1
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
2
|
Yang G, Dong Q, Yang H, Wang F, Chen L, Tang J, Huang G, Zhao Y. Changes Observed in Potential Key Candidate Genes of Peripheral Immunity Induced by Tai Chi among Patients with Parkinson's Disease. Genes (Basel) 2022; 13:genes13101863. [PMID: 36292747 PMCID: PMC9601924 DOI: 10.3390/genes13101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
Parkinson’s disease (PD) is a common progressive neurodegenerative disease characterized by motor dysfunction. Although the inhibition of inflammation by Tai Chi has been demonstrated to involve a peripheral cytokine response and may play an important role in improving the motor function of PD patients, the related specific molecular mechanisms of the peripheral immune response to Tai Chi are not fully understood. The microarray dataset ‘GSE124676’ for the peripheral immune response to Tai Chi of PD patients was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened and analyzed using weighted gene co-expression network analysis (WGCNA). A total of 136 DEGs were found in the PD patients after Tai Chi, suggesting an effect of Tai Chi on the peripheral immunity of PD patients. The DEGs are mainly involved in neutrophil activation, T-cell activation, and NOD-like receptor and IL-17 signaling pathways. Furthermore, six key candidate genes (FOS, FOSB, JUNB, ZFP36, CAMP and LCN2) that are involved in peripheral inflammation and the inhibition of inflammation induced by Tai Chi were observed. The results in the present study could be conducive to comprehensively understanding the molecular mechanism involved in the effect of Tai Chi on peripheral inflammation in PD patients and providing novel targets for future advanced research.
Collapse
Affiliation(s)
- Guang Yang
- Physical Education Department, Shanghai Jiao Tong University, Shanghai 200042, China
| | - Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huixin Yang
- Institute of Nation Traditional Sports, Harbin Sport University, Harbin 150006, China
| | - Fan Wang
- Institute of Nation Traditional Sports, Harbin Sport University, Harbin 150006, China
| | - Linwei Chen
- Institute of Nation Traditional Sports, Harbin Sport University, Harbin 150006, China
| | - Junze Tang
- Institute of Nation Traditional Sports, Harbin Sport University, Harbin 150006, China
| | - Guoyuan Huang
- Pott College of Science, Engineering and Education, University of Southern Indiana, Indiana, IN 47712, USA
- Correspondence: (G.H.); (Y.Z.)
| | - Ying Zhao
- Physical Education Department, Shanghai Jiao Tong University, Shanghai 200042, China
- Correspondence: (G.H.); (Y.Z.)
| |
Collapse
|
3
|
Liu Q, Sun Y, Chen D, Chen K, Huang B, Chen Z. Inhibitory effect of roflumilast on experimental periodontitis. J Periodontol 2022; 93:423-434. [PMID: 34124777 DOI: 10.1002/jper.20-0858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 05/23/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Phosphodiesterase-4 (PDE4) has been identified as a valid therapeutic target in several inflammatory diseases. In this study, we assessed PDE4 in gingival tissue from patients with chronic periodontitis and evaluated the therapeutic effects of the PDE4 inhibitor, roflumilast, in an experimental rat model of periodontitis. METHODS Gingival tissue specimens from 20 healthy subjects and 20 patients with periodontitis were collected, and the mRNA expression levels of PDE4, interleukin (IL)-1β, and IL-6 were assessed. Ninety rats were divided randomly into three groups (30 per group): non-ligature group, ligature-induced periodontitis group (L), and ligature-induced periodontitis with roflumilast administered group (5 mg/kg/d) (L+R). Rats were euthanized on days 3, 8, and 14. Alveolar bone resorption was analyzed using microcomputed tomography. Inflammation and osteoclast number were analyzed histologically. Finally, the mRNA expression levels of PDE-4, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and nuclear factor kappa B (NF-κB) were assessed in the rat gingival tissue. RESULTS The mRNA expression levels of PDE4, IL-1β, and IL-6 in the gingiva were significantly higher in patients with periodontitis compared with healthy individuals (P <0.05). Alveolar bone loss, degree of inflammation, number of TRAP-positive multinucleated osteoclasts, and mRNA expression levels of IL-1β, IL-6, TNF-α, NF-κB, and PDE4 in the L+R group were significantly lower than those in the L group (P <0.05). CONCLUSIONS PDE4 expression was increased in the gingiva of patients with periodontitis. Roflumilast may decrease alveolar bone loss and the expression of inflammatory cytokines in rats with ligature-induced periodontitis.
Collapse
Affiliation(s)
- Qifan Liu
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yue Sun
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Danying Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Kaidi Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Baoxin Huang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Zhu C, Hui L, Zheng K, Liu L, Liu J, Lv W. Silencing of RGS2 enhances hippocampal neuron regeneration and rescues depression-like behavioral impairments through activation of cAMP pathway. Brain Res 2020; 1746:147018. [PMID: 32679115 DOI: 10.1016/j.brainres.2020.147018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Abstract
Depression is one of the most common mental disorders with an increasing incidence. However, factors involved in depression are so complex, thus it is difficult to find effective strategies to reverse the impairments. This study aims to verify the role of regulator of G protein signaling 2 (RGS2) in the mouse mode of unpredictable mild stress-induced depression-like behaviors. Knockdown of RGS2 was achieved by transfection of siRNA-RGS2 in mouse hippocampal (HT-22) cells in vitro and injection of recombinant adenovirus expressing siRNA-RGS2 in mice in vivo. An aberrant high expression of RGS2 was found in mice with depression-like behaviors through immunohistochemical analysis. Silencing of RGS2 or Forskolin (activator of cAMP pathway) developed sweet water consumption, reduced inflammation and oxidative stress injury, and attenuated cognitive impairment and neuronal damage in mice with depression-like behaviors. Furthermore, regeneration was enhanced and apoptosis was repressed in mouse hippocampal neurons in the presence of RGS2 knockdown and Forskolin. Mechanistic studies indicated that silencing of RGS2 promoted the activation of cAMP pathway, thus rescuing depression-like behaviors of mice. Collectively, our study uncovered the role of RGS2-dependent cAMP pathway in regulation of cognitive impairment and hippocampal neuron regeneration in depression-like behaviors of mice, which may be a potential therapeutic target for impairments and symptoms associated with depression.
Collapse
Affiliation(s)
- Cheng Zhu
- Department Clinical Psychology, The Affiliated Kangning Hospital to Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Li Hui
- Institute of Mental Health, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Soochow University, Suzhou, 215137, PR China
| | - Ke Zheng
- Department of Psychiatry, The Affiliated Kangning Hospital to Wenzhou Medical University, Wenzhou 325000, PR China
| | - Linjing Liu
- Department Clinical Psychology, The Affiliated Kangning Hospital to Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jiahong Liu
- Department Clinical Psychology, The Affiliated Kangning Hospital to Wenzhou Medical University, Wenzhou 325000, PR China
| | - Wei Lv
- Department of Psychiatry, The Affiliated Kangning Hospital to Wenzhou Medical University, Wenzhou 325000, PR China
| |
Collapse
|
5
|
Yao H, Wu C, Chen Y, Guo L, Chen W, Pan Y, Fu X, Wang G, Ding Y. Spectrum of gene mutations identified by targeted next-generation sequencing in Chinese leukemia patients. Mol Genet Genomic Med 2020; 8:e1369. [PMID: 32638549 PMCID: PMC7507579 DOI: 10.1002/mgg3.1369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite targeted sequencing have identified several mutations for leukemia, there is still a limit of mutation screening for Chinese leukemia. Here, we used targeted next-generation sequencing for testing the mutation patterns of Chinese leukemia patients. METHODS We performed targeted sequencing of 504 tumor-related genes in 109 leukemia samples to identify single-nucleotide variants (SNVs) and insertions and deletions (INDELs). Pathogenic variants were assessed based on the American College of Medical Genetics and Genomics (ACMG) guidelines. The functional impact of pathogenic genes was explored through gene ontology (GO), pathway analysis, and protein-protein interaction network in silico. RESULTS We identified a total of 4,655 SNVs and 614 INDELs in 419 genes, in which PDE4DIP, NOTCH2, FANCA, BCR, and ROS1 emerged as the highly mutated genes. Of note, we were the first to demonstrate an association of PDE4DIP mutation and leukemia. Based on ACMG guidelines, 39 pathogenic and likely pathogenic mutations in 27 genes were found. GO annotation showed that the biological process including gland development, leukocyte differentiation, respiratory system development, myeloid leukocyte differentiation, mesenchymal to epithelial transition, and so on were involved. CONCLUSION Our study provided a map of gene mutations in Chinese patients with leukemia and gave insights into the molecular pathogenesis of leukemia.
Collapse
Affiliation(s)
- Hongxia Yao
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Congming Wu
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Yueqing Chen
- Hainan General Hospital, University of South China, Haikou, Hainan, China
| | - Li Guo
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Wenting Chen
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Yanping Pan
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Xiangjun Fu
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Guyun Wang
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| | - Yipeng Ding
- Department of General Practice, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, P.R. China
| |
Collapse
|
6
|
Yang Y, Ma S, Wei F, Liang G, Yang X, Huang Y, Wang J, Zou Y. Pivotal role of cAMP-PKA-CREB signaling pathway in manganese-induced neurotoxicity in PC12 cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:1052-1062. [PMID: 31161640 DOI: 10.1002/tox.22776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Manganese (Mn) plays a critical role in individual growth and development, yet excessive exposure can result in neurotoxicity, especially cognitive impairment. Neuronal apoptosis is considered as one of the mechanisms of Mn-induced neurotoxicity. Recent evidence suggests that cAMP-PKA-CREB signaling regulates apoptosis and is associated with cognitive function. However, whether this pathway participates in Mn-induced neurotoxicity is not completely understood. To fill this gap, in vitro cultures of PC12 cells were exposed to 0, 400, 500, and 600 μmol/L Mn for 24 hours, respectively. Another group of cells were pretreated with 10.0 μmol/L rolipram (a phosphodiesterase-4 [PDE4] inhibitor) for 1 hour followed by 500 μmol/L Mn exposure for 24 hours. Flow cytometry, immunofluorescence staining, enzyme-linked immunosorbent assay, and Western blot analysis were used to detect the apoptosis rate, protein levels of PDE4, cAMP signaling, and apoptosis-associated proteins, respectively. We found that Mn exposure significantly inhibited cAMP signaling and protein expression of Bcl-2, while increasing apoptosis rate, protein levels of PDE4, Bax, activated caspase-3, and activated caspase-8 in PC12 cells. Pretreatment of rolipram ameliorated Mn-induced deficits in cAMP signaling and apoptosis. These findings demonstrate that cAMP-PKA-CREB signaling pathway-induced apoptosis is involved in Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Yiping Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shuyan Ma
- Department of Toxicology, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, China
| | - Fu Wei
- Center for Reproductive Medicine and Genetics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guiqiang Liang
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yuman Huang
- Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Jian Wang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Xu F, Ji Q, Zhang J, Huang W, Cao Z, Li Y. AlCl 3 inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production through suppressing NF-κB signaling pathway in murine peritoneal macrophages. CHEMOSPHERE 2018; 209:972-980. [PMID: 30114748 DOI: 10.1016/j.chemosphere.2018.06.171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/08/2018] [Accepted: 06/27/2018] [Indexed: 05/14/2023]
Abstract
Aluminum (Al), a common environmental pollutant, has been reported to inhibit the immune functions of macrophage. However, the mechanisms involved remain unclear. In this study, murine peritoneal macrophages were exposed to 0, 0.27, 0.54, and 1.08 mg/mL of aluminium chloride (AlCl3) for 24 h, and then treated with 1 μg/mL lipopolysaccharide (LPS) for another 6 h. No addition of both AlCl3 and LPS serviced as control group. We observed that AlCl3 has cytotoxicity in murine peritoneal macrophages, showing a decrease in cell viability and an increase in lactate dehydrogenase release. Besides, AlCl3 exposure restrained the LPS-induced NLR pyrin domain containing 3 (NLRP3) inflammasome activation presented as NLRP3 expressions reduction, caspase-1 cleavage inhibition and interleukin 1 beta (IL-1β) maturation lessened. Meanwhile, AlCl3 exposure decreased LPS-induced IKKβ activity, IκBα phosphorylation, the phosphorylation and mRNA expression of NF-κB p65, as well the genes expression and concentration in medium supernatant of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). The results suggested that AlCl3 inhibited the activation of NF-κB signaling pathway induced by LPS, which maybe one of the upstream signals involved in the inhibition of NLRP3 inflammasome activation by AlCl3. This research can provide theoretical basis for understanding the immune toxicity of Al, and deepening the cognition of Al exposure hazards to immune response.
Collapse
Affiliation(s)
- Feibo Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Ji
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Wanyue Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Temerozo JR, de Azevedo SSD, Insuela DBR, Vieira RC, Ferreira PLC, Carvalho VF, Bello G, Bou-Habib DC. The Neuropeptides Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase-Activating Polypeptide Control HIV-1 Infection in Macrophages Through Activation of Protein Kinases A and C. Front Immunol 2018; 9:1336. [PMID: 29951068 PMCID: PMC6008521 DOI: 10.3389/fimmu.2018.01336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are highly similar neuropeptides present in several tissues, endowed with immunoregulatory functions and other systemic effects. We previously reported that both neuropeptides reduce viral production in HIV-1-infected primary macrophages, with the participation of β-chemokines and IL-10, and now we describe molecular mechanisms engaged in this activity. Macrophages exposed to VIP or PACAP before HIV-1 infection showed resistance to viral replication, comparable to that observed when the cells were treated after infection. Also, multiple treatments with a suboptimal dose of VIP or PACAP after macrophage infection resulted in a decline of virus production similar to the inhibition promoted by a single exposure to the optimal inhibitory concentration. Cellular signaling pathways involving cAMP production and activation of protein kinases A and C were critical components of the VIP and PACAP anti-HIV-1 effects. Analysis of the transcription factors and the transcriptional/cell cycle regulators showed that VIP and PACAP induced cAMP response element-binding protein activation, inhibited NF-kB, and reduced Cyclin D1 levels in HIV-1-infected cells. Remarkably, VIP and PACAP promoted G-to-A mutations in the HIV-1 provirus, matching those derived from the activity of the APOBEC family of viral restriction factors, and reduced viral infectivity. In conclusion, our findings strengthen the antiretroviral potential of VIP and PACAP and point to new therapeutic approaches to control the progression of HIV-1 infection.
Collapse
Affiliation(s)
- Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Suwellen S D de Azevedo
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Daniella B R Insuela
- Laboratory of Inflammation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Rhaíssa C Vieira
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Pedro L C Ferreira
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Vinícius F Carvalho
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil.,Laboratory of Inflammation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Zhuang C, She Y, Zhang H, Song M, Han Y, Li Y, Zhu Y. Cytoprotective effect of deferiprone against aluminum chloride-induced oxidative stress and apoptosis in lymphocytes. Toxicol Lett 2018; 285:132-138. [PMID: 29309810 DOI: 10.1016/j.toxlet.2018.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
Abstract
Aluminum (Al) is a toxic metal, and excessive Al accumulation causes immunosuppression. Deferiprone (DFP) is a well-known chelator and used in dialysis patients for removing Al from tissues. The present study aimed to investigate whether DFP treatment can attenuate immunotoxicity induced by aluminum chloride (AlCl3) in cultured lymphocytes. Lymphocytes were treated with 0 and 0.6 mmol/L AlCl3∙6H2O (pH 7.2) and/or 1.8 mmol/L DFP, respectively. Immune function of lymphocytes was assessed by T and B lymphocytes proliferation rates, T lymphocyte subpopulations and IL-2, IL-6 and TNF-α contents. In addition, lymphocyte damage was assessed by LDH activity, NO and MDA contents, NOS, SOD and GSH-Px activities, lymphocyte apoptosis index. These results showed that AlCl3 exposure reduced T and B lymphocyte proliferation rates, CD3+ and CD4+ T lymphocyte subpopulations, CD4+/CD8+ ratio, IL-2, IL-6 and TNF-α contents, SOD and GSH-Px activities, early and later lymphocyte apoptosis indexes while enhanced CD8+ T lymphocyte subpopulation, NO and MDA contents, LDH activity. DFP treatment attenuated the immunotoxicity of lymphocytes and reduced oxidative stress and lymphocyte apoptosis induced by AlCl3, indicating that DFP could protect lymphocytes against immunosuppression induced by AlCl3 through attenuating oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Cuicui Zhuang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue She
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Han
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanzhu Zhu
- Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
10
|
Song N, Fang Y, Sun X, Jiang Q, Song C, Chen M, Ding J, Lu M, Hu G. Salmeterol, agonist of β2-aderenergic receptor, prevents systemic inflammation via inhibiting NLRP3 inflammasome. Biochem Pharmacol 2018; 150:245-255. [PMID: 29447945 DOI: 10.1016/j.bcp.2018.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
Abstract
β2-Aderenergic receptor (β2AR) agonist, Salmeterol exhibits anti-inflammatory activities. However, the inhibitory effects of Salmeterol on inflammasome activation are elusive and the underlying mechanisms need to be explored. In this study, we established inflammatory model in primary bone marrow-derived macrophages (BMDM) from C57BL/6J mice and β-arrestin2 knockout (β-arrestin2-/-) mice in vitro. In vivo study by LPS intraperitoneally (i.p.) in C57BL/6J mice was carried out to ascertain its roles in systemic inflammation. We found that Salmeterol (10-10 M-10-7 M) prevented the cleavage of caspase-1 and the activation of NLRP3 inflammasome, reduced the release of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in vitro. Blockade of adenosine3',5'cyclic monophosphate (cAMP)/protein kinase A (PKA) pathway with cAMP or PKA inhibitors inhibited anti-inflammatory effects of Salmeterol only at 10-7 M. Depletion of β-arrestin2 compromised the inhibitory effects of Salmeterol at both 10-10 M and 10-7 M. Salmeterol increased the interaction of β-arrestin2 and NLRP3. In vivo study showed that Salmeterol decreased the serum concentrations of pro-inflammatory cytokines IL-1β and TNF-α, blocked cleavage of caspase-1 and release of IL-1β in BMDM. These findings imply that Salmeterol at low concentrations (10-10 M-10-7 M) shows anti-inflammatory effect via inhibiting NLRP3 inflammasome. The underlying mechanisms is dosage-dependent: Salmeterol at 10-10 M shows anti-inflammatory effects through β-arrestin2 pathway, and 10-7 M Salmeterol inhibits inflammation via both classical G-protein coupled receptor (GPCR)/cAMP pathway and β-arrestin2 pathway. These results provide new ideas for the future treatment of systemic inflammation and other inflammatory diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu 211166, China
| | - Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu 211166, China
| | - Xiyang Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu 211166, China
| | - Qingling Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu 211166, China
| | - Chenghuan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu 211166, China
| | - Miaomiao Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu 211166, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu 211166, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu 211166, China; Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
11
|
Liu X, Zhang Y, Wang Z, Wang X, Zhu G, Han G, Chen G, Hou C, Wang T, Shen B, Li Y, Ma N, Xiao H, Wang R. Metabotropic glutamate receptor 3 is involved in B-cell-related tumor apoptosis. Int J Oncol 2016; 49:1469-78. [DOI: 10.3892/ijo.2016.3623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/11/2016] [Indexed: 11/05/2022] Open
|