOI: 10.3390/pharmaceutics15082139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The continuous outbreak of drug-resistant bacterial and viral infections imposes the need to search for new drug candidates. Natural products from marine bacteria still inspire the design of pharmaceuticals. Indeed, marine bacteria have unique metabolic flexibility to inhabit each ecological niche, thus expanding their biosynthetic ability to assemble unprecedented molecules. The One-Strain-Many-Compounds approach and tandem mass spectrometry allowed the discovery of a Shewanella aquimarina strain as a source of novel imidazolium alkaloids via molecular networking. The alkaloid mixture was shown to exert bioactivities such as: (a) antibacterial activity against antibiotic-resistant Staphylococcus aureus clinical isolates at 100 µg/mL, (b) synergistic effects with tigecycline and linezolid, (c) restoration of MRSA sensitivity to fosfomycin, and (d) interference with the biofilm formation of S. aureus 6538 and MRSA. Moreover, the mixture showed antiviral activity against viruses with and without envelopes. Indeed, it inhibited the entry of coronavirus HcoV-229E and herpes simplex viruses into human cells and inactivated poliovirus PV-1 in post-infection assay at 200 µg/mL. Finally, at the same concentration, the fraction showed anthelminthic activity against Caenorhabditis elegans, causing 99% mortality after 48 h. The broad-spectrum activities of these compounds are partially due to their biosurfactant behavior and make them promising candidates for breaking down drug-resistant infectious diseases.
Collapse
Affiliation(s)
- Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Gerardo Della Sala
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Costanza Ragozzino
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Valerio Mazzella
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Ischia, 80077 Naples, Italy;
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy;
| | - Laura Núñez-Pons
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy;
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (G.F.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| |
Collapse
|
16
|
Kumari R, Singha LP, Shukla P. Biotechnological potential of microbial bio-surfactants, their significance, and diverse applications. FEMS MICROBES 2023; 4:xtad015. [PMID: 37614639 PMCID: PMC10442721 DOI: 10.1093/femsmc/xtad015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Globally, there is a huge demand for chemically available surfactants in many industries, irrespective of their detrimental impact on the environment. Naturally occurring green sustainable substances have been proven to be the best alternative for reducing reliance on chemical surfactants and promoting long-lasting sustainable development. The most frequently utilized green active biosurfactants, which are made by bacteria, yeast, and fungi, are discussed in this review. These biosurfactants are commonly originated from contaminated sites, the marine ecosystem, and the natural environment, and it holds great potential for environmental sustainability. In this review, we described the importance of biosurfactants for the environment, including their biodegradability, low toxicity, environmental compatibility, and stability at a wide pH range. In this review, we have also described the various techniques that have been utilized to characterize and screen the generation of microbial biosurfactants. Also, we reviewed the potential of biosurfactants and its emerging applications in the foods, cosmetics, pharmaceuticals, and agricultural industries. In addition, we also discussed the ways to overcome problems with expensive costs such as low-cost substrate media formulation, gravitational techniques, and solvent-free foam fractionation for extraction that could be employed during biosurfactant production on a larger scale.
Collapse
Affiliation(s)
- Renuka Kumari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Lairenjam Paikhomba Singha
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer-305817, Rajasthan, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
17
|
Amirinejad N, Shahriary P, Hassanshahian M. Investigation of the synergistic effect of glycolipid biosurfactant produced by Shewanella algae with some antibiotics against planktonic and biofilm forms of MRSA and antibiotic resistant Acinetobacter baumannii. World J Microbiol Biotechnol 2023; 39:45. [DOI: 10.1007/s11274-022-03492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
|
18
|
Daku AB, AL-Mhanna SB, Abu Bakar R, Nurul AA. Glycolipids isolation and characterization from natural source: A review. J LIQ CHROMATOGR R T 2023. [DOI: 10.1080/10826076.2023.2165097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Abubakar Bishir Daku
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
- Department of Human Physiology, Faculty of Basic Medical Sciences, Federal University, Dutse, Nigeria
| | - Sameer Badri AL-Mhanna
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Ruzilawati Abu Bakar
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Malaysia
| |
Collapse
|
19
|
Microbial Communities of Seawater and Coastal Soil of Russian Arctic Region and Their Potential for Bioremediation from Hydrocarbon Pollutants. Microorganisms 2022; 10:microorganisms10081490. [PMID: 35893548 PMCID: PMC9332119 DOI: 10.3390/microorganisms10081490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
The development of Arctic regions leads to pollution of marine and coastal environments with oil and petroleum products. The purpose of this work was to determine the diversity of microbial communities in seawater, as well as in littoral and coastal soil, and the potential ability of their members to degrade hydrocarbons degradation and to isolate oil-degrading bacteria. Using high-throughput sequencing of the V4 region of the 16S rRNA gene, the dominance of bacteria in polar communities was shown, the proportion of archaea did not exceed 2% (of the total number of sequences in the libraries). Archaea inhabiting the seawater belonged to the genera Nitrosopumilus and Nitrosoarchaeum and to the Nitrososphaeraceae family. In the polluted samples, members of the Gammaproteobacteria, Alphaproteobacteria, and Actinomycetes classes predominated; bacteria of the classes Bacteroidia, Clostridia, Acidimicrobiia, Planctomycetia, and Deltaproteobacteria were less represented. Using the iVikodak program and KEGG database, the potential functional characteristics of the studied prokaryotic communities were predicted. Bacteria were potentially involved in nitrogen and sulfur cycles, in degradation of benzoate, terephthalate, fatty acids, and alkanes. A total of 19 strains of bacteria of the genera Pseudomonas, Aeromonas, Oceanisphaera, Shewanella, Paeniglutamicibacter, and Rhodococcus were isolated from the studied samples. Among them were psychrotolerant and psychrophilic bacteria growing in seawater and utilizing crude oil, diesel fuel, and motor oils. The data obtained suggest that the studied microbial communities could participate in the removal of hydrocarbons from arctic seawater and coastal soils and suggested the possibility of the application of the isolates for the bioaugmentation of oil-contaminated polar environments.
Collapse
|