1
|
Talebi SF, Seify M, Bhandari RK, Shoorei H, Oskuei SD. Fluoride-induced testicular and ovarian toxicity: evidence from animal studies. Biol Res 2025; 58:6. [PMID: 39863878 PMCID: PMC11762501 DOI: 10.1186/s40659-025-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury. In males, F exposure at different doses has been associated with reduced testis weight, reduced sperm quality in terms of count, motility, and viability, as well as abnormal sperm morphology and disruption of seminiferous tubules by altering hormone levels (especially testosterone), impairing spermatogenesis, and inducing oxidative stress and zinc deficiency. Similarly, administration of F can impact female reproductive health by affecting ovarian function, hormone levels, oocyte quality, and the regularity of the estrous cycle. However, the impact of F exposure on LH, FSH, and GnRH levels is controversial between males and females. In both males and females, F exerts its adverse effects by triggering apoptosis, autophagy, inflammation, mitochondrial dysfunction, reduction in ATP synthesis, and modulation of important genes involved in steroidogenesis. Furthermore, genetic susceptibility and individual variations in F metabolism may contribute to different responses to fluoride exposure.
Collapse
Affiliation(s)
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shahram Dabiri Oskuei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Sánchez-Gutiérrez M, Hernández-Martínez I, Madrigal-Santillán EO, Flores-Elizalde KF, Izquierdo-Vega JA. Effect of fluoride-induced testicular alteration in rats fed a high-fat diet. Environ Anal Health Toxicol 2024; 39:e2024023-0. [PMID: 39536703 PMCID: PMC11560296 DOI: 10.5620/eaht.2024023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/25/2024] [Indexed: 11/16/2024] Open
Abstract
Previous research on the well-known environmental pollutant fluoride has demonstrated that fluoride exposure can lead to oxidative stress-related male infertility. Obesity is another public health issue that has a detrimental impact on male fertility. Previously, findings on fluoride toxicity in high-fat diet (HFD) conditions associated with oxidative stress have been evidenced. This study aimed to evaluate the impact of subchronic fluoride exposure (5 mg/kg) plus a HFD on testicular alteration in Wistar rats. Animals were divided into four groups (control, HFD, fluoride, and fluoride 5 mg/kg plus HFD). The HFD contained a 50% kcal increase in fat (saturated fat), after 90 days of co-exposure to fluoride plus HFD, the animals showed a significant decrease in the adiposity index. The co-exposed group showed oxidative damage assessed through decreased glutathione (GSH) concentration (p < 0.0001), increased concentrations of malondialdehyde (MDA) (p < 0.0001), and the oxidation of proteins (p < 0.0001) vs the control group. Finally, testicular histology exhibited a reduction in spermatogonia and spermatocytes. The results of the study indicate that under these conditions, subchronic co-exposure to fluoride under HFD conditions could protect against the accumulation of epididymal fat, however, oxidative alteration at the testicular level is maintained.
Collapse
Affiliation(s)
- Manuel Sánchez-Gutiérrez
- Toxicology Laboratory, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepcion, Tilcuautla, 42160, Hidalgo, Mexico
| | - Itziar Hernández-Martínez
- Toxicology Laboratory, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepcion, Tilcuautla, 42160, Hidalgo, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Toxicology Laboratory, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepcion, Tilcuautla, 42160, Hidalgo, Mexico
| | - Kevin Francisco Flores-Elizalde
- Toxicology Laboratory, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepcion, Tilcuautla, 42160, Hidalgo, Mexico
| | - Jeannett Alejandra Izquierdo-Vega
- Toxicology Laboratory, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda de la Concepcion, Tilcuautla, 42160, Hidalgo, Mexico
| |
Collapse
|
3
|
Alyami NM, Alnakhli ZA, Alshiban NM, Maodaa S, Almuhaini GA, Almeer R, Alshora D, Ibrahim M. Oral administration of proniosomal glibenclamide formulation protects testicular tissue from hyperglycemia fluctuations and ROS via Nrf2/HO-1 pathway. Heliyon 2024; 10:e31283. [PMID: 38813164 PMCID: PMC11133806 DOI: 10.1016/j.heliyon.2024.e31283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Type 2 diabetes causes high blood sugar due to insulin malfunction and is linked to male infertility. Using proniosomes can enhance the effectiveness of Glibenclamide, a medication that stimulates insulin secretion. In our study, male rats with diabetes were treated with GLB with or without proniosomal for 14 days. Proniosomal formulations maintained glucose levels prevented weight loss and showed normal testicular tissue. GLB-proniosomal reduces ROS caused by T2DM through Nrf2, HO-1 pathway and increases CAT, SOD, and GSH production in response to insulin and glucose uptake. The reference and proniosomal treatments showed CAT and SOD significant enzymatic elevation compared to the positive and negative control. CAT significantly correlated with Gpx4 expression with P = 0.0169 and r = 0.98; similarly, the enzymatic activity of SOD also showed a positive correlation between the average glucose levels (r = 0.99 and P = 0.0037). Intestinally, GSH analysis revealed that only proniosomal-GLB samples are significantly elevated from the positive control, with a P value of 0.0210. The data showed proniosomal-GLB was more effective than pure GLB, confirmed by higher Nrf2 (2.050 folds), HO-1 (2.148 folds), and GPx4 (1.9 folds) transcript levels relative to the control with less sample diversity compared to the reference samples, indicating proniosomal stabilized GLB in the blood. Administering GLB and proniosomes formulation has effectively restored testicular function and sperm production in diabetic rats by regulating ROS levels and upregulating anti-ROS in response to glucose uptake. These findings may lead to better treatments for diabetic patients who have infertility issues.
Collapse
Affiliation(s)
- Nouf M. Alyami
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Zainab A. Alnakhli
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Noura M. Alshiban
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Saleh Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ghufran A. Almuhaini
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Doaa Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Zhang M, Li H, Guo M, Zhao F, Xie Y, Zhang Z, Lv J, Qiu L. Vitamin E alleviates pyraclostrobin-induced toxicity in zebrafish (Danio rerio) and its potential mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171219. [PMID: 38408665 DOI: 10.1016/j.scitotenv.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Strobilurin fungicides (SFs) are commonly used in agriculture worldwide and frequently detected in aquatic environments. High toxicity of SFs to aquatic organisms has caused great concerns. To explore whether vitamin E (VE) can relieve the toxicity caused by pyraclostrobin (PY), zebrafish were exposed to PY with or without VE supplementation. When co-exposure with VE (20 μM), the 96 h-LC50 values of PY to zebrafish embryos, adult, and the 24 h-LC50 value of PY to larvae increased from 43.94, 58.36 and 38.16 μg/L to 64.72, 108.62 and 72.78 μg/L, respectively, indicating that VE significantly decreased the toxicity of PY to zebrafish at different life stages. In addition, VE alleviated the deformity symptoms (pericardial edema and brain damage), reduced speed and movement distance, and decreased heart rate caused by 40 μg/L PY in zebrafish larvae. Co-exposure of PY with VE significantly reduced PY-caused larval oxidative stress and immunotoxicity via increasing the activities of superoxide dismutase, catalase and level of glutathione, as well as reducing the malondialdehyde production and the expression levels of Nrf2, Ucp2, IL-8, IFN and CXCL-C1C. Meanwhile, the expression levels of gria4a and cacng4b genes, which were inhibited by PY, were significantly up-regulated after co-exposure of PY with VE. Moreover, co-exposure with VE significantly reversed the increased mitochondrial DNA copies and reduced ATP content caused by PY in larvae, but had no effect on the expression of cox4i1l and activity of complex III that reduced by PY, suggesting VE can partially improve PY-induced mitochondrial dysfunction. In conclusion, the potential mechanisms of VE alleviating PY-induced toxicity may be ascribed to decreasing the oxidative stress level, restoring the functions of heart and nervous system, and improving the immunity and mitochondrial function in zebrafish.
Collapse
Affiliation(s)
- Mengna Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Mengyu Guo
- College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Zhao
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yao Xie
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhongyu Zhang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jingshu Lv
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Li X, Yang J, Shi E, Lu Y, Song X, Luo H, Wang J, Liang C, Zhang J. Riboflavin alleviates fluoride-induced ferroptosis by IL-17A-independent system Xc -/GPX4 pathway and iron metabolism in testicular Leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123332. [PMID: 38199481 DOI: 10.1016/j.envpol.2024.123332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Fluoride is widely found in groundwater, soil, animal and plant organisms. Excessive fluoride exposure can cause reproductive dysfunction by activating IL-17A signaling pathway. However, the adverse effects of fluoride on male reproductive system and the mechanisms remain elusive. In this study, the wild type and IL-17A knockout C57BL/6J mouse were treated with 24 mg/kg·bw·d sodium fluoride and/or 5 mg/kg·bw·d riboflavin-5'-phosphate sodium for 91 days. Results showed that fluoride caused dental fluorosis, increased the levels of ROS in testicular Leydig cells and GSSG in testicular tissue, and did not affect the iron and serum hepcidin levels in testicular tissue. Riboflavin alleviated above adverse changes, whereas IL-17A does not participate in the oxidative stress-mediated reproductive toxicity of fluoride. Based on this, TM3 cells were used to verify the injury of fluoride on Leydig cells. Results showed that fluoride increased mRNA levels of ferroptosis marker SLC3A2, VDAC3, TFRC, and SLC40A1 and decreased Nrf2 mRNA levels in TM3 cells. The ferroptosis inhibitor Lip-1 and DFO were used to further investigate the relationship between male reproductive toxicity and ferroptosis induced by fluoride. We found that the fluoride-induced decrease in cell viability, increase in xCT, TFRC, and FTH protein expression, and decrease in GPX4 protein expression, can all be rescued by Lip-1 and DFO. Similar results were also observed in the riboflavin treatment group. Moreover, riboflavin mitigated fluoride-induced increases in ROS levels and SLC3A2 protein levels. In all, our work revealed that riboflavin inhibited ferroptosis in testicular Leydig cells and improved the declined male reproductive function caused by fluoride. This study provides new perspectives for revealing new male reproductive toxicity mechanisms and mitigating fluoride toxicity damage.
Collapse
Affiliation(s)
- Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Erbao Shi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Yiguang Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Xiaochao Song
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, 030800, PR China.
| |
Collapse
|
6
|
Yao T, Weng X, Liang W, Li W, Wu W, Li F. Differences of the anti-oxidative capability, GPX3, and Cu/ZnSOD expression in Hu sheep testis with different size at six-month-old. Anim Biotechnol 2023; 34:3555-3563. [PMID: 36794388 DOI: 10.1080/10495398.2023.2176317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
This study aimed to investigate the differences in the anti-oxidant capabilities and related gene expressions of six-month-old Hu sheep with different testis sizes. A total of 201 Hu ram lambs were fed up to 6 months in the same environment. Based on their testis weight and sperm count, 18 individuals were selected and divided into large (n = 9) and small (n = 9) groups, with an average testis weight of 158.67 g ± 5.21 g and 44.58 g ± 4.14 g, respectively. The total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) concentration in testis tissue were tested. The localization of antioxidant-related genes, GPX3 and Cu/ZnSOD in testis were detected by immunohistochemistry. The GPX3, Cu/ZnSOD expression, and relative mitochondrial DNA (mtDNA) copy number were detected by quantitative real-time PCR. Compared with the small group, the T-AOC (2.69 ± 0.47 vs. 1.16 ± 0.22 U/mgprot) and T-SOD (22.35 ± 2.59 vs. 9.92 ± 1.62 U/mgprot) in the large group were significantly higher, whereas the MDA (0.72 ± 0.13 vs. 1.34 ± 0.17 nM/mgprot) and relative mtDNA copy number in the large group was significantly lower (p < .05). Immunohistochemistry results indicated that the GPX3 and Cu/ZnSOD were expressed in Leydig cells and seminiferous tubule. The expressions of GPX3 and Cu/ZnSOD mRNA in the large group were significantly higher than those in the small group (p < .05). In conclusion, Cu/ZnSOD and GPX3 widely expressed in the Leydig cells and seminiferous tubule, high expression of Cu/ZnSOD and GPX3 in a large group has a higher potential in addressing oxidative stress and contribute to spermatogenesis.
Collapse
Affiliation(s)
- Ting Yao
- Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture and Rural Affairs Engineering Research Center of Grassland Industry Ministry of Education, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiuxiu Weng
- Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture and Rural Affairs Engineering Research Center of Grassland Industry Ministry of Education, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
| | - Weili Liang
- Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture and Rural Affairs Engineering Research Center of Grassland Industry Ministry of Education, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
| | - Wanhong Li
- Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture and Rural Affairs Engineering Research Center of Grassland Industry Ministry of Education, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
| | - Weiwei Wu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep & Cashmere Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, People's Republic of China
| | - Fadi Li
- Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture and Rural Affairs Engineering Research Center of Grassland Industry Ministry of Education, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
- Gansu Runmu Biological Engineering Co., Ltd, Yongchang, People's Republic of China
| |
Collapse
|
7
|
Muthu Prabhu S, Yusuf M, Ahn Y, Park HB, Choi J, Amin MA, Yadav KK, Jeon BH. Fluoride occurrence in environment, regulations, and remediation methods for soil: A comprehensive review. CHEMOSPHERE 2023; 324:138334. [PMID: 36893864 DOI: 10.1016/j.chemosphere.2023.138334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Fluoride, a naturally occurring chemical element, is largely insoluble in soils. More than 90% of the fluoride in soil is bound to soil particles and is unable to be dissolved. As part of the soil, fluoride is predominantly located in the colloid or clay fraction of the soil, and the movement of fluoride is strongly affected by the sorption capacity of the soil, which is affected by pH, the type of soil sorbent present, and the salinity. The Canadian Council of Ministers of the Environment soil quality guideline for fluoride in soils under a residential/parkland land use scenario is 400 mg/kg. In this review, we focus on fluoride contamination in soil and subsurface environments, and the various sources of fluorides are discussed in detail. The average fluoride concentration in soil in different countries and their regulations for soil and water are comprehensively reviewed. In this article, the latest advances in defluoridation methods are highlighted and the importance of further research addressing efficient and cost-effective methods to remediate fluoride contamination in soil is critically discussed. Methods used to mitigate fluoride risks by removing fluoride from the soil are presented. We strongly recommend that regulators and soil chemists in all countries explore opportunities to improve defluoridation methods and consider adopting more stringent regulations for fluoride in soil depending on geologic conditions.
Collapse
Affiliation(s)
- Subbaiah Muthu Prabhu
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Chemistry, School of Advanced Sciences, VIT-AP University, Vijayawada, 522 237, Andhra Pradesh, India
| | - Mohammed Yusuf
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yongtae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jaeyoung Choi
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Tatibad, Bhopal, 462044, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Wu P, Yang K, Sun Z, Zhao Y, Manthari RK, Wang J, Cao J. Interleukin-17A knockout or self-recovery alleviated autoimmune reaction induced by fluoride in mouse testis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163616. [PMID: 37086998 DOI: 10.1016/j.scitotenv.2023.163616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Fluoride (F) is usually treated as a hazardous material, and F-caused public health problem has attracted global attention. Previous studies demonstrate that interleukin-17A (IL-17A) plays a crucial role in F-elicited autoimmune orchitis and self-recovery reverses F-induced testicular toxicity to some extent, but these basic mechanisms remain unclear. Thus, we established a 180 d F exposure model of wild type (WT) mice and IL-17A knockout mice (C57BL/6 J background), and 60 d & 120 d self-recovery model based on F exposure model of WT mice, and used various techniques like qRT-PCR, western blot, immunohistochemistry and ELISA to further explore the mechanism of F-induced autoimmune reaction, the role of IL-17A in it and the reversibility of F-caused toxicity in testis. The results indicated that F exposure for 180 d caused the decreased sperm quality, the damaged testis histopathology, the enhanced mRNA and protein expression levels of inflammatory cytokines, the changes of autoantibody such as the appearance and increased content of anti-testicular autoantibodies in sera and the autoantibody deposition in testis, the alterations of autoimmune related genes containing the decreased mRNA and protein expressions of AIRE and FOXP3 with an increase of MHCII, and the reduced protein expressions of CTLA4, and the activation of IL-17A signaling cascade like the elevated mRNA and protein expressions of IL-17A, Act1, NF-κB, AP-1 and CEBPβ, and the increased protein expressions of IL-17RC, with a decrease of IκBα. After IL-17A knockout, 29 of 35 F-induced changes were alleviated. In two self-recovery models, all F-caused differences except fluorine concentration in femur were gradually restored in a time-dependent manner. This study concluded that IL-17A knockout or self-recovery attenuated F-induced testicular injury and decrease of sperm quality through alleviating autoimmune reaction which was involved with the activation of IL-17A pathway, the damage of self-tolerance and the enhancement of antigen presentation.
Collapse
Affiliation(s)
- Panhong Wu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Kaidong Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Department of Biotechnology, GITAM Institute of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
9
|
Radovanović J, Antonijević B, Ćurčić M, Baralić K, Kolarević S, Bulat Z, Đukić-Ćosić D, Buha Djordjević A, Vuković-Gačić B, Javorac D, Antonijević Miljaković E, Carević M, Mandinić Z. Fluoride subacute testicular toxicity in Wistar rats: Benchmark dose analysis for the redox parameters, essential elements and DNA damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120321. [PMID: 36191801 DOI: 10.1016/j.envpol.2022.120321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Excessive fluoride (F-) levels in the environment could induce different pathological changes, including comorbidities in reproductive functions. Hence, the aim of the present in vivo study was to explore F- subacute toxicity mechanisms via Benchmark dose (BMD) methodology on rat's testicles. The experiment was conducted on thirty male Wistar rats for 28 days, divided into six groups (n = 5): 1) Control (tap water); 2) 10 mg/L F-; 3) 25 mg/L F-; 4) 50 mg/L F-; 5) 100 mg/L F-; 6) 150 mg/L F-. Testicles were dissected out and processed for the determination of F- tissue concentrations, redox status parameters, essential elements level, and DNA damage. PROASTweb 70.1 software was used for determination of external and internal dose-response relationship. The results confirmed a significant increase in superoxide anion (O2.-), total oxidative status (TOS), copper (Cu), zinc (Zn), iron (Fe), DNA damage levels, and decrease in superoxide dismutase activity (SOD1) and total thiol (SH) groups. The dose-dependent changes were confirmed for SOD1 activity and DNA damage. The most sensitive parameters were SOD1 activity and DNA damage with the lowest BMDLs 0.1 μg F-/kg b. w. Since human and animal populations are daily and frequently unconsciously exposed to F-, this dose-response study is valuable for further research regarding the F- health risk assessment.
Collapse
Affiliation(s)
- Jelena Radovanović
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia; Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Stoimir Kolarević
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department for Hydroecology and Water Protection, University of Belgrade, 11000, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Branka Vuković-Gačić
- Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, University of Belgrade, 11000, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Momir Carević
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Zoran Mandinić
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
10
|
Chen L, Gu T, Wu T, Ding L, Ge Q, Zhang Y, Ma S. Proteotranscriptomic Integration analyses reveals new mechanistic insights regarding Bombyx mori fluorosis. Food Chem Toxicol 2022; 169:113414. [PMID: 36174832 DOI: 10.1016/j.fct.2022.113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
The commercial value of silkworms has been widely explored and the effects of fluoride exposure on silkworms' breeding and silk production cannot be ignored. Bombyx mori is a commonly used model to explore the mechanisms of fluorosis. In the present study, we analyzed the differences in physiological and biochemical indicators after exposing larva to NaF, then evaluated differential genes and proteins. Compared to control, larvae exposed to 600 mg L-1 NaF presented decreased bodyweight, damaged midgut tissue, and were accompanied by oxidative stress. The RNA-seq showed 1493 differentially expressed genes (574 upregulated and 919 downregulated). Meanwhile, the TMT detected 189 differentially expressed proteins (133 upregulated and 56 downregulated). The integrative analysis led to 4 upregulated and 9 downregulated genes and proteins. Finally, we hypothesized that fluoride exposure might affect the intestinal digestion of silkworms, inhibit the gene expression of detoxification enzymes and stimulate cellular immune responses. Our current findings provided new insights into insect fluorosis.
Collapse
Affiliation(s)
- Liang Chen
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China.
| | - Tongyu Gu
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Tong Wu
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Lei Ding
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Qi Ge
- School of the Environment and Safety Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Yao Zhang
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, 212013, Zhenjiang, China
| |
Collapse
|
11
|
Wu S, Wang Y, Iqbal M, Mehmood K, Li Y, Tang Z, Zhang H. Challenges of fluoride pollution in environment: Mechanisms and pathological significance of toxicity - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119241. [PMID: 35378201 DOI: 10.1016/j.envpol.2022.119241] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Fluoride is an important trace element in the living body. A suitable amount of fluoride has a beneficial effect on the body, but disproportionate fluoride entering the body will affect various organs and systems, especially the liver, kidneys, nervous system, endocrine system, reproductive system, bone, and intestinal system. In recent years, with the rapid development of agriculture and industry, fluoride pollution has become one of the important factors of environmental pollution, and fluoride pollution in any form is becoming a serious problem. Although countries around the world have made great breakthroughs in controlling fluoride pollution, however fluorosis still exists. A large amount of fluoride accumulated in animals will not only produce the toxic effects, but it also causes cell damage and affect the normal physiological activities of the body. There is no systematic description of the damage mechanism of fluoride. Therefore, the study on the toxicity mechanism of fluoride is still in progress. This review summarizes the existing information of several molecular mechanisms of the fluoride toxicity comprehensively, aiming to clarify the toxic mechanism of fluoride on various body systems. We have also summerized the pathological changes of those organ systems after fluoride poisoning in order to provide some ideas and solutions to the reader for the prevention and control of modern fluoride pollution.
Collapse
Affiliation(s)
- Shouyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Pal P, De A, Roychowdhury T, Mukhopadhyay PK. Vitamin C and E supplementation can ameliorate NaF mediated testicular and spermatozoal DNA damages in adult Wistar rats. Biomarkers 2022; 27:361-374. [PMID: 35232301 DOI: 10.1080/1354750x.2022.2048891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Present study was designed to explore the efficacy of vitamin C and E (VC&VE) against fluoride mediated testicular, epididymal and spermatozoal anomalies. MATERIALS AND METHODS Thirty two adult Wistar rats were divided into four groups. Group-I was control; Group-II received sodium fluoride (NaF) at 15 mg/kg/day dose; Group-III was provided with VC (200 mg/kg/day) and VE (400 mg/kg/day) plus NaF; Group-IV received only VC&VE. Structural integrity and oxidative stress markers (superoxide dismutase, catalase, malondialdehyde and protein carbonyl) of testis and epididymis were assessed. Spermatozoal parameters (count, motility, viability and hypo-osmotic swelling) were evaluated. Testicular functional maker enzymes (acid phosphatase, alkaline phosphatase and lactate dehydrogenase) were also assessed. Integrity of testicular and spermatozoal DNA were evaluated. Testicular fluoride content was measured. RESULT Fluoride induced structural changes and alterations of oxidative stress markers were observed in testis and epididymis. Spermatozoal potentials were altered and reduced activities of testicular functional marker enzymes were observed. Fluoride caused testicular and spermatozoal DNA damages. VC&VE supplementation resulted in protectionfrom all fluoride mediated alterations and helped in attenuating testicular fluoride accumulation. CONCLUSION Antioxidant properties of VC&VE ameliorated fluoride mediated reproductive damages but only supplementation did not exhibit any notable effect compared to control rats.
Collapse
Affiliation(s)
- Priyankar Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | | | | |
Collapse
|
13
|
Angwa LM, Jiang Y, Pei J, Sun D. Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review. Biol Trace Elem Res 2022; 200:1418-1441. [PMID: 34003450 DOI: 10.1007/s12011-021-02729-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Fluorosis is a major public health problem globally. The non-availability of specific treatment and the irreversible nature of dental and skeletal lesions poses a challenge in the management of fluorosis. Oxidative stress is known to be one of the most important mechanisms of fluoride toxicity. Fluoride promotes the accumulation of reactive oxygen species by inhibiting the activity of antioxidant enzymes, resulting in the excessive production of reactive oxygen species at the cellular level which further leads to activation of cell death processes such as apoptosis. Phytochemicals that act as antioxidants have the potential to protect cells from oxidative stress. Evidence confirms that clinical symptoms of fluorosis can be mitigated to some extent or prevented by long-term intake of antioxidants and plant products. The primary purpose of this review is to examine recent findings that focus on the amelioration of fluoride-induced oxidative stress and apoptosis by natural and synthetic phytochemicals and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Linet M Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- Department of Clinical Medicine, Kabarak University, Nakuru, 20157, Kenya
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Junrui Pei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
14
|
Grzegorzewska AK, Ocłoń E, Kucharski M, Sechman A. Effect of in vitro sodium fluoride treatment on CAT, SOD and Nrf mRNA expression and immunolocalisation in chicken (Gallus domesticus) embryonic gonads. Theriogenology 2020; 157:263-275. [PMID: 32823022 DOI: 10.1016/j.theriogenology.2020.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/28/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
In this study, we examined the effect of sodium fluoride (NaF) on oxidative stress in chicken embryonic gonads. Following exposure to varying concentrations of NaF for 6 h, mRNA expression and immunolocalisation of catalase (CAT), sodium dismutase (SOD1 and SOD2) and nuclear respiratory factors (Nrf1 and Nrf) were analysed in the gonads. In the ovary, a dose-dependent increase in mRNA expression of CAT, Nrf1 and Nrf2 following NaF exposure was found, while the intensity of immunolocalised CAT, SOD2 and Nrf1 was higher in NaF-treated groups. In the testis, no effect of NaF on CAT, SOD1 and Nrf1 mRNA levels was observed; however, NaF (3.5-14.2 mM) elevated Nrf2 mRNA expression. NaF, at a dose of 7.1 mM, increased the immunoreactivity of Nrf1 and SOD2. Further experiments evaluated the ovary and testes when incubated with NaF (7.1 mM), vitamin C (Vitamin C, 4 mM) or NaF + Vitamin C. mRNA expression of all four examined genes in the whole ovary and immunoreactivity of Nrf1 and CAT in the ovarian medulla increased in each experimental group. Similar effects were observed in the testis, where mRNA expression, as well as CAT and Nrf2 immunoreactivity, increased in Vitamin C and NaF + Vitamin C-treated groups. In summary, NaF exposure generated oxidative stress which is manifested by increased expression of free radical scavenging enzymes in chicken embryonic gonads. High doses of Vitamin C did not reverse this effect.
Collapse
Affiliation(s)
- A K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - E Ocłoń
- Center for Experimental and Innovative Medicine, Laboratory of Recombinant Proteins Production, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - M Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - A Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
15
|
Kumar J, Haldar C, Verma R. Fluoride Compromises Testicular Redox Sensor, Gap Junction Protein, and Metabolic Status: Amelioration by Melatonin. Biol Trace Elem Res 2020; 196:552-564. [PMID: 31828722 DOI: 10.1007/s12011-019-01946-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022]
Abstract
The excess fluoride intake has been shown to adversely affect male reproductive health. The aim of the present study was to investigate the key mechanism underlying fluoride-induced testicular dysfunction and the role of melatonin as a modulator of testicular metabolic, oxidative, and inflammatory load. The present results indicated that sodium fluoride (NaF) exposure to adult male golden hamsters severely impairs reproductive physiology as evident from markedly reduced sperm count/viability, testosterone level, androgen receptor (AR), testicular glucose transporter (GLUT-1), gap junction (connexin-43), and survival (Bcl-2) protein expression. NaF exposure markedly increased testicular oxidative load, inflammatory (NF-kB/COX-2), and apoptotic (caspase-3) protein expression. However, melatonin treatment remarkably restored testicular function as evident by normal histoarchitecture, increased sperm count/viability, enhanced antioxidant enzyme activities (SOD and Catalase), and decreased lipid peroxidation (LPO) level. In addition, melatonin treatment upregulated testicular Nrf-2/HO-I, SIRT-1/ FOXO-1, and downregulated NF-kB/COX-2 expression. Further, melatonin ameliorated NaF-induced testicular metabolic stress by modulating testicular GLUT-1expression, glucose level, and LDH activity. Furthermore, melatonin treatment enhanced testicular PCNA, Bcl-2, connexin-43, and reduced caspase-3 expression. In conclusion, we propose the molecular mechanism of fluoride-induced testicular damages and ameliorative action(s) of melatonin.
Collapse
Affiliation(s)
- Jitendra Kumar
- Department of Zoology, Pineal Research Laboratory, Reproduction Biology Unit, Institute of Science, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Chandana Haldar
- Department of Zoology, Pineal Research Laboratory, Reproduction Biology Unit, Institute of Science, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Rakesh Verma
- Department of Zoology, Pineal Research Laboratory, Reproduction Biology Unit, Institute of Science, Banaras Hindu University, Varanasi, U.P., 221005, India.
| |
Collapse
|
16
|
Exposure of Fluoride with Streptozotocin-Induced Diabetes Aggravates Testicular Damage and Spermatozoa Parameters in Mice. J Toxicol 2019; 2019:5269380. [PMID: 31885555 PMCID: PMC6915027 DOI: 10.1155/2019/5269380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is the most common chronic disease worldwide that causes numerous complications, including male infertility. The prevalence of DM is 451 million people and estimated that would increase to 693 million in 2045. Fluorosis caused by drinking water contaminated with inorganic fluoride is a public health problem in many areas around the world. Previous studies have shown that fluoride exposure damages the male reproductive function. This study aimed to evaluate the fluoride sub-chronic exposure on the spermatozoa function in streptozotocin (STZ)-induced diabetic mice. After confirming diabetes by measuring blood glucose levels, the male mice received 45.2 ppm of fluoride added or deionized water. We evaluated several parameters in diabetic mice exposed to fluoride: standard quality analysis, the mitochondrial transmembrane potential (ψm), the caspase activity in spermatozoa, urinary fluoride excretion, and histological evaluation in the testes. After 60 days of fluoride-exposure, diabetic mice, significantly decreased sperm quality (motility, viability, and concentration). Spermatozoa from fluoride-exposure in diabetic mice presented a significant decrease in ψm and a significant increase in activity caspase 3/7. Urinary fluoride excretion was decreased in diabetic mice exposed to fluoride. Subchronic fluoride exposure of mice with STZ-induced diabetes aggravated testicular damage and the spermatozoa function.
Collapse
|