1
|
Boanini E, Pagani S, Gazzano M, Rubini K, Raimondi L, De Luca A, Romanelli A, Giavaresi G, Bigi A. Mn 2+ vs Co 2+ substitution into β-TCP: Structural details and bone cells response. Colloids Surf B Biointerfaces 2024; 243:114154. [PMID: 39137528 DOI: 10.1016/j.colsurfb.2024.114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
This work investigated the range of substitution of two biologically relevant ions, namely Mn2+ and Co2+, into the structure of β-tricalcium phosphate, as well as their influence on bone cells response. To this aim, β-TCP was synthesized by solid state reaction in the presence of increasing amount of the substituent ions. The results of the X-ray diffraction analysis reveal that just limited amounts of these ions can enter into the β-TCP structure: 15 at% and 20 at% for cobalt and manganese, respectively. Substitution provokes aggregation of the micrometric particles and reduction of the lattice constants. In particular, the dimension of the c-parameter exhibits a discontinuity at about 10 at% for both cations, although with different trend. Moreover, Rietveld refinement demonstrates a clear preference of both manganese and cobalt for the octahedral site (V). The influence of these ions on cell response was tested on osteoblast, osteoclast and endothelial cells. The results indicate that the presence of manganese promotes a good osteoblast viability, significantly enhances the expression of osteoblast key genes and the angiogenic process of endothelial cells, while inhibiting osteoclast resorption. At variance, osteoblast viability appears reduced in the presence of Co samples, on which osteoblast genes reach higher expression than on β-TCP just in a few cases. On the other hand, the results clearly show that cobalt significantly stimulates the angiogenic process and inhibits osteoclast resorption.
Collapse
Affiliation(s)
- Elisa Boanini
- Department of Chemistry ''Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy.
| | - Stefania Pagani
- CS-Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | | | - Katia Rubini
- Department of Chemistry ''Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| | - Lavinia Raimondi
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Angela De Luca
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Alessia Romanelli
- CS-Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Gianluca Giavaresi
- CS-Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna 40136, Italy
| | - Adriana Bigi
- Department of Chemistry ''Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy
| |
Collapse
|
2
|
Skalny AV, Korobeinikova TV, Aschner M, Paoliello MMB, Lu R, Skalny AA, Mazaletskaya AL, Tinkov AA. Hair and Serum Trace Element and Mineral Levels Profiles in Women with Premenopausal and Postmenopausal Osteoporosis. Biol Trace Elem Res 2024; 202:3886-3899. [PMID: 38038893 DOI: 10.1007/s12011-023-03970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The objective of the present study was to evaluate serum and hair trace element and mineral levels in women with osteoporosis, as well as to estimate the impact of menopausal status on the profile of trace element and mineral status in women with osteoporosis. 207 women with diagnosed osteoporosis 22-85 years-of-age, and 197 healthy women of the respective age participated in the present study. Analysis of the levels of mineral and trace element in hair and serum samples was performed by inductively-coupled plasma mass-spectrometry (ICP-MS). Women with osteoporosis were characterized by significantly lower hair Ca, Mg, Co, I, Li, and Mn levels, as well as serum Ca, Mg, Co, Fe, V, and Zn concentrations compared to women in the control group. After additional grouping according to menopausal status, the lowest hair Ca and Mg content was observed in postmenopausal osteoporotic women, whereas serum Ca and Mg concentrations were the lowest in premenopausal osteoporotic women. Hair Co, Mn, and Zn levels in postmenopausal osteoporotic women were lower than in healthy postmenopausal women. The lowest circulating Zn levels were observed in osteoporotic postmenopausal women. Taken together, decreased hair and serum levels in osteoporotic women are indicative of increased risk of Ca, Mg, Co, and Zn deficiency in women with osteoporosis. In turn, alterations in hair trace element and mineral levels in osteoporosis are more profound in postmenopausal women. Hypothetically, improvement in trace element and mineral metabolism especially in postmenopausal women may be considered as a potential strategy for mitigating osteoporosis.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia.
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Tatiana V Korobeinikova
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Andrey A Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anna L Mazaletskaya
- Yaroslavl State University, Yaroslavl, Russia
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
He Y, Jiang H, Dong S. Bioactives and Biomaterial Construction for Modulating Osteoclast Activities. Adv Healthc Mater 2024; 13:e2302807. [PMID: 38009952 DOI: 10.1002/adhm.202302807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Bone tissue constitutes 15-20% of human body weight and plays a crucial role in supporting the body, coordinating movement, regulating mineral homeostasis, and hematopoiesis. The maintenance of bone homeostasis relies on a delicate balance between osteoblasts and osteoclasts. Osteoclasts, as the exclusive "bone resorbers" in the human skeletal system, are of paramount significance yet often receive inadequate attention. When osteoclast activity becomes excessive, it frequently leads to various bone metabolic disorders, subsequently resulting in secondary bone injuries, such as fractures. This not only reduces life quality of patients, but also imposes a significant economic burden on society. In response to the pressing need for biomaterials in the treatment of osteoclast dysregulation, there is a surge of research and investigations aimed at osteoclast regulation. Promising progress is achieved in this domain. This review seeks to provide a comprehensive understanding of how to modulate osteoclast activities. It summarizes bioactive substances that influence osteoclasts and elucidates strategies for constructing related biomaterial systems. It offers practical insights and ideas for the development and application of biomaterials and tissue engineering, with the hope of guiding the clinical treatment of osteoclast-related bone diseases using biomaterials in the future.
Collapse
Affiliation(s)
- Yuwei He
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
4
|
Song Q, Wang D, Li H, Wang Z, Sun S, Wang Z, Liu Y, Lin S, Li G, Zhang S, Zhang P. Dual-response of multi-functional microsphere system to ultrasound and microenvironment for enhanced bone defect treatment. Bioact Mater 2024; 32:304-318. [PMID: 37876555 PMCID: PMC10590728 DOI: 10.1016/j.bioactmat.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023] Open
Abstract
Using bone tissue engineering strategies to achieve bone defect repair is a promising modality. However, the repair process outcomes are often unsatisfactory. Here we properly designed a multi-functional microsphere system, which could deliver bioactive proteins under the dual response of ultrasound and microenvironment, release microenvironment-responsive products on demand, reverse bone injury microenvironment, regulate the immune microenvironment, and achieve excellent bone defect treatment outcomes. In particular, the MnO2 introduced into the poly(lactic-co-glycolic acid) (PLGA) microspheres during synthesis could consume the acid produced by the degradation of PLGA to protect bone morphogenetic protein-2 (BMP-2). More importantly, MnO2 could consume reactive oxygen species (ROS) and produce Mn2+ and oxygen (O2), further promoting the repair of bone defects while reversing the microenvironment. Moreover, the reversal of the bone injury microenvironment and the depletion of ROS promoted the polarization of M1 macrophages to M2 macrophages, and the immune microenvironment was regulated. Notably, the ultrasound (US) irradiation used during treatment also allowed the on-demand release of microenvironment-responsive products. The multi-functional microsphere system combines the effects of on-demand delivery, reversal of bone injury microenvironment, and regulation of the immune microenvironment, providing new horizons for the clinical application of protein delivery and bone defect repair.
Collapse
Affiliation(s)
- Qingxu Song
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Dianwei Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Haoyu Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Songjia Sun
- Department of Dermatology, Second Hospital of Jilin University, Changchun, 130022, China
| | - Zhenyu Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yi Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Sien Lin
- Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Gang Li
- Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Shaokun Zhang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
5
|
Qian F, Huang Z, Liu W, Liu Y, He X. Functional β-TCP/MnO 2 /PCL artificial periosteum promoting osteogenic differentiation of BMSCs by reducing locally reactive oxygen species level. J Biomed Mater Res A 2023; 111:1678-1691. [PMID: 37265324 DOI: 10.1002/jbm.a.37576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Segmental bone defects caused by trauma, tumor resection or congenital malformations are often reconstructed with autologous, allogeneic bone grafts or artificial bone materials, of which, about 5% ~ 10% will have delayed healing or even nonunion of fractures. The loss of periosteum and excessive accumulation of ROS in fracture site leads to the aging of osteoblasts and the decline of their proliferation and differentiation, thus affecting the fracture healing process. In this study, we prepared a functional modified artificial periosteum β-TCP/MnO2 /PCL(β-TMP) by electrospinning with a function of catalyzing decomposition of H2 O2 . We examined the surface morphology of β-TMP, the concentration of Ca, P and Mn of β-TMP, as well as the diameter distribution range of nanofibers on β-TMP. Through X-ray diffraction patterns and Fourier transform infrared spectra, β-TMP was characterized and its hydrophilicity was tested. The release of Mn2+ and Ca2+ of 0.1 and 0.05% β-TMP in different pH values (7.4 and 5.5) determined by ICP. We also identified that β-TMP could reduce the level of ROS in cells by lowering the level of H2 O2 . 0%, 0.05% and 0.1% β-TMP displayed good cell compatibility, cell adhesion and cellular morphology in the condition with or without H2 O2 . 0.5% β-TMP showed compromised cell compatibility in normal condition, however, the compromised phenotypes could be partially rescued in the present of H2 O2 . Compared with 0%, 0.05% and 0.1% β-TMP displayed higher osteoblastic differentiation with or without H2 O2 in BMSCs as well as in MG-63. In sum, β-TMP helped osteogenesis and promoted repair of bone defects.
Collapse
Affiliation(s)
- Feng Qian
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, China
| | - Zongwang Huang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, China
| | - Wenbin Liu
- Department of Orthopedics, The third Xiangya hospital, Central South University, Changsha, China
| | - Yanling Liu
- Department of Urology, Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xi He
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University school of medicine, Hangzhou, China
| |
Collapse
|
6
|
Jin X, Meng L, Zhang R, Tong M, Qi Z, Mi L. Effects of essential mineral elements deficiency and supplementation on serum mineral elements concentration and biochemical parameters in grazing Mongolian sheep. Front Vet Sci 2023; 10:1214346. [PMID: 37559889 PMCID: PMC10407109 DOI: 10.3389/fvets.2023.1214346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Traditional sheep grazing is the pillar industry and the main source of income for local herders in the Inner Mongolia Autonomous Region of China. However, grazing sheep often suffer from mineral deficiency. In the present study, the feeding experiment was performed on 84 grazing Wu Ranke sheep. After being divided into calcium (Ca), zinc (Zn), copper (Cu), cobalt (Co), manganese (Mn), and selenium (Se) treatment groups, they were fed with a mineral deficient diet for 60 days and then a mineral supplement diet for 41 days. Serum samples were collected three times, 10 concentrations of essential mineral elements and 15 concentrations/activity of biochemical parameters were measured to assess the effects of mineral deficiency and supplementation on the physical health of sheep. The results revealed that the sheep showed mineral Ca, Cu, Co, Mn, and Se deficiencies after feeding their respective mineral deficient diet. Deficiency in dietary Ca, Zn, Cu, Co, Mn, and Se may adversely affect the liver, myocardium and pancreas of sheep. The prompt supplementation of dietary Zn, Cu, Co, Mn, and Se may alleviate the damage caused to the liver, myocardium and pancreas, while that of dietary Ca improved energy generation. In conclusion, the adequate supplementation of dietary Ca, Zn, Cu, Co, Mn, and Se is essential for avoiding the impairment caused to the liver, myocardium and pancreas function of sheep by the deficiency in essential dietary minerals.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Qi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lan Mi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
7
|
Aaseth JO, Alexander J. Postoperative Osteoporosis in Subjects with Morbid Obesity Undergoing Bariatric Surgery with Gastric Bypass or Sleeve Gastrectomy. Nutrients 2023; 15:nu15061302. [PMID: 36986032 PMCID: PMC10057453 DOI: 10.3390/nu15061302] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
Obesity has become a worldwide epidemic accompanied by adverse health effects. The limited efficiency of traditional weight reduction regimens has led to a substantial increase in the use of bariatric surgery. Today, sleeve gastrectomy (SG) and Roux-en-Y-gastric bypass (RYGB) are the most used procedures. The present narrative review focuses on the risk of developing postoperative osteoporosis and summarizes some of the most relevant micronutrient deficiencies associated with RYGB and SG. Preoperatively, the dietary habits of obese individuals might lead to precipitated deficiencies in vitamin D and other nutrients affecting bone mineral metabolism. Bariatric surgery with SG or RYGB can aggravate these deficiencies. The various surgical procedures appear to affect nutrient absorption differently. Being purely restrictive, SG may particularly affect the absorption of vitamin B12 and also vitamin D. In contrast, RYGB has a more profound impact on the absorption of fat-soluble vitamins and other nutrients, although both surgical methods induce only a mild protein deficiency. Despite adequate supplementation of calcium and vitamin D, osteoporosis may still occur after the surgery. This might be due to deficiencies in other micronutrients, e.g., vitamin K and zinc. Regular follow-ups with individual assessments and nutritional advice are indispensable to prevent osteoporosis and other adverse postoperative issues.
Collapse
Affiliation(s)
- Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, N-2418 Elverum, Norway
- Correspondence: ; Tel.: +47-9959-6960
| | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway
| |
Collapse
|
8
|
Yang X, Xiong S, Zhou J, Zhang Y, He H, Chen P, Li C, Wang Q, Shao Z, Wang L. Coating of manganese functional polyetheretherketone implants for osseous interface integration. Front Bioeng Biotechnol 2023; 11:1182187. [PMID: 37207123 PMCID: PMC10191212 DOI: 10.3389/fbioe.2023.1182187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Polyetheretherketone (PEEK) has been used extensively in biomedical engineering and it is highly desirable for PEEK implant to possess the ability to promote cell growth and significant osteogenic properties and consequently stimulate bone regeneration. In this study, a manganese modified PEEK implant (PEEK-PDA-Mn) was fabricated via polydopamine chemical treatment. The results showed that manganese was successfully immobilized on PEEK surface, and the surface roughness and hydrophilicity significantly improved after surface modification. Cell experiments in vitro demonstrated that the PEEK-PDA-Mn possesses superior cytocompatibility in cell adhesion and spread. Moreover, the osteogenic properties of PEEK-PDA-Mn were proved by the increased expression of osteogenic genes, alkaline phosphatase (ALP), and mineralization in vitro. Further rat femoral condyle defect model was utilized to assess bone formation ability of different PEEK implants in vivo. The results revealed that the PEEK-PDA-Mn group promoted bone tissue regeneration in defect area. Taken together, the simple immersing method can modify the surface of PEEK, giving outstanding biocompatibility and enhanced bone tissue regeneration ability to the modified PEEK, which could be applied as an orthopedic implant in clinical.
Collapse
Affiliation(s)
- Xin Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Shouliang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yinchang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Huazheng He
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Pingbo Chen
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Congming Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Qiang Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- *Correspondence: Qiang Wang, ; Zhiqiang Shao, ; Lei Wang,
| | - Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Qiang Wang, ; Zhiqiang Shao, ; Lei Wang,
| | - Lei Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- *Correspondence: Qiang Wang, ; Zhiqiang Shao, ; Lei Wang,
| |
Collapse
|
9
|
Wang C, Zhu Y, Long H, Ou M, Zhao S. Relationship between blood manganese and bone mineral density and bone mineral content in adults: A population-based cross-sectional study. PLoS One 2022; 17:e0276551. [PMID: 36269752 PMCID: PMC9586363 DOI: 10.1371/journal.pone.0276551] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
PURPOSE It has been reported that bone is the primary organ for manganese (Mn) accumulation, but the association between manganese and bone loss remains debatable. Therefore, this study aimed to evaluate the relationship between blood manganese and bone mineral density/bone mineral content (BMD/BMC) by using a representative sample from the National Health and Nutrition Examination Survey (NHANES). METHODS A total of 9732 subjects over the age of 18 with available data were enrolled in this study. The relationship between blood manganese and BMD/BMC of the total body, spine and femoral regions was evaluated using multivariate linear regression models. Subgroup analyses were also performed. RESULTS We observed a negative association between blood manganese and BMD/BMC in the femoral neck and total body in the fully adjusted model, especially femoral neck BMD in women aged 50-70 years. CONCLUSION In brief, people exposed to manganese should be aware of the increased risk of osteopenia or osteoporosis. Besides, due to the lack of available data, there are no definite values for the tolerable upper intake level (UL), average requirement (AR) and population reference intake (PRI) of manganese. The results of our study may provide some references for the establishment of AR, PRI and UL of Mn.
Collapse
Affiliation(s)
- Chao Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haitao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingning Ou
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shushan Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
10
|
Lin S, Yang F, Ling M, Fan Y. Association between bone trace elements and osteoporosis in older adults: a cross-sectional study. Ther Adv Musculoskelet Dis 2022; 14:1759720X221125984. [PMID: 36185074 PMCID: PMC9523847 DOI: 10.1177/1759720x221125984] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: Metal micronutrients deficiency may be one of the risk factors for the development of osteoporosis. This study aimed to measure the trace element contents in human bone tissue to analyze the relationship between micronutrients and osteoporosis. Design: A cross-sectional survey was performed on data from 51 elderly patients with proximal femoral fracture. Methods: The concentrations of calcium, phosphorus, manganese, iron, copper, and zinc in bone tissue samples from 51 elderly patients with proximal femoral fracture were determined by energy-dispersive X-ray fluorescence (EDX). Subjects were divided into osteoporosis and non-osteoporosis groups according to their bone mineral density (BMD) T-score values. The difference in metal elements concentrations in bone tissue between the two groups was compared, and the role of metal elements in osteoporosis was discussed. Results: There was no statistical difference in age, sex, body mass index (BMI), serum albumin, biochemical blood indices, and bone turnover markers between the two groups. The Mann–Whitney U test was used to compare the difference in metal elements concentrations in bone tissue samples between the two groups. The results showed that manganese, copper, and zinc concentrations in the cancellous bone were significantly higher in the non-osteoporosis group than in the osteoporosis group. Multivariate logistic regression analysis indicated that high bone zinc concentration [odds ratio = 0.26, 95% confidence interval (CI) = 0.075–0.928, p = 0.038] was negatively correlated with osteoporosis. Conclusion: Manganese, copper, and zinc play an essential role in bone mineralization and metabolism. Among them, zinc may be most closely related to osteoporosis and play a key role in bone development and maintenance of bone mass. Therefore, we believe that the design of zinc-rich compounds or nutrients as a new complementary factor to increase the intake of zinc for the elderly could be able to prevent and intervene in the occurrence of osteoporosis in the early stage.
Collapse
Affiliation(s)
- Shangjin Lin
- Department of Orthopaedic, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Fengjian Yang
- Department of Orthopaedic, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ming Ling
- Department of Orthopaedic, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yongqian Fan
- Department of Orthopaedic, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
11
|
Prasadh S, Gupta M, Wong R. In vitro cytotoxicity and osteogenic potential of quaternary Mg-2Zn-1Ca/X-Mn alloys for craniofacial reconstruction. Sci Rep 2022; 12:8259. [PMID: 35585104 PMCID: PMC9117210 DOI: 10.1038/s41598-022-12490-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Cytotoxicity of any biomedical material needs to be investigated for successful application within the human tissues. In this study, manganese in low amounts of 0.3, 0.5 and 0.7 (wt.%) was added to Mg2Zn1Ca alloy using Disintegrated Melt Deposition (DMD) followed by hot extrusion and the extruded alloys were tested for in vitro cytocompatibility using cell viability assays (CCK-8, LDH enzyme release assay, cell cytoskeleton and cell morphology) and in vitro osteogenic potential was evaluated using ALP, Alizarin Red and RT-PCR assays. Addition of manganese improved the cell viability and osteogenic potential in variable concentrations. The Mg2Zn1Ca /0.3 Mn and Mg2Zn1Ca /0.5 Mn alloys showed increased cell viability percentage compared to Mg2Zn1Ca alloys. The cytotoxicity percentage at the end of 24 h culture for Mg2Zn1Ca /0.3 Mn alloys showed lesser cytotoxicity percentage (~ 8%) when compared to the Mg2Zn1Ca /0.5 Mn (~ 13%) and Mg2Zn1Ca /0.7 Mn (~ 16%) samples. All the alloys showed good initial cell attachment, osteogenic potential and cell spreading. The results of this study validates great potential of Mg2Zn1Ca alloys with manganese addition and exhibited great potential for to be used as temporary implant materials in craniofacial reconstruction.
Collapse
Affiliation(s)
- Somasundaram Prasadh
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore, 119083, Singapore
| | - Manoj Gupta
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Raymond Wong
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore, 119083, Singapore.
| |
Collapse
|
12
|
McCarty MF, Lewis Lujan L, Iloki Assanga S. Targeting Sirt1, AMPK, Nrf2, CK2, and Soluble Guanylate Cyclase with Nutraceuticals: A Practical Strategy for Preserving Bone Mass. Int J Mol Sci 2022; 23:4776. [PMID: 35563167 PMCID: PMC9104509 DOI: 10.3390/ijms23094776] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
There is a vast pre-clinical literature suggesting that certain nutraceuticals have the potential to aid the preservation of bone mass in the context of estrogen withdrawal, glucocorticoid treatment, chronic inflammation, or aging. In an effort to bring some logical clarity to these findings, the signaling pathways regulating osteoblast, osteocyte, and osteoclast induction, activity, and survival are briefly reviewed in the present study. The focus is placed on the following factors: the mechanisms that induce and activate the RUNX2 transcription factor, a key driver of osteoblast differentiation and function; the promotion of autophagy and prevention of apoptosis in osteoblasts/osteoclasts; and the induction and activation of NFATc1, which promotes the expression of many proteins required for osteoclast-mediated osteolysis. This analysis suggests that the activation of sirtuin 1 (Sirt1), AMP-activated protein kinase (AMPK), the Nrf2 transcription factor, and soluble guanylate cyclase (sGC) can be expected to aid the maintenance of bone mass, whereas the inhibition of the serine kinase CK2 should also be protective in this regard. Fortuitously, nutraceuticals are available to address each of these targets. Sirt1 activation can be promoted with ferulic acid, N1-methylnicotinamide, melatonin, nicotinamide riboside, glucosamine, and thymoquinone. Berberine, such as the drug metformin, is a clinically useful activator of AMPK. Many agents, including lipoic acid, melatonin, thymoquinone, astaxanthin, and crucifera-derived sulforaphane, can promote Nrf2 activity. Pharmacological doses of biotin can directly stimulate sGC. Additionally, certain flavonols, notably quercetin, can inhibit CK2 in high nanomolar concentrations that may be clinically relevant. Many, though not all, of these agents have shown favorable effects on bone density and structure in rodent models of bone loss. Complex nutraceutical regimens providing a selection of these nutraceuticals in clinically meaningful doses may have an important potential for preserving bone health. Concurrent supplementation with taurine, N-acetylcysteine, vitamins D and K2, and minerals, including magnesium, zinc, and manganese, plus a diet naturally high in potassium, may also be helpful in this regard.
Collapse
Affiliation(s)
| | - Lidianys Lewis Lujan
- Department of Research and Postgraduate in Food Science, Sonoran University, Hermosillo 83200, Mexico;
| | - Simon Iloki Assanga
- Department of Biological Chemical Sciences, Sonoran University, Hermosillo 83200, Mexico;
| |
Collapse
|
13
|
Risk Factors Analysis of Bone Mineral Density Based on Lasso and Quantile Regression in America during 2015-2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010355. [PMID: 35010615 PMCID: PMC8744920 DOI: 10.3390/ijerph19010355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
This study aimed to explore the risk factors of bone mineral density (BMD) in American residents and further analyse the extent of effects, to provide preventive guidance for maintenance of bone health. A cross-sectional study analysis was carried out in this study, of which data validity was identified and ethics approval was exempted based on the National Health and Nutrition Examination Survey (NHANES) database. Candidates' demographics, physical examination, laboratory indicators and part of questionnaire information were collected and merged from NHANES in 2015-2016 and 2017-2018. The least absolute shrinkage selection operator (lasso) was used to select initial variables with "glmnet" package of R, quantile regression model to analyze influence factors of BMD and their effects in different sites with "qreg" code in Stata. Among 2937 candidates, 17 covariates were selected by lasso regression (λ = 0.00032) in left arm BMD, with 16 covariates in left leg BMD (λ = 0.00052) and 14 covariates in total BMD (λ = 0.00065). Quantile regression results displayed several factors with different coefficients in separate sites and quantiles: gender, age, educational status, race, high-density lipoprotein (HDL), total cholesterol (TC), lead, manganese, ethyl mercury, smoking, alcohol use and body mass index (BMI) (p < 0.05). We constructed robust regression models to conclude that some demographic characteristics, nutritional factors (especially lipid levels, heavy metals) and unhealthy behaviors affected BMD in varying degrees. Gender and race differences, Low-fat food intake and low exposure to heavy metals (mostly lead, manganese and mercury) should be considered by both clinical doctors and people. There is still no consensus on the impact of smoking and alcohol use on bone mineral density in our study.
Collapse
|
14
|
Atomic Resolution Electron Microscopy: A Key Tool for Understanding the Activity of Nano-Oxides for Biomedical Applications. NANOMATERIALS 2021; 11:nano11082073. [PMID: 34443904 PMCID: PMC8400361 DOI: 10.3390/nano11082073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/09/2023]
Abstract
Transition metal oxides constitute one of the most fruitful sources of materials with continuously increasing potential applications prompted by the expectations derived from the reduction of the particle size. The recent advances in transmission electron microscopy, because of the development of lenses, have made it possible to reach atomic resolution, which can provide answers regarding the performance of the transition metal nano-oxides. This critical information is related not only to the ability to study their microstructural characteristics but also their local composition and the oxidation state of the transition metal. Exploring these features is a well-known task in nano-oxides for energy and electronic technologies, but they are not so commonly used for elucidating the activity of these oxides for biomedical applications. Nevertheless, the identification at the atomic level of a certain dopant or the unambiguous determination of the oxidation state of a transition metal in a nano-oxide can be important questions to be answered in a certain biomedical application. In this work, we provide several examples in transition metal nano-oxides to show how atomic-resolution electron microscopy can be a key tool for its understanding.
Collapse
|
15
|
Ward LD, Tu HC, Quenneville CB, Tsour S, Flynn-Carroll AO, Parker MM, Deaton AM, Haslett PAJ, Lotta LA, Verweij N, Ferreira MAR, Baras A, Hinkle G, Nioi P. GWAS of serum ALT and AST reveals an association of SLC30A10 Thr95Ile with hypermanganesemia symptoms. Nat Commun 2021; 12:4571. [PMID: 34315874 PMCID: PMC8316433 DOI: 10.1038/s41467-021-24563-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding mechanisms of hepatocellular damage may lead to new treatments for liver disease, and genome-wide association studies (GWAS) of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum activities have proven useful for investigating liver biology. Here we report 100 loci associating with both enzymes, using GWAS across 411,048 subjects in the UK Biobank. The rare missense variant SLC30A10 Thr95Ile (rs188273166) associates with the largest elevation of both enzymes, and this association replicates in the DiscovEHR study. SLC30A10 excretes manganese from the liver to the bile duct, and rare homozygous loss of function causes the syndrome hypermanganesemia with dystonia-1 (HMNDYT1) which involves cirrhosis. Consistent with hematological symptoms of hypermanganesemia, SLC30A10 Thr95Ile carriers have increased hematocrit and risk of iron deficiency anemia. Carriers also have increased risk of extrahepatic bile duct cancer. These results suggest that genetic variation in SLC30A10 adversely affects more individuals than patients with diagnosed HMNDYT1.
Collapse
Affiliation(s)
- Lucas D. Ward
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | - Ho-Chou Tu
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | | | - Shira Tsour
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | | | - Margaret M. Parker
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | - Aimee M. Deaton
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | | | - Luca A. Lotta
- grid.418961.30000 0004 0472 2713Regeneron Genetics Center, Tarrytown, NY USA
| | - Niek Verweij
- grid.418961.30000 0004 0472 2713Regeneron Genetics Center, Tarrytown, NY USA
| | | | | | | | - Aris Baras
- grid.418961.30000 0004 0472 2713Regeneron Genetics Center, Tarrytown, NY USA
| | - Gregory Hinkle
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| | - Paul Nioi
- grid.417897.40000 0004 0506 3000Alnylam Pharmaceuticals, Cambridge, MA USA
| |
Collapse
|
16
|
Abstract
The evidence regarding a deficiency of manganese (Mn) in humans is scarce. So the aim of this narrative review was to consider the state of the art on the relation between manganese and bone health in humans and the effectiveness of manganese supplementation (alone or with other micronutrients) on bone mineralization. This review included 4 eligible studies. All the literature published is in agreement in showing that osteoporotic women have lower serum Mn levels than women with normal bone mineral density, thus confirming the essential role of manganese in the synthesis of cartilage and bone collagen, as well as in bone mineralization and confirming the studies on the animal model. Considering the human studies that evaluated the effectiveness of an oral Mn supplement for a long period (2 years) on the bone mineral density of menopausal women, both of the clinical trials showed that bone loss was significantly greater in the placebo group than in the group taking supplementation, equal to 5.0 mg Mn/day in the study by Strause, and equal to 2.5 mg Mn/day in the study by Saltman, considering, however, that supplementation was represented by a set of microelements (Mn, copper, and zinc) and by calcium.
Collapse
|
17
|
Li J, Deng C, Liang W, Kang F, Bai Y, Ma B, Wu C, Dong S. Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS. Bioact Mater 2021; 6:3839-3850. [PMID: 33898880 PMCID: PMC8050801 DOI: 10.1016/j.bioactmat.2021.03.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is caused by an osteoclast activation mechanism. People suffering from osteoporosis are prone to bone defects. Increasing evidence indicates that scavenging reactive oxygen species (ROS) can inhibit receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis and suppress ovariectomy-induced osteoporosis. It is critical to develop biomaterials with antioxidant properties to modulate osteoclast activity for treating osteoporotic bone defects. Previous studies have shown that manganese (Mn) can improve bone regeneration, and Mn supplementation may treat osteoporosis. However, the effect of Mn on osteoclasts and the role of Mn in osteoporotic bone defects remain unclear. In present research, a model bioceramic, Mn-contained β-tricalcium phosphate (Mn-TCP) was prepared by introducing Mn into β-TCP. The introduction of Mn into β-TCP significantly improved the scavenging of oxygen radicals and nitrogen radicals, demonstrating that Mn-TCP bioceramics might have antioxidant properties. The in vitro and in vivo findings revealed that Mn2+ ions released from Mn-TCP bioceramics could distinctly inhibit the formation and function of osteoclasts, promote the differentiation of osteoblasts, and accelerate bone regeneration under osteoporotic conditions in vivo. Mechanistically, Mn-TCP bioceramics inhibited osteoclastogenesis and promoted the regeneration of osteoporotic bone defects by scavenging ROS via Nrf2 activation. These results suggest that Mn-containing bioceramics with osteoconductivity, ROS scavenging and bone resorption inhibition abilities may be an ideal biomaterial for the treatment of osteoporotic bone defect. Mn-containing bioceramics with osteoconductivity, ROS scavenging and bone resorption inhibition abilities were prepared. Mn-containing bioceramics inhibited osteoclastogenesis by scavenging ROS via Nrf2 activation in vitro. Mn-containing bioceramics acted as antioxidant biomaterials accelerated bone defect regeneration in osteoporotic rats. Mn-containing bioceramics can be further applied as a biomaterial for treating osteoporotic bone defects.
Collapse
Affiliation(s)
- Jianmei Li
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Cuijun Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wanyuan Liang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yun Bai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
18
|
Fadeeva IV, Kalita VI, Komlev DI, Radiuk AA, Fomin AS, Davidova GA, Fursova NK, Murzakhanov FF, Gafurov MR, Fosca M, Antoniac IV, Barinov SM, Rau JV. In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4411. [PMID: 33022953 PMCID: PMC7579245 DOI: 10.3390/ma13194411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn2+ and Mn3+ oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against Escherichia coli, Enterococcus faecalis, and Pseudomonas aeruginosa bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.
Collapse
Affiliation(s)
- Inna V. Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Vasilii I. Kalita
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Dmitry I. Komlev
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Alexei A. Radiuk
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Alexander S. Fomin
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Galina A. Davidova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Institutskaya 3, Puschino, 142290 Moscow, Russian;
| | - Nadezhda K. Fursova
- Federal Budget Institution of Science State Scientific Center of Applied Microbiology and Biotechnology, 24 block A, Obolensk, Serpukhov, 142279 Moscow, Russian;
| | - Fadis F. Murzakhanov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russian; (F.F.M.); (M.R.G.)
| | - Marat R. Gafurov
- Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russian; (F.F.M.); (M.R.G.)
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Iulian V. Antoniac
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania;
| | - Sergey M. Barinov
- A.A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences, Leninsky, 49, 119334 Moscow, Russian; (I.V.F.); (V.I.K.); (D.I.K.); (A.A.R.); (A.S.F.); (S.M.B.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russian
| |
Collapse
|
19
|
Jia B, Yang H, Han Y, Zhang Z, Qu X, Zhuang Y, Wu Q, Zheng Y, Dai K. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomater 2020; 108:358-372. [PMID: 32165194 DOI: 10.1016/j.actbio.2020.03.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022]
Abstract
In recent years, Zn-based materials provide a new option as biodegradable metals for orthopedic applications. To improve the low strength and brittle nature of pure Zn, small amounts of alloying element Mn (0.1, 0.4 and 0.8 wt.%) were added into Zn to fabricate binary Zn-Mn alloys. An extremely high elongation (83.96 ± 2.36%) was achieved in the resulting Zn-0.8 wt.%Mn alloy. Moreover, Zn-Mn alloys displayed significantly improved cytocompatibility as compared to pure Zn, according to cell proliferation and morphology analyses. More importantly, a significantly improved osteogenic activity was verified after adding Mn regarding ALP activity and osteogenic expression. Furthermore, Zn-0.8 wt.%Mn alloy scaffolds were implanted into the rat femoral condyle for repairing bone defects with pure Ti as control. Enhanced osteogenic activities were confirmed for Zn-0.8Mn alloy in contrast to pure Ti based on Micro-CT and histological results, and favorable in vivo biosafety of Zn-0.8Mn alloy was verified by H&E staining and blood tests. The exceptional mechanical performance and favorable osteogenic capability render Zn-Mn alloy a promising candidate material in the treatment of bone defects or fracture repair. STATEMENT OF SIGNIFICANCE: The element Mn, on the one hand, as an essential trace element in the human body, promotes cell proliferation, adhesion, spreading, and regulates bone metabolism; on the other hand, it could significantly improve the ductility of Zn alloys. Here, we systematically reported the biocompatibility and biofunctionality of binary biodegradable Zn-Mn alloys in the bone environment. The Zn-Mn alloys promoted MC3T3-E1 cell proliferation, adhesion, spreading, and osteogenic differentiation in vitro. Furthermore, a rat femoral condyle defect model was established; porous Zn-Mn alloy scaffolds were manufactured to repair the bone defects. Significant bone regenerations, considerable bone ingrowth, and desirable biosafety were confirmed in vivo. Therefore, biodegradable Zn-Mn with promising osteogenic properties may become new options for orthopedic implant materials.
Collapse
|
20
|
Lu M, Liu Y, Shao M, Tesfaye GC, Yang S. Associations of Iron Intake, Serum Iron and Serum Ferritin with Bone Mineral Density in Women: The National Health and Nutrition Examination Survey, 2005-2010. Calcif Tissue Int 2020; 106:232-238. [PMID: 31754762 DOI: 10.1007/s00223-019-00627-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
The relationship between iron and bone mineral density (BMD) is still poorly understood. We investigated the associations of iron intake, serum iron and serum ferritin with BMD. This cross-sectional study identified 4000 females aged 12 to 49 years with complete and valid data on iron intake, serum iron, serum ferritin, and femoral neck and lumbar spine BMD from the National Health and Nutrition Examination Survey 2005-2010. Daily iron intake was the mean intake of iron nutrient ascertained from two consecutive 24-h dietary recalls; serum iron and serum ferritin were directly measured with established methods. Femoral neck and lumbar spine BMD were measured by Dual-energy X-ray absorptiometry (DXA). After adjusting for multiple covariates (i.e., age, body mass index and race), we used linear regression and generalized additive models (GAMs) to test the linear and non-linear associations of iron intake, serum iron and serum ferritin with BMD. The mean age of this study was 27.70 years (SD = 11.88 years). Higher serum ferritin was associated with lower femoral neck and lumbar spine BMD (all adjusted P < 0.05); iron intake and serum iron were not associated with femoral neck and lumbar spine BMD. Similar results were found when iron levels were classified as iron deficiency, normal iron and iron overload. There were no obvious non-linear relationships between the above three iron variables and BMD in the GAM analyses. There was a negative and linear association between serum ferritin and BMD; iron intake and serum iron were not associated with BMD. Serum ferritin appeared to be a better iron variable than iron intake and serum iron in relation to BMD.
Collapse
Affiliation(s)
- Meihan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Changchun, 130021, Jilin, China
| | - Mengyun Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Changchun, 130021, Jilin, China
| | - Getachew C Tesfaye
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Changchun, 130021, Jilin, China
| | - Shuman Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
21
|
Brokesh AM, Gaharwar AK. Inorganic Biomaterials for Regenerative Medicine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5319-5344. [PMID: 31989815 DOI: 10.1021/acsami.9b17801] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regenerative medicine leverages the innate potential of the human body to efficiently repair and regenerate damaged tissues using engineered biomaterials. By designing responsive biomaterials with the appropriate biophysical and biochemical characteristics, cellular response can be modulated to direct tissue healing. Recently, inorganic biomaterials have been shown to regulate cellular responses including cell-cell and cell-matrix interactions. Moreover, ions released from these mineral-based biomaterials play a vital role in defining cell identity, as well as driving tissue-specific functions. The intrinsic properties of inorganic biomaterials, such as the release of bioactive ions (e.g., Ca, Mg, Sr, Si, B, Fe, Cu, Zn, Cr, Co, Mo, Mn, Au, Ag, V, Eu, and La), can be leveraged to induce phenotypic changes in cells or modulate the immune microenvironment to direct tissue healing and regeneration. Biophysical characteristics of biomaterials, such as topography, charge, size, electrostatic interactions, and stiffness can be modulated by addition of inorganic micro- and nanoparticles to polymeric networks have also been shown to play an important role in their biological response. In this Review, we discuss the recent emergence of inorganic biomaterials to harness the innate regenerative potential of the body. Specifically, we will discuss various biophysical or biochemical effects of inorganic-based materials in directing cellular response for regenerative medicine applications.
Collapse
Affiliation(s)
- Anna M Brokesh
- Biomedical Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
- Material Science and Engineering, Dwight Look College of Engineering , Texas A&M University , College Station , Texas 77843 , United States
- Center for Remote Health Technologies and Systems , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
22
|
Zhao QM, Sun YY, Wu CS, Yang J, Bao GF, Cui ZM. Enhanced osteogenic activity and antibacterial ability of manganese–titanium dioxide microporous coating on titanium surfaces. Nanotoxicology 2019; 14:289-309. [PMID: 32193966 DOI: 10.1080/17435390.2019.1690065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Quan-Ming Zhao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | - Yu-Yu Sun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | - Chun-Shuai Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | - Jian Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | - Guo-Feng Bao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| | - Zhi-Ming Cui
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, PR China
| |
Collapse
|
23
|
MENEZES EGT, OLIVEIRA ÉR, CARVALHO GR, GUIMARÃES IC, QUEIROZ F. Assessment of chemical, nutritional and bioactive properties of Annona crassiflora and Annona muricata wastes. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.22918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Rau JV, Fadeeva IV, Fomin AS, Barbaro K, Galvano E, Ryzhov AP, Murzakhanov F, Gafurov M, Orlinskii S, Antoniac I, Uskoković V. Sic Parvis Magna: Manganese-Substituted Tricalcium Phosphate and Its Biophysical Properties. ACS Biomater Sci Eng 2019; 5:6632-6644. [PMID: 33423482 DOI: 10.1021/acsbiomaterials.9b01528] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Succeeding in the substitution of pharmaceutical compounds with ions deliverable with the use of resorbable biomaterials could have far-reaching benefits for medicine and economy. Calcium phosphates are known as excellent accommodators of foreign ions. Manganese, the fifth most abundant metal on Earth was studied here as an ionic dopant in β-tricalcium phosphate (β-TCP) ceramics. β-TCP containing different amounts of Mn2+ ions per MnxCa3-x(PO4)2 formula (x = 0, 0.001, 0.01, and 0.1) was investigated for a range of physicochemical and biological properties. The results suggested the role of Mn2+ as a structure booster, not breaker. Mn2+ ions increased the size of coherent X-ray scattering regions averaged across all crystallographic directions and also lowered the temperature of transformation of the hydroxyapatite precursor to β-TCP. The particle size increased fivefold, from 20 to 100 nm, in the 650-750 °C region, indicating that the reaction of formation of β-TCP was accompanied by a considerable degree of grain growth. The splitting of the antisymmetric stretching mode of the phosphate tetrahedron occurred proportionally to the Mn2+ content in the material, while electron paramagnetic resonance spectra suggested that Mn2+ might substitute for three out of five possible calcium ion positions in the unit cell of β-TCP. The biological effects of Mn-free β-TCP and Mn-doped β-TCP were selective: moderately proliferative to mammalian cells, moderately inhibitory to bacteria, and insignificant to fungi. Unlike pure β-TCP, β-TCP doped with the highest concentration of Mn2+ ions significantly inhibited the growth of all bacterial species tested: Staphylococcus aureus, Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis. The overall effect against the Gram-positive bacteria was more intense than against the Gram-negative microorganisms. Meanwhile, β-TCP alone had an augmentative effect of the viability of adipose-derived mesenchymal stem cells (ADMSCs) and the addition of Mn2+ tended to reduce the extent of this augmentative effect, but without imparting any toxicity. For all Mn-doped β-TCP concentrations except the highest, the cell viability after 72 h incubation was significantly higher than that of the negative control. Assays evaluating the effect of Mn2+-containing β-TCP formulations on the differentiation of ADMSCs into three different lineages-osteogenic, adipogenic, and chondrogenic-demonstrated no inhibitory or adverse effects compared to pure β-TCP and powder-free positive controls. Still, β-TCP delivering the lowest amount of Mn2+ seemed most effective in sustaining the differentiation process toward all three phenotypes, indicating that the dose of Mn2+ in β-TCP need not be excessive to be effective.
Collapse
Affiliation(s)
- Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Inna V Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky prospect 49, 119334 Moscow, Russia
| | - Alexander S Fomin
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky prospect 49, 119334 Moscow, Russia
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale Lazio e Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Ettore Galvano
- Istituto Zooprofilattico Sperimentale Lazio e Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Alexander P Ryzhov
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky prospect 49, 119334 Moscow, Russia
| | | | - Marat Gafurov
- Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | | | - Iulian Antoniac
- University Politehnica of Bucharest, Splaiul Independentei 313, Sector 6, 77206 Bucharest, Romania
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Engineering Gateway 4200, Irvine, California 92697, United States
| |
Collapse
|
25
|
Dual Doping of Silicon and Manganese in Hydroxyapatites: Physicochemical Properties and Preliminary Biological Studies. MATERIALS 2019; 12:ma12162566. [PMID: 31408945 PMCID: PMC6721101 DOI: 10.3390/ma12162566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022]
Abstract
Silicated hydroxyapatite powders enriched with small amounts of manganese (Mn2+) cations were synthesized via two different methods: precipitation in aqueous solution and the solid-state method. The source of Mn2+ ions was manganese acetate, while silicon was incorporated using two different reagents: silicon acetate and sodium metasilicate. Powder X-ray diffraction (PXRD) analysis showed that the powders obtained via the precipitation method consisted of single-phase nanocrystalline hydroxyapatite. In contrast, samples obtained via the solid-state method were heterogenous and contaminated with other phases, (i.e., calcium oxide, calcium hydroxide, and silicocarnotite) arising during thermal treatment. The transmission electron microscope (TEM) images showed powders obtained via the precipitation method were nanosized and elongated, while solid-state synthesis produced spherical microcrystals. The phase identification was complemented by Fourier transform infrared spectroscopy (FTIR). An in-depth analysis via solid-state nuclear magnetic resonance (ssNMR) was carried out, using phosphorus 31P single-pulse Bloch decay (BD) (31P BD) and cross-polarization (CP) experiments from protons to silicon-29 nuclei (1H → 29Si CP). The elemental measurements carried out using wavelength-dispersive X-ray fluorescence (WD-XRF) showed that the efficiency of introducing manganese and silicon ions was between 45% and 95%, depending on the synthesis method and the reagents. Preliminary biological tests on the bacteria Allivibrio fisheri (Microtox®) and the protozoan Spirostomum ambiguum (Spirotox) showed no toxic effect in any of the samples. The obtained materials may find potential application in regenerative medicine, bone implantology, and orthopedics as bone substitutes or implant coatings.
Collapse
|
26
|
Barrioni BR, Norris E, Li S, Naruphontjirakul P, Jones JR, Pereira MDM. Osteogenic potential of sol-gel bioactive glasses containing manganese. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:86. [PMID: 31302783 DOI: 10.1007/s10856-019-6288-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Bioactive glasses (BGs) are widely used for bone regeneration, and allow the incorporation of different ions with therapeutic properties into the glass network. Amongst the different ions with therapeutic benefits, manganese (Mn) has been shown to influence bone metabolism and activate human osteoblasts integrins, improving cell adhesion, proliferation and spreading. Mn has also been incorporated into bioceramics as a therapeutic ion for improved osteogenesis. Here, up to 4.4 mol% MnO was substituted for CaO in the 58S composition (60 mol% SiO2, 36 mol% CaO, 4 mol% P2O5) and its effects on the glass properties and capability to influence the osteogenic differentiation were evaluated. Mn-containing BGs with amorphous structure, high specific surface area and nanoporosity were obtained. The presence of Mn2+ species was confirmed by X-ray photoelectron spectroscopy (XPS). Mn-containing BGs presented no cytotoxic effect on human mesenchymal stem cells (hMSCs) and enabled sustained ion release in culture medium. hMSCs osteogenic differentiation stimulation and influence on the mineralisation process was also confirmed through the alkaline phosphatase (ALP) activity, and expression of osteogenic differentiation markers, such as collagen type I, osteopontin and osteocalcin, which presented higher expression in the presence of Mn-containing samples compared to control. Results show that the release of manganese ions from bioactive glass provoked human mesenchymal stem cell (hMSC) differentiation down a bone pathway, whereas hMSCs exposed to the Mn-free glass did not differentiate. Mn incorporation offers great promise for obtaining glasses with superior properties for bone tissue regeneration.
Collapse
Affiliation(s)
- Breno Rocha Barrioni
- Department of Metallurgical Engineering and Materials, Federal University of Minas Gerais, School of Engineering, Belo Horizonte, MG, Brazil.
| | - Elizabeth Norris
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Siwei Li
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Parichart Naruphontjirakul
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
- Biological Engineering Program, King Mongkut's University of Technology Thonburi, Thon Buri, Thailand
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Marivalda de Magalhães Pereira
- Department of Metallurgical Engineering and Materials, Federal University of Minas Gerais, School of Engineering, Belo Horizonte, MG, Brazil
| |
Collapse
|
27
|
Chang L, Shen S, Zhang Z, Song X, Jiang Q. Study on the relationship between age and the concentrations of heavy metal elements in human bone. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:320. [PMID: 30363972 DOI: 10.21037/atm.2018.08.09] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Excessive amounts of heavy metals such as cadmium, chromium, cobalt, lead, thallium, and manganese are extremely harmful to the human body. These elements can accumulate in bone and impact bone metabolism. In this study, we investigated the relationship between age and the concentrations of these elements in human bone and blood. Methods Bone and blood samples were obtained from both older and younger patients. The concentrations of the elements under investigation were measured by inductively coupled plasma mass spectrometry (ICP-MS), and the specific concentrations in the bone and blood were then calculated. Results The results showed that with increasing age, the concentrations of chromium, cobalt, and thallium in bone decreased significantly, while the concentration of cadmium in bone markedly increased. However, there was no clear correlation between age and the concentrations of these heavy metals in blood. Notably, there was a close correlation between the concentration of cobalt in bone and the presence of osteopenia. Conclusions Senescence of the human body is accompanied by the shifting of cobalt, chromium, and thallium from the bone to the outer- bone. However, the concentration of cadmium in bone increases with age. These changes are very likely to be related to the equilibrium of bone metabolism in senescent individuals. In addition, only cobalt was shown to be significantly related to osteopenia.
Collapse
Affiliation(s)
- Liang Chang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing 210000, China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Sheng Shen
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing 210000, China
| | - Zhe Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing 210000, China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Xiaoxiao Song
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing 210000, China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing 210000, China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| |
Collapse
|
28
|
Yu L, Tian Y, Qiao Y, Liu X. Mn-containing titanium surface with favorable osteogenic and antimicrobial functions synthesized by PIII&D. Colloids Surf B Biointerfaces 2017; 152:376-384. [PMID: 28152461 DOI: 10.1016/j.colsurfb.2017.01.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 12/30/2016] [Accepted: 01/24/2017] [Indexed: 12/26/2022]
Abstract
Reasonable incorporation of manganese into titanium is believed to be able to enhance the osteogenic and antibacterial activities of orthopedic implants. However, it is still a challenge to compromise Mn-induced cytotoxicity and better develop its biocompatibility and antimicrobial ability. To pinpoint this issue, a stable Mn ion release platform was created on Ti using plasma immersion ion implantation and deposition (PIII&D) technique. Compared with as-etched titanium, as a result, promoted antibacterial abilities against gram-negative bacteria species and enhanced osteogenic-related gene expressions on rBMMSC were observed on Mn-containing sample. Meanwhile, the Mn-containing samples showed no obvious cytotoxicity. Our results here provide insight to be better understanding the relationships between additives-induced biological performance and the dose, state, and stability of the doped element.
Collapse
Affiliation(s)
- Le Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yaxin Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
29
|
Zilm ME, Chen L, Sharma V, McDannald A, Jain M, Ramprasad R, Wei M. Hydroxyapatite substituted by transition metals: experiment and theory. Phys Chem Chem Phys 2016; 18:16457-65. [PMID: 27264723 DOI: 10.1039/c6cp00474a] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioceramics are versatile materials for hard tissue engineering. Hydroxyapatite (HA) is a widely studied biomaterial for bone grafting and tissue engineering applications. The crystal structure of HA allows for a wide range of substitutions, which allows for tailoring materials properties. Transition metals and lanthanides are of interest since substitution in HA can result in magnetic properties. In this study, experimental results were compared to theoretical calculations of HA substituted with a transition metal. Calculation of a 10 atomic percent substitution of a transition metal ion Mn(2+), Fe(2+), and Co(2+) substituted HA samples lead to magnetic moments of 5, 4, and 3 Bohr magnetons, respectively. Hydroxyapatite substituted by transition metals (MHA) was fabricated through an ion exchange procedure and characterized with X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), X-ray photoelectron spectroscopy, and vibrating sample magnetometer, and results were compared to theoretical calculations. All the substitutions resulted in phase-pure M(2+)HA with lattice parameters and FTIR spectra in good agreement with calculations. Magnetic measurements revealed that the substitution of Mn(2+) has the greatest effect on the magnetic properties of HA followed by the substitution of Fe(2+) and then Co(2+). The present work underlines the power of synergistic theoretical-experimental work in guiding the rational design of materials.
Collapse
Affiliation(s)
- M E Zilm
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Yu Y, Ding T, Xue Y, Sun J. Osteoinduction and long-term osseointegration promoted by combined effects of nitrogen and manganese elements in high nitrogen nickel-free stainless steel. J Mater Chem B 2016; 4:801-812. [PMID: 32262962 DOI: 10.1039/c5tb02190a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High nitrogen nickel-free stainless steel promoted osteoinduction and long-term osseointegration of implants by combined effects of N and Mn elements.
Collapse
Affiliation(s)
- Yiqiang Yu
- Shanghai Biomaterials Research & Testing Center
- Shanghai Key Laboratory of Stomatology
- Ninth People's Hospital
- Shanghai Jiaotong University School of Medicine
- China
| | - Tingting Ding
- Shanghai Biomaterials Research & Testing Center
- Shanghai Key Laboratory of Stomatology
- Ninth People's Hospital
- Shanghai Jiaotong University School of Medicine
- China
| | - Yang Xue
- Shanghai Biomaterials Research & Testing Center
- Shanghai Key Laboratory of Stomatology
- Ninth People's Hospital
- Shanghai Jiaotong University School of Medicine
- China
| | - Jiao Sun
- Shanghai Biomaterials Research & Testing Center
- Shanghai Key Laboratory of Stomatology
- Ninth People's Hospital
- Shanghai Jiaotong University School of Medicine
- China
| |
Collapse
|
31
|
Gopi D, Murugan N, Ramya S, Shinyjoy E, Kavitha L. Ball flower like manganese, strontium substituted hydroxyapatite/cerium oxide dual coatings on the AZ91 Mg alloy with improved bioactive and corrosion resistance properties for implant applications. RSC Adv 2015. [DOI: 10.1039/c5ra03432a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mn, Sr-HAP/CeO2dual layer coated AZ91 Mg alloy will be a revolutionary potential material for orthopedic implants.
Collapse
Affiliation(s)
- D. Gopi
- Department of Chemistry
- Periyar University
- Salem 636 011
- India
- Centre for Nanoscience and Nanotechnology
| | - N. Murugan
- Department of Chemistry
- Periyar University
- Salem 636 011
- India
| | - S. Ramya
- Department of Chemistry
- Periyar University
- Salem 636 011
- India
| | - E. Shinyjoy
- Department of Chemistry
- Periyar University
- Salem 636 011
- India
| | - L. Kavitha
- Department of Physics
- School of Basic and Applied Sciences
- Central University of Tamilnadu
- Thiruvarur 610 101
- India
| |
Collapse
|
32
|
Zhang J, Ding C, Shang P. Alterations of mineral elements in osteoblast during differentiation under hypo, moderate and high static magnetic fields. Biol Trace Elem Res 2014; 162:153-7. [PMID: 25328139 DOI: 10.1007/s12011-014-0157-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/13/2014] [Indexed: 01/22/2023]
Abstract
Static magnetic fields (SMFs) can enhance the ability of bone formation by osteoblast and is a potential physical therapy to bone disorders and the maintenance of bone health. But, the mechanism is not clear yet. Certain mineral elements including macro and trace elements are essential for normal bone metabolism. Deficiency of these elements can cause severe bone disorders including osteoporosis. However, there are few reports regarding the role of mineral elements in the regulation of bone formation under SMFs. In this study, hypomagnetic field (HyMF) of 500 nT, moderate SMF (MMF) of 0.2 T, and high SMF (HiMF) of 16 T were used to investigate the effects of SMFs on mineral element (calcium, copper, iron, magnesium, manganese, and zinc) alteration of MC3T3-E1 cells during osteoblast mineralization. The results showed that osteoblasts in differentiation accumulated more mineral elements than non-differentiated cell cultures. Furthermore, HyMF reduced osteoblast differentiation but did not affect mineral elements levels compared with control of geomagnetic field. MMF decreased osteoblast differentiation with elevated iron content. HiMF enhanced osteoblast differentiation and increased all the mineral contents except copper. It is suggested that the altered potential of osteoblast differentiation under SMFs may partially due to the involvement of different mineral elements.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, P.O. Box 707, Xi'an, Shaanxi, 710072, China
| | | | | |
Collapse
|
33
|
Yu L, Qian S, Qiao Y, Liu X. Multifunctional Mn-containing titania coatings with enhanced corrosion resistance, osteogenesis and antibacterial activity. J Mater Chem B 2014; 2:5397-5408. [DOI: 10.1039/c4tb00594e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Miola M, Brovarone CV, Maina G, Rossi F, Bergandi L, Ghigo D, Saracino S, Maggiora M, Canuto RA, Muzio G, Vernè E. In vitro study of manganese-doped bioactive glasses for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 38:107-18. [DOI: 10.1016/j.msec.2014.01.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/29/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
35
|
Huang Y, Ding Q, Han S, Yan Y, Pang X. Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1853-1864. [PMID: 23686354 DOI: 10.1007/s10856-013-4955-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
This work elucidated the corrosion resistance and in vitro bioactivity of electroplated manganese-doped hydroxyapatite (MnHAp) film on NaOH-treated titanium (Ti). The NaOH treatment process was performed on Ti surface to enhance the adhesion of the MnHAp coating on Ti. Scanning electron microscopy images showed that the MnHAp coating had needle-like apatite crystals, and the approximately 10 μm thick layer was denser than HAp. Energy-dispersive X-ray spectroscopy analysis revealed that the MnHAp crystals were Ca-deficient and the Mn/P molar ratio was 0.048. X-ray diffraction confirmed the presence of single-phase MnHAp, which was aligned vertically to the substrate. Fourier transform infrared spectroscopy indicated the presence of phosphate bands ranging from 500 to 650 and 900 to 1,100 cm(-1), and a hydroxyl band at 3,571 cm(-1), which was characteristic of HAp. Bond strength test revealed that adhesion for the MnHAp coating was more enhanced than that of the HAp coating. Potentiodynamic polarisation test showed that the MnHAp-coated surface exhibited superior corrosion resistance over the HAp single-coated surface. Bioactivity test conducted by immersing the coatings in simulated body fluid showed that MnHAp coating can rapidly induce bone-like apatite nucleation and growth. Osteoblast cellular tests revealed that the MnHAp coating was better at improving the in vitro biocompatibility of Ti than the HAp coating.
Collapse
Affiliation(s)
- Yong Huang
- Institute of Life Science and Technology, University of Electronic Science and Technology of China, No. 4 of Section 2, Jianshe North Road, Chengdu, 610054, Sichuan, China
| | | | | | | | | |
Collapse
|
36
|
Zhang J, Zhang Q, Li S, Hou Y, Zhang H. The effects of Mn(2+) on the proliferation, osteogenic differentiation and adipogenic differentiation of primary mouse bone marrow stromal cells. Biol Trace Elem Res 2013; 151:415-23. [PMID: 23292301 DOI: 10.1007/s12011-012-9581-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The effects of Mn(2+) on the proliferation, osteogenic and adipogenic differentiation of BMSCs were evaluated by employing MTT, ΔΨm, cell cycle, ALP activity, collagen production, ARS and oil red O stain assays. The results indicated that Mn(2+) decreased the viability at most concentrations for 24 h, but the viability was increased with prolonging incubation time. Mn(2+) at the concentrations of 1×10(-7) and 1×10(-6)mol/L decreased ΔΨm in the BMSCs for 48 h. Mn(2+) induced G2/M phase cell cycle arrest at tested concentrations. On day 7 and 10, the effect of Mn(2+) on the osteogenic differentiation depended on concentration, but it inhibited osteogenic differentiation at all tested concentrations for 14 d. The effect of Mn(2+) on the synthesis of collagen of BMSCs depended on concentration for 7 d, but Mn(2+) inhibited the synthesis of collagen at all tested concentrations for 10 d. On day 14, Mn(2+) inhibited the formation of mineralized matrix nodules of BMSCs at all tested concentrations, the inhibitory effect turned to be weaker with prolonging incubation time. Mn(2+) promoted the adipogenic differentiation of BMSCs at all tested concentrations for 10 d, but had no effect with prolonging incubation time. These findings suggested the effects of Mn(2+) on the proliferation, osteogenic differentiation and adipogenic differentiation of BMSCs are very complicated, concentration and incubation time are key factors for switching the biological effects of Mn(2+) from damage to protection.
Collapse
Affiliation(s)
- Jinchao Zhang
- College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, People's Republic of China.
| | | | | | | | | |
Collapse
|
37
|
Bae YJ, Choi MK. The estimated daily manganese intake of Korean children aged 11-12. Nutr Res Pract 2011; 5:548-52. [PMID: 22259680 PMCID: PMC3259298 DOI: 10.4162/nrp.2011.5.6.548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/02/2011] [Accepted: 09/02/2011] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to estimate the daily manganese (Mn) intake of Korean children. This study was done using a three-day dietary intake survey of 257 Korean children (boys 123; girls 134). The Mn intake values were calculated based on a database that provides the Mn content of the frequently consumed Korean foods, alongside the food composition table provided by the Korean National Rural Living Science Institute. The average age, height, weight and body mass index of our subjects were 11.9 years, 155.4 cm, 48.9 kg and 20.2 kg/m2 in boys and 11.9 years, 154.1 cm, 43.5 kg and 18.3 kg/m2 in girls. The average daily energy intakes were 2,249.2 kcal in boys and 2,044.5 kcal in girls. Boys consumed significantly more Mn than girls, based on intake estimates of 4,585.3 µg (117.6% of adequate intake) and 4,029.3 µg (117.1% of adequate intake), respectively (P < 0.001). Boys had a Mn intake of 2,041.1 µg per 1,000 kcal of energy consumption, whereas for girls this was at 1,983.9 µg per 1,000 kcal. Neither group exceeded the tolerable upper intake level for Mn. The major food groups which contributed to Mn intake in our subjects were cereals (50.8%), vegetables (21.0%), seasonings (8.9%), and pulses (7.7%). Notably, boys derived a higher Mn intake through cereals and vegetable than did girls (P < 0.001, P < 0.05). The key food sources of Mn, in descending order, were rice, soybean curd, kimchi, black rice and cereals. We propose that the results of our study may be used as a basis for follow-up studies that examine the Mn intake of children.
Collapse
Affiliation(s)
- Yun Jung Bae
- Department of Food and Nutritional Sciences, Hanbuk University, 233-1 Sangpae-dong, Dongducheon, Gyeonggi 483-777, Korea
| | | |
Collapse
|
38
|
Bae YJ, Bu SY, Kim JY, Yeon JY, Sohn EW, Jang KH, Lee JC, Kim MH. Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats. Biol Trace Elem Res 2011; 144:992-1002. [PMID: 21584658 DOI: 10.1007/s12011-011-9073-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
Abstract
Commercially available seaweed calcium extract can supply high amounts of calcium as well as significant amounts of magnesium and other microminerals. The purpose of this study was to investigate the degree to which the high levels of magnesium in seaweed calcium extract affects the calcium balance and the bone status in ovariectomized rats in comparison to rats supplemented with calcium carbonate and magnesium oxide. A total of 40 Sprague-Dawley female rats (7 weeks) were divided into four groups and bred for 12 weeks: sham-operated group (Sham), ovariectomized group (OVX), ovariectomized with inorganic calcium and magnesium supplementation group (OVX-Mg), and ovariectomized with seaweed calcium and magnesium supplementation group (OVX-SCa). All experimental diets contained 0.5% calcium. The magnesium content in the experimental diet was 0.05% of the diet in the Sham and OVX groups and 0.1% of the diet in the OVX-Mg and OVX-SCa groups. In the calcium balance study, the OVX-Mg and OVX-SCa groups were not significantly different in calcium absorption compared to the OVX group. However, the femoral bone mineral density and strength of the OVX-SCa group were higher than those of the OVX-Mg and OVX groups. Seaweed calcium with magnesium supplementation or magnesium supplementation alone did not affect the serum ALP and CTx levels in ovariectomized rats. In summary, consumption of seaweed calcium extract or inorganic calcium carbonate with magnesium oxide demonstrated the same degree of intestinal calcium absorption, but only the consumption of seaweed calcium extract resulted in increased femoral bone mineral density and strength in ovariectomized rats. Our results suggest that seaweed calcium extract is an effective calcium and magnesium source for improving bone health compared to synthetic calcium and magnesium supplementation.
Collapse
Affiliation(s)
- Yun Jung Bae
- Department of Food and Nutritional Sciences, Hanbuk University, Dongducheon, 483-120, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Li X, Hu C, Zhu Y, Sun H, Li Y, Zhang Z. Effects of aluminum exposure on bone mineral density, mineral, and trace elements in rats. Biol Trace Elem Res 2011; 143:378-85. [PMID: 20886309 DOI: 10.1007/s12011-010-8861-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 09/21/2010] [Indexed: 11/25/2022]
Abstract
The purpose of the study was to investigate the effects of aluminum (Al) exposure on bone mineral elements, trace elements, and bone mineral density (BMD) in rats. One hundred Wistar rats were divided randomly into two groups. Experimental rats were given drinking water containing aluminum chloride (AlCl(3), 430 mg Al(3+)/L), whereas control rats were given distilled water for up to 150 days. Ten rats were sacrificed in each group every 30 days. The levels of Al, calcium (Ca), phosphorus (P), magnesium (Mg), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), boron (B), and strontium (Sr) in bone and the BMD of femur were measured. Al-treated rats showed lower deposition of Ca, P, and Mg compared with control rats. Levels of trace elements (Zn, Fe, Cu, Mn, Se, B, and Sr) were significantly lower in the Al-treated group than in the control group from day 60, and the BMD of the femur metaphysis in the Al-treated group was significantly lower than in the control group on days 120 and 150. These findings indicate that long-term Al exposure reduces the levels of mineral and trace elements in bone. As a result, bone loss was induced (particularly in cancellous bone).
Collapse
Affiliation(s)
- Xinwei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Bae YJ, Choi MK, Kim MH. Manganese supplementation reduces the blood cholesterol levels in Ca-deficient ovariectomized rats. Biol Trace Elem Res 2011; 141:224-31. [PMID: 20455030 DOI: 10.1007/s12011-010-8714-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/22/2010] [Indexed: 11/28/2022]
Abstract
Manganese (Mn) is an essential element for normal development and bodily functions in humans. In the present study, we examined whether Mn supplementation can alter the serum lipid parameters and liver function in Ca-deficient ovariectomized (OVX) rats. Sixty female Sprague-Dawley rats (6 weeks) were divided into five groups and bred for 12 weeks: sham-operated control group (Sham), OVX Ca deficiency group (OLCa) with Ca-deficient diet (0.1% Ca modified AIN-93N diet), OVX Ca deficiency and Mn supplementation group (OLCaMn), OVX with adequate Ca group (OACa; 0.5% Ca AIN-93N diet), and OVX with adequate Ca and Mn supplementation group (OACaMn). A low Ca diet increased the liver weight and serum levels of GOT, GPT, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in OVX rats. Mn supplementation decreased these parameters in Ca-deficient OVX rat. The results of our study suggest Mn supplementation results in reductions of the blood cholesterol levels, which show an increase due to Ca deficiency in OVX rats.
Collapse
Affiliation(s)
- Yun-Jung Bae
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, 140-742, South Korea
| | | | | |
Collapse
|
41
|
Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem 2009; 103:1666-74. [DOI: 10.1016/j.jinorgbio.2009.09.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 11/21/2022]
|