1
|
Lima CKF, Sisnande T, Silva RVDA, Silva VDCSDA, Amaral JJDO, Ochs SM, Santos BLRD, Miranda ALPDE, Lima LMTR. Zinc deficiency disrupts pain signaling promoting nociceptive but not inflammatory pain in mice. AN ACAD BRAS CIENC 2023; 95:e20220914. [PMID: 37585970 DOI: 10.1590/0001-3765202320220914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/12/2023] [Indexed: 08/18/2023] Open
Abstract
Zinc (Zn) is an essential micronutrient involved in the physiology of nervous system and pain modulation. There is little evidence for the role of nutritional Zn alternations to the onset and progression of neuropathic (NP) and inflammatory pain. The study investigated the effects of a zinc restricted diet on the development of pain. Weaned mice were submitted to a regular (38 mg/kg of Zn) or Zn deficient (11 mg/kg of Zn) diets for four weeks, pain responses evaluated (mechanical, cold and heat allodynia; formalin- and carrageenan-induced inflammatory hypernociception), plasma and tissues collected for biochemical and metabolomic analysis. Zn deficient diet inhibited animal growth (37%) and changed mice sensitivity pattern, inducing an intense allodynia evoked by mechanical, cold and heat stimulus for four weeks. The inflammatory pain behavior of formalin test was drastically reduced or absent when challenged by an inflammatory stimulus. Zn restriction also reduce plasma TNF, increase neuronal activation, oxidative stress, indicating a disruption of the immune response. Liver metabolomic analyses suggest a downregulation of lipid metabolism of arachidonic acid. Zn restriction since weaned disrupts pain signaling considerably and reduce inflammatory pain. Zn could be considered a predisposing factor for the onset of chronic pain such as painful neuropathies.
Collapse
Affiliation(s)
- Cleverton Kleiton F Lima
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Biotecnologia Farmacêutica e Nutricional (pbiotech), CCS, Bloco Bss24, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Estudos em Farmacologia Experimental (LEFEx), CCS, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Tháyna Sisnande
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Biotecnologia Farmacêutica e Nutricional (pbiotech), CCS, Bloco Bss24, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Rafaela V DA Silva
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Estudos em Farmacologia Experimental (LEFEx), CCS, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Vanessa Domitilla C S DA Silva
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Estudos em Farmacologia Experimental (LEFEx), CCS, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Julio J DO Amaral
- Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Laboratório de Macromoléculas (LAMAC-DIMAV), Av. Nossa Senhora das Graças, 50, Xerém, 25250-020 Duque de Caxias, RJ, Brazil
| | - Soraya M Ochs
- Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Laboratório de Macromoléculas (LAMAC-DIMAV), Av. Nossa Senhora das Graças, 50, Xerém, 25250-020 Duque de Caxias, RJ, Brazil
| | - Bruna L R Dos Santos
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Biotecnologia Farmacêutica e Nutricional (pbiotech), CCS, Bloco Bss24, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Estudos em Farmacologia Experimental (LEFEx), CCS, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Ana Luísa P DE Miranda
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Estudos em Farmacologia Experimental (LEFEx), CCS, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Luís Maurício T R Lima
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Biotecnologia Farmacêutica e Nutricional (pbiotech), CCS, Bloco Bss24, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Laboratório de Macromoléculas (LAMAC-DIMAV), Av. Nossa Senhora das Graças, 50, Xerém, 25250-020 Duque de Caxias, RJ, Brazil
| |
Collapse
|
2
|
Integrated Network Pharmacology and Proteomic Analyses of Targets and Mechanisms of Jianpi Tianjing Decoction in Treating Vascular Dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9021546. [PMID: 36714532 PMCID: PMC9876684 DOI: 10.1155/2023/9021546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023]
Abstract
Background Vascular dementia (VD), associated with cerebrovascular injury, is characterized by severe cognitive impairment. Jianpi Tianjing Decoction (JTD) has been widely used to treat VD. However, its molecular targets and mechanisms of action in this treatment remain unclear. This study integrated network pharmacology and proteomics to identify targets and mechanisms of JTD in the treatment of VD and to provide new insights and goals for clinical treatments. Methods Systematic network pharmacology was used to identify active chemical compositions, potential targets, and mechanisms of JTD in VD treatment. Then, a mouse model of VD was induced via transient bilateral common carotid artery occlusion to verify the identified targets and mechanisms of JTD against VD using 4D label-free quantitative proteomics. Results By screening active chemical compositions and potential targets in relevant databases, 187 active chemical compositions and 416 disease-related compound targets were identified. In vivo experiments showed that JTD improved learning and memory in mice. Proteomics also identified 112 differentially expressed proteins in the model and sham groups and the JTD and model groups. Integrating the network pharmacology and proteomics results revealed that JTD may regulate expressions of cytochrome c oxidase subunit 7C, metabotropic glutamate receptor 2, Slc30a1 zinc transporter 1, and apolipoprotein A-IV in VD mice and that their mechanisms involve biological processes like oxidative phosphorylation, regulation of neuron death, glutamate secretion, cellular ion homeostasis, and lipoprotein metabolism. Conclusions JTD may suppress VD development via multiple components, targets, and pathways. It may thus serve as a complementary treatment option for patients with VD.
Collapse
|
3
|
Lin JQ, Tian H, Zhao XG, Lin S, Li DY, Liu YY, Xu C, Mei XF. Zinc provides neuroprotection by regulating NLRP3 inflammasome through autophagy and ubiquitination in a spinal contusion injury model. CNS Neurosci Ther 2020; 27:413-425. [PMID: 33034415 PMCID: PMC7941232 DOI: 10.1111/cns.13460] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Aim Spinal cord injury (SCI) is a serious disabling injury worldwide, and the excessive inflammatory response it causes plays an important role in secondary injury. Regulating the inflammatory response can be a potential therapeutic strategy for improving the prognosis of SCI. Zinc has been demonstrated to have a neuroprotective effect in experimental spinal cord injury models. In this study, we aimed to explore the neuroprotective effect of zinc through the suppression of the NLRP3 inflammasome. Method Allen's method was used to establish an SCI model in C57BL/6J mice. The Basso Mouse Scale (BMS), Nissl staining were employed to confirm the protective effect of zinc on neuronal survival and functional recovery in vivo. Western blotting (WB), immunofluorescence (IF), and enzyme‐linked immunosorbent assay (ELISA) were used to detect the expression levels of NLRP3 inflammasome and autophagy‐related proteins. Transmission electron microscopy (TEM) was used to confirm the occurrence of zinc‐induced autophagy. In vitro, lipopolysaccharide (LPS) and ATP polarized BV2 cells to a proinflammatory phenotype. 3‐Methyladenine (3‐MA) and bafilomycin A1 (BafA1) were chosen to explore the relationship between the NLRP3 inflammasome and autophagy. A coimmunoprecipitation assay was used to detect the ubiquitination of the NLRP3 protein. Results Our data showed that zinc significantly promoted motor function recovery after SCI. In vivo, zinc treatment inhibited the protein expression level of NLRP3 while increasing the level of autophagy. These effects were fully validated by the polarization of BV2 cells to a proinflammatory phenotype. The results showed that when 3‐MA and BafA1 were applied, the promotion of autophagy by zinc was blocked and that the inhibitory effect of zinc on NLRP3 was reversed. Furthermore, co‐IP confirmed that the promotion of autophagy by zinc also activated the protein expression of ubiquitin and suppressed high levels of NLRP3. Conclusion Zinc provides neuroprotection by regulating NLRP3 inflammasome through autophagy and ubiquitination after SCI.
Collapse
Affiliation(s)
- Jia-Quan Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - He Tian
- Department of Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xiao-Guang Zhao
- Department of Emergency, The First Affifiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Sen Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dao-Yong Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yuan-Ye Liu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chang Xu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xi-Fan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
4
|
Pan CY, Lin FY, Kao LS, Huang CC, Liu PS. Zinc oxide nanoparticles modulate the gene expression of ZnT1 and ZIP8 to manipulate zinc homeostasis and stress-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. PLoS One 2020; 15:e0232729. [PMID: 32915786 PMCID: PMC7485861 DOI: 10.1371/journal.pone.0232729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
Zinc ions (Zn2+) are important messenger molecules involved in various physiological functions. To maintain the homeostasis of cytosolic Zn2+ concentration ([Zn2+]c), Zrt/Irt-related proteins (ZIPs) and Zn2+ transporters (ZnTs) are the two families of proteins responsible for decreasing and increasing the [Zn2+]c, respectively, by fluxing Zn2+ across the membranes of the cell and intracellular compartments in opposite directions. Most studies focus on the cytotoxicity incurred by a high concentration of [Zn2+]c and less investigate the [Zn2+]c at physiological levels. Zinc oxide-nanoparticle (ZnO-NP) is blood brain barrier-permeable and elevates the [Zn2+]c to different levels according to the concentrations of ZnO-NP applied. In this study, we mildly elevated the [Zn2+]c by ZnO-NP at concentrations below 1 μg/ml, which had little cytotoxicity, in cultured human neuroblastoma SH-SY5Y cells and characterized the importance of Zn2+ transporters in 6-hydroxy dopamine (6-OHDA)-induced cell death. The results show that ZnO-NP at low concentrations elevated the [Zn2+]c transiently in 6 hr, then declined gradually to a basal level in 24 hr. Knocking down the expression levels of ZnT1 (located mostly at the plasma membrane) and ZIP8 (present in endosomes and lysosomes) increased and decreased the ZnO-NP-induced elevation of [Zn2+]c, respectively. ZnO-NP treatment reduced the basal levels of reactive oxygen species and Bax/Bcl-2 mRNA ratios; in addition, ZnO-NP decreased the 6-OHDA-induced ROS production, p53 expression, and cell death. These results show that ZnO-NP-induced mild elevation in [Zn2+]c activates beneficial effects in reducing the 6-OHDA-induced cytotoxic effects. Therefore, brain-delivery of ZnO-NP can be regarded as a potential therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chien-Yuan Pan
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Fang-Yu Lin
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Lung-Sen Kao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Chang Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Shan Liu
- Department of Microbiology, Soochow University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
5
|
Zong N, Ma SX, Wang ZY. Localization of zinc transporters in the spinal cord of cynomolgus monkey. J Chem Neuroanat 2017; 82:56-59. [PMID: 28455213 DOI: 10.1016/j.jchemneu.2017.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 11/17/2022]
Abstract
Zinc is abundant in the spinal cord, where it participates in several physiological and pathophysiological processes, including neurotransmission, spinal cord injury, and amyotrophic lateral sclerosis. However, the mechanisms underlying zinc homeostasis in the spinal cord are largely unknown. Zinc transporters (ZnTs) are responsible for transporting zinc from the cytoplasm to the extracellular space or to intracellular compartments. In the present study, we examined the distribution of ZnT1-10 proteins in the spinal cord of cynomolgus monkey. Immunohistochemical studies demonstrate that all detected ZnT family members are expressed in the gray matter. ZnT1-10 immunoreactivity can be seen in both motor and sensory neurons in the dorsal and ventral horn from the cervical to sacral segments. No obvious immunostaining was found in the glia cells. The present study demonstrates that ZnT proteins are functionally important for regulating zinc metabolism in both motor and sensory functions in monkey spinal cord.
Collapse
Affiliation(s)
- Ni Zong
- Institute of Neuroscience, College of Life Health Sciences, Northeastern University, Shenyang 110169, China
| | - Shi-Xin Ma
- Institute of Neuroscience, College of Life Health Sciences, Northeastern University, Shenyang 110169, China
| | - Zhan-You Wang
- Institute of Neuroscience, College of Life Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
6
|
Kitayama T, Morita K, Motoyama N, Dohi T. Down-regulation of zinc transporter-1 in astrocytes induces neuropathic pain via the brain-derived neurotrophic factor - K +-Cl - co-transporter-2 signaling pathway in the mouse spinal cord. Neurochem Int 2016; 101:120-131. [PMID: 27818163 DOI: 10.1016/j.neuint.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
We previously demonstrated, using a DNA microarray analysis, the down-regulated expression of the slc30a1 gene (zinc transporter 1, ZnT1) in a neuropathic pain model induced by partial sciatic nerve ligation (PSNL). Zinc is an essential trace mineral that plays important roles in physiological functions, and ZnT1 modulates intracellular zinc levels. In the present study, we examined the effects of the down-regulation of the ZnT1 gene in the spinal cord on tactile allodynia. The knockdown (KD) of ZnT1 by the intrathecal administration of siRNA against ZnT1 to mice induced allodynia, a characteristic syndrome of neuropathic pain, which persisted for at least one month. ZnT1 KD increased intracellular zinc concentrations in primary astrocyte cultures, and this was followed by enhanced PKCα membrane translocation and NFκB nuclear translocation as well as increases in the levels of IL-6 and BDNF expressed and the phosphorylation of CREB in vitro. Neuropathic pain induced by ZnT1 KD was inhibited by an IL-6, BDNF, and TrkB siRNA injection. The down-regulated expression of KCC2 in spinal cord was induced by ZnT1 KD and prevented by an intrathecal injection of IL-6, BDNF, and TrkB siRNA. These results indicate that PSNL via the down-regulated expression of ZnT1 increases intracellular zinc concentrations, enhances PKCα membrane translocation and NFκB nuclear translocation, up-regulates the expression of IL-6, increases the phosphorylation of CREB, and promotes the BDNF cascade reaction in astrocytes, thereby down-regulating the expression of KCC2 and inducing neuropathic pain in vivo. This mechanism is considered to be responsible for the activation of TrkB in neurons through the release of BDNF from astrocytes. The results of the present study also indicate that zinc signaling in astrocytes occurs upstream of the BDNF-TrkB-KCC2 cascade reaction.
Collapse
Affiliation(s)
- Tomoya Kitayama
- Department of Pharmacy, School of Pharmacy and Pharmaceutical Science, Mukogawa Women's University, Hyogo 663-8179, Japan.
| | - Katsuya Morita
- Department of Pharmacology, Faculty of Nursing, Hiroshima Bunka Gakuen University, 2-10-3 Agaminami, Kure-city, Hiroshima 737-0004, Japan.
| | - Naoyo Motoyama
- Department of Dental Science for Health Promotion, Division of Integrated Health Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Toshihiro Dohi
- Department of Pharmacology, Faculty of Nursing, Hiroshima Bunka Gakuen University, 2-10-3 Agaminami, Kure-city, Hiroshima 737-0004, Japan.
| |
Collapse
|
7
|
Gao K, Shen Z, Yuan Y, Han D, Song C, Guo Y, Mei X. Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β-catenin signaling pathway after spinal cord injury. J Neurochem 2016; 138:139-49. [PMID: 26443048 PMCID: PMC5089634 DOI: 10.1111/jnc.13382] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 12/30/2022]
Abstract
Statins exhibit neuroprotective effects after spinal cord injury (SCI). However, the molecular mechanism underlying these effects remains unknown. This study demonstrates that the hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin (Simv) exhibits neuroprotective effects on neuronal apoptosis and supports functional recovery in a rat SCI model by activating the Wnt/β‐catenin signaling pathway. In specific, Simv administration after SCI significantly up‐regulated the expression of low density lipoprotein receptor‐related protein 6 phosphorylation and β‐catenin protein, increased the mRNA expression of lymphoid enhancer factor‐1 and T‐cell factor‐1, and suppressed the expression of β‐catenin phosphorylation in the spinal cord neurons. Simv enhanced motor neuronal survival in the spinal cord anterior horn and decreased the lesion of spinal cord tissues after SCI. Simv administration after SCI also evidently reduced the expression levels of Bax, active caspase‐3, and active caspase‐9 in the spinal cord neurons and the proportion of transferase UTP nick end labeling (TUNEL)‐positive neuron cells, but increased the expression level of Bcl‐2 in the spinal cord neurons. However, the anti‐apoptotic effects of Simv were reduced in cultured spinal cord nerve cells when the Wnt/β‐catenin signaling pathway was suppressed in the lipopolysaccharide‐induced model. Furthermore, the Basso, Beattie, and Bresnahan scores indicated that Simv treatment significantly improved the locomotor functions of rats after SCI. This study is the first to report that Simv exerts neuroprotective effects by reducing neuronal apoptosis, and promoting functional and pathological recovery after SCI by activating the Wnt/β‐catenin signaling pathway. We verified the neuroprotective properties associated with simvastatin following spinal cord injury (SCI). Simvastatin reduced neuronal apoptosis, improved the functional and pathological recovery via activating Wnt/β‐catenin signal pathway, however, the anti‐apoptosis effects of simvastatin were reversed following suppressing Wnt/β‐catenin signaling pathway in primary spinal cord neurons. The significant findings may provide clinical therapeutic value of simvastatin for treating SCI.
Collapse
Affiliation(s)
- Kai Gao
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Zhaoliang Shen
- Department of Orthopedics, Second Hospital of Jinzhou, Jinzhou, China
| | - Yajiang Yuan
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Donghe Han
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Liaoning Medical University, Jinzhou, China
| | - Changwei Song
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Yue Guo
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| |
Collapse
|
8
|
Cellular Zinc Homeostasis Contributes to Neuronal Differentiation in Human Induced Pluripotent Stem Cells. Neural Plast 2016; 2016:3760702. [PMID: 27247802 PMCID: PMC4876239 DOI: 10.1155/2016/3760702] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/24/2016] [Indexed: 11/23/2022] Open
Abstract
Disturbances in neuronal differentiation and function are an underlying factor of many brain disorders. Zinc homeostasis and signaling are important mediators for a normal brain development and function, given that zinc deficiency was shown to result in cognitive and emotional deficits in animal models that might be associated with neurodevelopmental disorders. One underlying mechanism of the observed detrimental effects of zinc deficiency on the brain might be impaired proliferation and differentiation of stem cells participating in neurogenesis. Thus, to examine the molecular mechanisms regulating zinc metabolism and signaling in differentiating neurons, using a protocol for motor neuron differentiation, we characterized the expression of zinc homeostasis genes during neurogenesis using human induced pluripotent stem cells (hiPSCs) and evaluated the influence of altered zinc levels on the expression of zinc homeostasis genes, cell survival, cell fate, and neuronal function. Our results show that zinc transporters are highly regulated genes during neuronal differentiation and that low zinc levels are associated with decreased cell survival, altered neuronal differentiation, and, in particular, synaptic function. We conclude that zinc deficiency in a critical time window during brain development might influence brain function by modulating neuronal differentiation.
Collapse
|
9
|
Cao XJ, Feng SQ, Fu CF, Gao K, Guo JS, Guo XD, He XJ, Huang ZW, Li ZH, Liu L, Liu RH, Lü HZ, Mei XF, Ning B, Ning GZ, Qian CH, Qin J, Qu YZ, Saijilafu, Shi B, Sui T, Sun TS, Wang J, Wen JK, Xiao J, Xu B, Xu HD, Yu PP, Zhang ZC, Zhou Y, Zhou YL. Repair, protection and regeneration of spinal cord injury. Neural Regen Res 2015; 10:1953-75. [PMID: 26889184 PMCID: PMC4730820 DOI: 10.4103/1673-5374.172314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Alexa T, Marza A, Voloseniuc T, Tamba B. Enhanced analgesic effects of tramadol and common trace element coadministration in mice. J Neurosci Res 2015; 93:1534-41. [PMID: 26078209 DOI: 10.1002/jnr.23609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 01/22/2023]
Abstract
Chronic pain is managed mostly by the daily administration of analgesics. Tramadol is one of the most commonly used drugs, marketed in combination with coanalgesics for enhanced effect. Trace elements are frequent ingredients in dietary supplements and may enhance tramadol's analgesic effect either through synergic mechanisms or through analgesic effects of their own. Swiss Weber male mice were divided into nine groups and were treated with a combination of the trace elements Mg, Mn, and Zn in three different doses and a fixed dose of tramadol. Two groups served as positive (tramadol alone) and negative (saline) controls. Nociceptive assessment by tail-flick (TF) and hot-plate (HP) tests was performed at baseline and at 15, 30, 45, and 60 min after intraperitoneal administration. Response latencies were recorded and compared with the aid of ANOVA testing. All three trace elements enhanced tramadol's analgesic effect, as assessed by TF and HP test latencies. Coadministration of these trace elements led to an increase of approximately 30% in the average pain inhibition compared with the tramadol-alone group. The most effective doses were 0.6 mg/kg b.w. for Zn, 75 mg/kg b.w. for Mg, and 7.2 mg/kg b.w. for Mn. Associating trace elements such as Zn, Mg, and Mn with the standard administration of tramadol increases the drug's analgesic effect, most likely a consequence of their synergic action. These findings impact current analgesic treatment because the addition of these trace elements may reduce the tramadol dose required to obtain analgesia.
Collapse
Affiliation(s)
- Teodora Alexa
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania.,Regional Institute of Oncology Iaşi, Romania
| | - Aurelia Marza
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania
| | - Tudor Voloseniuc
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania
| | - Bogdan Tamba
- Centre for the Study and Therapy of Pain, University of Medicine and Pharmacy "Gr. T. Popa," Iaşi, Romania.,A&B Pharm Corporation, Roman, Romania
| |
Collapse
|
11
|
Wang Y, Su R, Lv G, Cao Y, Fan Z, Wang Y, Zhang L, Yu D, Mei X. Supplement zinc as an effective treatment for spinal cord ischemia/reperfusion injury in rats. Brain Res 2013; 1545:45-53. [PMID: 24361987 DOI: 10.1016/j.brainres.2013.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/20/2013] [Accepted: 12/13/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology process and therapy of spinal cord injury (SCI). Accordingly, zinc regulates the expression of BDNF and its receptor in the central nervous system, the mechanism of which is still unknown. The present study investigates whether supplement zinc could reduce neurological damage in a rat model, with spinal cord ischemia-reperfusion (I/R) injury and how the effect of zinc transporter 1(ZnT-1) was involved. METHODS 100 Sprague-Dawley male rats were randomly and evenly divided into four groups. They were subjected to spinal cord ischemia by clamping the abdominal aorta for 45 min. Rats in the zinc-deficient dietary model group (ZD), zinc-adequate dietary model group (ZA), and zinc-high dietary model group (ZH) were given free access to purified diet, containing 5, 30, or 180 mg Zn/kg. Sham operation rats were subjected to laparotomy without clamping of the aorta and were fed by ZA diet (30 mg Zn/kg). Neurological function was scored by Tarlov's score. The spinal cord segments (L5) were harvested for histological examination, auto-metallographic (AMG) analysis, myeloperoxidase (MPO) activity analysis, expression of ZnT-1 and BDNF. RESULTS The rats in the ZH group have shown the higher neurological scores, slighter histological changes and the attenuated MPO activity, compared with those in the ZD and ZA groups at the four observation time points (p<0.05). The AMG staining density in the ZH group was significantly higher than that of ZD group in 14 days later after the operation. Compared with other groups, ZH group's expression of Zn-T1 and BDNF were significantly increased, and was positively correlated with the same time points after surgery (Spearman rho=0.403, p=0.0152.) CONCLUSION These findings suggest that zinc supplement can significantly reduce the spinal cord I/R injury in rats. The mechanism may be related with restraining the MPO activity and increasing of ZnT-1, which promoted the synthesis and release of BDNF.
Collapse
Affiliation(s)
- Yansong Wang
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Ribao Su
- Department of Orthopedics, Zhoupu Hospital of Pudong New Area, Shanghai City, PR China
| | - Gang Lv
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Yang Cao
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Zhongkai Fan
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Yanfeng Wang
- Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang City, PR China
| | - Li Zhang
- Department of Histology and Embryology, Liaoning Medical University, Jinzhou City, PR China
| | - Deshui Yu
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China.
| |
Collapse
|
12
|
Fang KM, Cheng FC, Huang YL, Chung SY, Jian ZY, Lin MC. Trace element, antioxidant activity, and lipid peroxidation levels in brain cortex of gerbils after cerebral ischemic injury. Biol Trace Elem Res 2013; 152:66-74. [PMID: 23334863 DOI: 10.1007/s12011-012-9596-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/27/2012] [Indexed: 01/22/2023]
Abstract
Proper trace element level and antioxidant enzyme activity are crucial for the brain in maintaining normal neurological functions. To our knowledge, alteration of lipid peroxidation status, trace element level, and antioxidant activity in the homogenates of brain cortex after cerebral ischemia in gerbil, however, has not been investigated so far. Male Mongolian gerbils were divided into control and ischemic subjects. Cerebral ischemia was induced by occlusion of the right middle cerebral artery and right common carotid artery for 1 h. Experimental results showed that a significant increase (P < 0.01) of the malondialdehyde level was found in the ischemic brain as compared with the control group. Trace element analysis indicated that a remarkable elevation (P < 0.01) of the level of iron (Fe), chromium (Cr), and a statistical decrease of selenium (Se) and zinc (Zn) (P < 0.05) concentration were observed in the ischemic brain as compared with the control subject. No significant change (P > 0.05) of the copper (Cu) level was found in both experimental groups. Additionally, antioxidant activity of superoxide dismutase (P < 0.01) and catalase (P < 0.05) was significantly decreased in the ischemic brain as compared with the control subject. Taking all results together, it is conceivable to manifest the experimental findings that cerebral ischemia not only may result in an enhanced oxidative stress but also may lead to further oxidative injury. Moreover, disturbance of trace element level combined with declined antioxidant activity seems to play a significant role in responsible for the etiology of cerebral ischemia.
Collapse
Affiliation(s)
- Kwang-Ming Fang
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, No.666, Buzih Road, Beitun District, Taichung 406, Taiwan
| | | | | | | | | | | |
Collapse
|