1
|
Wei T, Wang Q, Chen T, Zhou Z, Li S, Li Z, Zhang D. The possible association of mitochondrial fusion and fission in copper deficiency-induced oxidative damage and mitochondrial dysfunction of the heart. J Trace Elem Med Biol 2024; 85:127483. [PMID: 38878467 DOI: 10.1016/j.jtemb.2024.127483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION As an essential trace element, Copper (Cu) participates in numerous physiological and biological reactions in the body. Cu is closely related to heart health, and an imbalance of Cu will cause cardiac dysfunction. The research aims to examine how Cu deficiency affects the heart, assess mitochondrial function in the hearts, and disclose possible mechanisms of its influence. METHODS Weaned mice were fed Cu-deficient diets and intraperitoneally given copper sulfate (CuSO4) to correct the Cu deficiency. The pathological change of the heart was assessed using histological inspection. Cardiac function and oxidative stress levels were evaluated by biochemical assay kits. ELISA and ATP detection kits were used to detect the levels of complexes I-IV in the mitochondrial respiratory chain (MRC) and ATP, respectively. Real time PCR was utilized to determine mRNA expressions, and Western blotting was adopted to determine protein expressions, of molecules related to mitochondrial fission and fusion. RESULTS Cu deficiency gave rise to elevated heart index, cardiac histological alterations and oxidation injury, increased serum levels of creatine kinase (CK), lactic dehydrogenase (LDH), and creatine kinase isoenzyme MB (CK-MB) together with increased malondialdehyde (MDA) production, decreased the glutathione (GSH), Superoxide Dismutase (SOD), and Catalase (CAT) activities or contents. Besides, Cu deficiency caused mitochondrial damage characterized by decreased contents of complexes I-IV in the MRC and ATP in the heart. In the meantime, Cu deficiency also reduced protein and mRNA expressions of factors associated with mitochondrial fusion, including Mfn1 and Mfn2, while significantly increased factors Drip1 and Fis1 related to mitochondrial fission. However, adding CuSO4 improved the above changes significantly. CONCLUSION According to research results, Cu deficiency can cause heart damage in mice, along with oxidative damage and mitochondrial dysfunction, which are closely related to mitochondrial fusion and fission disorders.
Collapse
Affiliation(s)
- Tianlong Wei
- Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621010, PR China
| | - Qinxu Wang
- Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621010, PR China
| | - Tao Chen
- Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621010, PR China
| | - Zhiyuan Zhou
- Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621010, PR China
| | - Shuangfei Li
- Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621010, PR China
| | - Zhengfeng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Dayong Zhang
- Sichuan Mianyang 404 Hospital, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
2
|
Khan MZ, Huang B, Kou X, Chen Y, Liang H, Ullah Q, Khan IM, Khan A, Chai W, Wang C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front Immunol 2024; 14:1290044. [PMID: 38259482 PMCID: PMC10800369 DOI: 10.3389/fimmu.2023.1290044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | | | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Kazimierska K, Biel W. Comparative Analysis of Spray-Dried Porcine Plasma and Hydrolyzed Porcine Protein as Animal-Blood-Derived Protein Ingredients for Pet Nutrition. Molecules 2023; 28:7917. [PMID: 38067646 PMCID: PMC10707792 DOI: 10.3390/molecules28237917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Spray-dried porcine plasma (SDPP) and hydrolyzed porcine protein (HPP) are promising animal protein ingredients sourced from healthy animal blood that are rich in biomolecules, including immunoglobulins, and can be an appropriate and valuable animal protein ingredient to supply the growing need for ingredients that meet the natural needs of carnivorous pets. The aim of this preliminary study was to analyze the chemical composition and mineral profile of a novel HPP compared with results for SDPP. The basic composition analysis followed AOAC guidelines, and the elemental analysis utilized atomic absorption spectrometry. Statistical comparisons employed an independent Student's t-test (p < 0.05). Both SDPP and HPP are low in moisture (<4.3%) and rich in protein, with SDPP significantly exceeding HPP (75.4% vs. 71.4%). They boast mineral richness indicated by crude ash content (12.7% and 12.5%), featuring Na, K, P, and the trace elements Mo, Fe, and Zn. Notably, SDPP contains elevated molybdenum levels (51.39 mg/100 g vs. 10.93 mg/100 g in HPP), an essential element for diverse animal functions. Quantifying these elements in raw materials aids in achieving optimal nutrient levels in the final product. The study underscores SDPP as an excellent protein source, confirming that its nutritional value is similar to or better than other protein components in pet food.
Collapse
Affiliation(s)
- Katarzyna Kazimierska
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71270 Szczecin, Poland;
| | | |
Collapse
|
4
|
Postma GC, Degregorio O, Minatel L. Analysis of the value of copper erythrocyte concentration measurement in the diagnosis of copper deficiency in bovines. J Trace Elem Med Biol 2023; 79:127228. [PMID: 37315392 DOI: 10.1016/j.jtemb.2023.127228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND A reliable and practical method for assessing Cu status in live animals is not available. Blood Cu levels may not accurately reflect the true Cu status of the herd, and can over-predict Cu status during stress and inflammation. On the other hand, assessment of liver Cu is the most reliable indicator of Cu stores, but it is an invasive procedure that requires specialized training. The aim of this study was to evaluate the usefulness of Cu levels in red blood cells to determine the Cu status, with special emphasis in their correlation with erythrocyte Cu, Zn superoxide dismutase enzyme activity (ESOD), in bovines with Cu deficiency induced by high molybdenum and sulfur levels in the diet. METHODS Three similar assays were performed, with a total of twenty eight calves. The Cu-deficient group (n = 15) received a basal diet supplemented with 11 mg of Mo/kg DM as sodium molybdate, and S as sodium sulfate. The control group (n = 13) received a basal diet supplemented with 9 mg of Cu/kg DM as copper sulfate. Samples of blood and liver were taken every 28-35 days. Cu levels were measured in liver (expressed as µg/g DM), plasma (expressed as µg/dl), and erythrocytes (expressed as µg/g Hb) by flame atomic absorption spectroscopy. Superoxide dismutase (SOD1) activity was determined in red blood cells and was expressed as IU/mg hemoglobin. InfoStat Statistical Software 2020 was used for the statistical analysis. Cu levels in plasma, red blood cells and liver, and ESOD activity were analyzed by ANOVA. The correlation between erythrocyte Cu levels and the rest of the parameters were analyzed by Pearson Correlation test. Unweighted Least Squares Linear Regression of SOD1 was developed. The autocorrelation between the monthly measurements was also determined by Durbin-Watson test and autocorrelation function. RESULTS The assays lasted 314-341 days, approximately. Levels indicative of Cu deficiency for bovines were detected at 224 days (23 ± 11.6 µg/g DM) for liver Cu concentration; and at 198 days (55 ± 10.4 µg/dl) for plasma Cu concentration, in Cu-deficient animals. Liver and plasma Cu values indicative of Cu deficiency were not observed in the control group. Pearson Correlation test indicated that all indices of Cu status used in this study were significantly correlated. The highest value was obtained between ESOD and red blood Cu (0.74). There was a significant correlation between red blood Cu and plasma Cu (0.65), and with hepatic Cu (0.57). ESOD activity showed a similar significant positive correlation with liver Cu concentrations and with plasma Cu (0.59 and 0.58, respectively). CONCLUSION The extremely low levels of liver and plasma Cu, the ESOD activity, erythrocyte Cu levels, and the periocular achromotrichia observed in the Cu-deficient animals showed that the clinic phase of Cu deficiency was reached in this group. The ESOD activity and erythrocyte Cu levels showed a strong association, indicating that the values of erythrocyte Cu may serve as an effective tool in assessing Cu status and diagnose a long-term Cu deficiency in cattle.
Collapse
Affiliation(s)
- Gabriela Cintia Postma
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Patología, Av. San Martín 5285, C1417DSM Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Transdisciplinarios de Epidemiología (CETE), Universidad de Buenos Aires, Argentina.
| | - Osvaldo Degregorio
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Salud Pública, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Transdisciplinarios de Epidemiología (CETE), Universidad de Buenos Aires, Argentina
| | - Leonardo Minatel
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Patología, Av. San Martín 5285, C1417DSM Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Transdisciplinarios de Epidemiología (CETE), Universidad de Buenos Aires, Argentina
| |
Collapse
|
5
|
Cui SG, Zhang YL, Guo HW, Zhou BH, Tian EJ, Zhao J, Lin L, Wang HW. Molybdenum-Induced Apoptosis of Splenocytes and Thymocytes and Changes of Peripheral Blood in Sheep. Biol Trace Elem Res 2023:10.1007/s12011-022-03536-5. [PMID: 36595130 DOI: 10.1007/s12011-022-03536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
To investigate the effects of molybdenum (Mo) on apoptosis of lymphocytes and changes of peripheral blood in sheep, a total of 20 5-month-old healthy female sheep were randomly divided into five groups of 4 and orally administered with water containing Na2MoO4·2H2O (0, 5, 10, 20, and 50 mg/kg BW/day) for 28 days. Jugular vein blood was taken on the 0th, 7th, 14th, 21st, and 28th day of Mo treatment, respectively. On the 28th day, the spleen and thymus were removed for observing histopathology and apoptosis-related DNA damage by hematoxylin and eosin (HE) staining and TdT‑mediated dUTP Nick-End Labeling (TUNEL) staining, respectively. The blood routine indexes were determined by an automatic blood analyzer. Further, the apoptosis of lymphocytes and changes in mitochondrial membrane potential (MMP) of peripheral blood were analyzed by flow cytometry. Results showed that excessive Mo induced apoptosis-related DNA damage in the splenocytes and thymocytes and significantly increased the apoptosis indexes of the splenocytes and thymocytes (P < 0.01). Furthermore, the treatment with excessive Mo significantly decreased the MMP (P < 0.01) and promoted apoptosis in peripheral blood lymphocytes (P < 0.01). And the number of WBC, Lymph, Gran, and RBC and the indexes of HGB and HCT were also significantly decreased (P < 0.05 or P < 0.01), while RDW was significantly increased by excessive Mo (P < 0.05 or P < 0.01). In conclusion, excessive Mo-induced DNA damage and apoptosis of the lymphocytes changed the RBC-related indexes of the peripheral blood in sheep.
Collapse
Affiliation(s)
- Shu-Gang Cui
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China
| | - Yu-Ling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China
| | - Hong-Wei Guo
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Longzi Hubei Road 6, Zhengzhou, 450046, Henan, People's Republic of China
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China
| | - Er-Jie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China
| | - Jing Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China
| | - Lin Lin
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471023, Henan, People's Republic of China.
| |
Collapse
|
6
|
Ramli FF, Hashim SAS, Raman B, Mahmod M, Kamisah Y. Role of Trientine in Hypertrophic Cardiomyopathy: A Review of Mechanistic Aspects. Pharmaceuticals (Basel) 2022; 15:1145. [PMID: 36145368 PMCID: PMC9505553 DOI: 10.3390/ph15091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormality in myocardial copper homeostasis is believed to contribute to the development of cardiomyopathy. Trientine, a copper-chelating drug used in the management of patients with Wilson's disease, demonstrates beneficial effects in patients with hypertrophic cardiomyopathy. This review aims to present the updated development of the roles of trientine in hypertrophic cardiomyopathy. The drug has been demonstrated in animal studies to restore myocardial intracellular copper content. However, its mechanisms for improving the medical condition remain unclear. Thus, comprehending its mechanistic aspects in cardiomyopathy is crucial and could help to expedite future research.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Clinical Psychopharmacology Research Unit, Department of Psychiatry Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK
| | - Syed Alhafiz Syed Hashim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Zhou W, Young JL, Men H, Zhang H, Yu H, Lin Q, Xu H, Xu J, Tan Y, Zheng Y, Cai L. Sex differences in the effects of whole-life, low-dose cadmium exposure on postweaning high-fat diet-induced cardiac pathogeneses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152176. [PMID: 34875320 DOI: 10.1016/j.scitotenv.2021.152176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
We previously showed the development of cardiac remodeling (hypertrophy or fibrosis) in mice with either post-weaning high-fat diet (HFD, 60% kcal fat) feeding or exposure to chronic low-dose cadmium. Here, we determined whether whole-life exposure to environmentally relevant, low-dose cadmium affects the susceptibility of offspring to post-weaning HFD-induced cardiac pathologies and function. Besides, we also determined whether these effects are sex-dependent. Male and female mice were exposed to cadmium-containing (0, 0.5, or 5 parts per million [ppm]) drinking water before breeding; the pregnant mice and dams with offspring continually drank the same cadmium-containing water. After weaning, the offspring were continued on the same regime as their parents and fed either a HFD or normal fat diet for 24 weeks. Cardiac function was examined with echocardiography. Cardiac tissues were used for the histopathological and biochemical (gene and protein expression by real-time PCR and Western blotting) assays. Results showed a dose-dependent cadmium accumulation in the hearts of male and female mice along with decreased cardiac zinc and copper levels only in female offspring. Exposure to 5 ppm, but not 0.5 ppm, cadmium significantly enhanced HFD cardiac effects only in female mice, shown by worsened cardiac systolic and diastolic dysfunction (ejection fraction, mitral E-to-annular e' ratio), increased fibrosis (collagen, fibronectin, collagen1A1), hypertrophy (cardiomyocyte size, atrial natriuretic peptide, β-myosin heavy chain), and inflammation (intercellular adhesion molecule-1, tumor necrosis factor-α, plasminogen activator inhibitor type 1), compared to the HFD group. These synergistic effects were associated with activation of the p38 mitogen-activated protein kinases (MAPK) signaling pathway and increased oxidative stress, shown by 3-nitrotyrosine and malondialdehyde, along with decreased metallothionein expression. These results suggest that whole-life 5 ppm cadmium exposure significantly increases the susceptibility of female offspring to HFD-induced cardiac remodeling and dysfunction. The underlying mechanism and potential intervention will be further explored in the future.
Collapse
Affiliation(s)
- Wenqian Zhou
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Jamie L Young
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA..
| | - Hongbo Men
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Haina Zhang
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Haitao Yu
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Qian Lin
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.
| | - He Xu
- Department of Respiratory Medicine, the First Hospital of Jilin University (Eastern Division), Changchun 130031, China.
| | - Jianxiang Xu
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.
| | - Yi Tan
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Wendy L. Novak Diabetes Care Center, Louisville, KY, USA.
| | - Yang Zheng
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Wendy L. Novak Diabetes Care Center, Louisville, KY, USA.
| |
Collapse
|
8
|
Libera K, Konieczny K, Witkowska K, Żurek K, Szumacher-Strabel M, Cieslak A, Smulski S. The Association between Selected Dietary Minerals and Mastitis in Dairy Cows-A Review. Animals (Basel) 2021; 11:2330. [PMID: 34438787 PMCID: PMC8388399 DOI: 10.3390/ani11082330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this paper is to describe the association between selected dietary minerals and mastitis in dairy cows. Minerals are a group of nutrients with a proven effect on production and reproductive performance. They also strongly affect immune system function. In particular their deficiencies may result in immunosuppression, which is a predisposing factor for udder inflammation occurrence. The role of selected dietary minerals (including calcium, phosphorus, magnesium, selenium, copper and zinc) has been reviewed. Generally, minerals form structural parts of the body; as cofactors of various enzymes they are involved in nerve signaling, muscle contraction and proper keratosis. Their deficiencies lead to reduced activity of immune cells or malfunction of teat innate defense mechanisms, which in turn promote the development of mastitis. Special attention was also paid to minerals applied as nanoparticles, which in the future may turn out to be an effective tool against animal diseases, including mastitis. To conclude, minerals are an important group of nutrients, which should be taken into account on dairy farms when aiming to achieve high udder health status.
Collapse
Affiliation(s)
- Kacper Libera
- Department of Preclinical Sciences and Infection Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (K.L.); (K.W.); (K.Ż.)
| | - Kacper Konieczny
- Department of Internal Diseases and Diagnostics, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | - Katarzyna Witkowska
- Department of Preclinical Sciences and Infection Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (K.L.); (K.W.); (K.Ż.)
| | - Katarzyna Żurek
- Department of Preclinical Sciences and Infection Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (K.L.); (K.W.); (K.Ż.)
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| | - Sebastian Smulski
- Department of Internal Diseases and Diagnostics, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| |
Collapse
|
9
|
Mandour AS, Mahmoud AE, Ali AO, Matsuura K, Samir H, Abdelmageed HA, Ma D, Yoshida T, Hamabe L, Uemura A, Watanabe G, Tanaka R. Expression of cardiac copper chaperone encoding genes and their correlation with cardiac function parameters in goats. Vet Res Commun 2021; 45:305-317. [PMID: 34227027 DOI: 10.1007/s11259-021-09811-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Copper deficiency (CuD) is a common cause of oxidative cardiac tissue damage in ruminants. The expression of copper chaperone (Cu-Ch) encoding genes enables an in-depth understanding of copper-associated disorders, but no previous studies have been undertaken to highlight Cu-Ch disturbances in heart tissue in ruminants due to CuD. The current study aimed to investigate the Cu-Ch mRNA expression in the heart of goats after experimental CuD and highlight their relationship with the cardiac measurements. Eleven male goats were enrolled in this study and divided into the control group (n = 4) and CuD group (n = 7), which received copper-reducing dietary regimes for 7 months. Heart function was evaluated by electrocardiography and echocardiography, and at the end of the experiment, all animals were sacrificed and the cardiac tissues were collected for histopathology and quantitative mRNA expression by real-time PCR. In the treatment group, cardiac measurements revealed increased preload and the existence of cardiac dilatation, and significant cardiac tissue damage by histopathology. Also, the relative mRNA expression of Cu-Ch encoding genes; ATP7A, CTr1, LOX, COX17, as well as ceruloplasmin (CP), troponin I3 (TNNI3), glutathione peroxidase (GPX1), and matrix metalloprotease inhibitor (MMPI1) genes were significantly down-regulated in CuD group. There was a significant correlation between investigated genes and some cardiac function measurements; meanwhile, a significant inverse correlation was observed between histopathological score and ATP7B, CTr1, LOX, and COX17. In conclusion, this study revealed that CuD induces cardiac dilatation and alters the mRNA expression of Cu-Ch genes, in addition to TNNI3, GPX1, and MMPI1 that are considered key factors in clinically undetectable CuD-induced cardiac damage in goats which necessitate further studies for feasibility as biomarkers.
Collapse
Affiliation(s)
- Ahmed S Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt. .,Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan.
| | - Ahmed E Mahmoud
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Asmaa O Ali
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Katsuhiro Matsuura
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.,Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Hend A Abdelmageed
- Department of Bacteriology, Animal Health Research Institute, Agriculture Research Center, Ismailia Lab, Ismailia, Egypt.,Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Danfu Ma
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Akiko Uemura
- Department of Veterinary Surgery, Division of Veterinary Research, Obihiro University of Agriculture and Veterinary Medicine, 080-8555, Hokkaido, Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-0054, Japan
| |
Collapse
|
10
|
Kavaz D, Abubakar AL, Rizaner N, Umar H. Biosynthesized ZnO Nanoparticles Using Albizia lebbeck Extract Induced Biochemical and Morphological Alterations in Wistar Rats. Molecules 2021; 26:molecules26133864. [PMID: 34202852 PMCID: PMC8270351 DOI: 10.3390/molecules26133864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Nano-based particles synthesized via green routes have a particular structure that is useful in biomedical applications as they provide cheap, eco-friendly, and non-toxic nanoparticles. In the present study, we reported the effect of various concentrations of Zinc oxide nanoparticles synthesized using A. lebbeck stem bark extract (ZnO NPsAL) as stabilizing agent on rat biochemical profiles and tissue morphology. Adult Wistar rats weighing 170 ± 5 g were randomly classified into eight groups of five rats each; Group A served as a control fed with normal diet and water. Groups B1, B2, C1, C2, D1, D2, and E were treated with 40 mg/kg and 80 mg/kg of the 0.01, 0.05, and 0.1 M biosynthesized ZnO NPsAL and zinc nitrate daily by the gavage method, respectively. The rats were anesthetized 24 h after the last treatment, blood samples, kidney, heart, and liver tissues were collected for biochemical and histopathological analysis. The rats mean body weight, serum alkaline phosphatase, alanine aminotransferase, creatinine, urea, bilirubin, protein, albumin, globulin, total cholesterol, triacylglycerol, and high-density lipoprotein were significantly altered with an increased concentration of biosynthesized ZnO NPsAL when compared with the control group (p < 0.05; n ≥ 5). Furthermore, histopathological analysis of treated rats' kidney, heart, and liver tissue revealed vascular congestion, tubular necrosis, inflammation, and cytoplasmic vacuolation. Biosynthesized ZnO NPsAL showed significant alteration in biochemical parameters and tissue morphology in rats with increasing concentrations of the nanoparticles.
Collapse
Affiliation(s)
- Doga Kavaz
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Biotechnology Research Centre, Cyprus International University, Via Mersin 10, Nicosia 99258, Northern Cyprus, Turkey
- Correspondence: ; Tel.: +90-3926711111
| | - Amina Lawan Abubakar
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Department of Biochemistry, Kano State University of Science and Technology, Wudil, Kano P.M.B 3244, Nigeria
| | - Nahit Rizaner
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Biotechnology Research Centre, Cyprus International University, Via Mersin 10, Nicosia 99258, Northern Cyprus, Turkey
| | - Huzaifa Umar
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Biotechnology Research Centre, Cyprus International University, Via Mersin 10, Nicosia 99258, Northern Cyprus, Turkey
| |
Collapse
|
11
|
Postma GC, Nicastro CN, Valdez LB, Rukavina Mikusic IA, Grecco A, Minatel L. Decrease lysyl oxidase activity in hearts of copper-deficient bovines. J Trace Elem Med Biol 2021; 65:126715. [PMID: 33465739 DOI: 10.1016/j.jtemb.2021.126715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/25/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Lysyl oxidase (LOX) is a metalloenzyme that requires Cu as a cofactor and it is responsible for the formation of collagen and elastin cross-linking. The objective of this work was to measure the LOX enzyme activity in the heart of bovines with Cu deficiency induced by high molybdenum and sulfur levels in the diet. METHODS Eighteen myocardial samples were obtained from Cu-deficient (n = 9) and control (n = 9) Holstein bovines during two similar assays. The samples were frozen in liquid nitrogen and stored at -70 °C to measure enzymatic activity. A commercial kit was used, following producer instructions. RESULTS The results showed that LOX activity from the hearts of Cu-deficient bovines is 29 % lower than the ones of control bovines, being this difference statistically significant (p = 0.03). CONCLUSION To our knowledge, this is the first report that determined LOX enzymatic activity in bovine heart of Cu-deficient animals. The microscopic alterations found in these animals in our previous work, could be explained by a diminished LOX activity. The results are in agreement with other authors, who found a relationship between LOX activity and dietary Cu intake. The information provided by this work could help to clarify the pathogenesis of cardiac lesions in cattle with dietary Cu deficiency.
Collapse
Affiliation(s)
- Gabriela Cintia Postma
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Patología, Av. San Martín 5285, C1427CWO, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Carolina Natalia Nicastro
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Patología, Av. San Martín 5285, C1427CWO, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Beatriz Valdez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL, UBA-CONICET), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ivana Agustina Rukavina Mikusic
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL, UBA-CONICET), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés Grecco
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Patología, Av. San Martín 5285, C1427CWO, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo Minatel
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Patología, Av. San Martín 5285, C1427CWO, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
12
|
Li J, Meng X, Wang L, Yu Y, Yu H, Wei Q. Changes in the expression levels of elastic fibres in yak lungs at different growth stages. BMC DEVELOPMENTAL BIOLOGY 2021; 21:9. [PMID: 33879064 PMCID: PMC8056501 DOI: 10.1186/s12861-021-00240-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/09/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Yaks have a strong adaptability to the plateau environment, which can be attributed to the effective oxygen utilization rate of their lung tissue. Elastic fibre confers an important adaptive structure to the alveolar tissues in yaks. However, little research has been focused on the structural development of lung tissues and the expression levels of elastic fibres in yaks after birth. Therefore, this study aimed to investigate the morphological changes of elastic fibers and expression profiles of fibre-formation genes in yak lungs at different growth stages and the relationship between these changes and plateau adaptation. RESULTS Histological staining was employed to observe the morphological changes in the lung tissue structure of yaks at four different ages: 1 day old, 30 days old, 180 days old and adult. There was no significant difference in the area of a single alveolus between the 1-day-old and 30-day-old groups (P-value > 0.05). However, the single alveolar area was gradually increased with an increase in age (P-value < 0.05). Elastic fibre staining revealed that the amount of elastic fibres in alveolar tissue was increased significantly from the ages of 30 days to 180 days (P-value < 0.05) and stabilized during the adult stage. Transcriptome analysis indicated that the highest levels of differentially expressed genes were found between 30 days of age and 180 days of age. KEGG analysis showed that PI3K-Akt signalling pathway and MAPK pathway, which are involved in fibre formation, accounted for the largest proportion of differentially expressed genes between 30 days of age and 180 days of age. The expression levels of 36 genes related to elastic fibre formation and collagen fibre formation were also analysed, and most of these genes were highly expressed in 30-day-old and 180-day-old yaks. CONCLUSIONS The content of elastic fibres in the alveolar tissue of yaks increases significantly after birth, but this change occurs only from 30 days of age to 180 days of age. Our study indicates that elastic fibres can improve the efficiency of oxygen utilization in yaks under harsh environmental conditions.
Collapse
Affiliation(s)
- Jingyi Li
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China
| | - Xiangqiong Meng
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China
| | - Lihan Wang
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China
| | - Yang Yu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, 1 Weier Road, Xining, 810016, Qinghai, China
| | - Hongxian Yu
- Department of Veterinary Medicine, College of Agriculture and Animal Husbandry, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China.
| | - Qing Wei
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, Qinghai, China.
| |
Collapse
|
13
|
Mandour AS, Elsayed RF, Ali AO, Mahmoud AE, Samir H, Dessouki AA, Matsuura K, Watanabe I, Sasaki K, Al-Rejaie S, Yoshida T, Shimada K, Tanaka R, Watanabe G. The utility of electrocardiography and echocardiography in copper deficiency-induced cardiac damage in goats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7815-7827. [PMID: 33037959 DOI: 10.1007/s11356-020-11014-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Copper deficiency (CuD) is a common mineral disorder in ruminants, which causes histomorphological changes in the heart due to disturbances in copper-dependent metalloenzymes. However, alterations in the measurable cardiac parameters during CuD have not been studied in ruminants, especially in goats. Therefore, the current study aimed to investigate longitudinally the potential role of electrocardiography (ECG) and echocardiography to detect the CuD-induced cardiac damage at different time intervals and concomitantly highlighting the impact of CuD on specific hemato-biochemical parameters and histological cardiac disruption in goats. Eight Shiba goats were included and divided into two equal groups; copper adequate (CuA) as a control and copper-deficient (CuD) that supplemented with copper-chelating agents (sulfur 3 g/kg DM and molybdenum 40 mg/kg DM). The hemato-biochemical analysis, ECG assessment at the base apex lead, and right-side echocardiography were performed just before the experimental onset (T0), and later on at two-time intervals after existing of CuD, at the fifth (T5) and seventh (T7) months. Necropsy and histopathological examination of the heart were performed at the end of the experiment. In the CuD group, the heart dimensions at T5 and T7 showed significant increase in QRS duration, ST-segment duration, the left atrial area in systole, left ventricular diameter and volume in diastole, stroke volume, and cardiac output compared with CuA (P < 0.05). Also, myocardial degeneration, necrosis, and fibrosis were evidenced with a concurrent increase of plasma creatine kinase, lactate dehydrogenase, aspartate aminotransferase, and cardiac troponin I (P < 0.05). In conclusion, CuD disturbs hemato-biochemical parameters and results in myocardial damage and cardiac dilatation that increases some ECG and echocardiographic parameters without development of systolic dysfunction. The ECG and echocardiography can potentially detect cardiac changes in long-lasting CuD in goats.
Collapse
Affiliation(s)
- Ahmed S Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.
| | - Roushdy F Elsayed
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Asmaa O Ali
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ahmed E Mahmoud
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Amina A Dessouki
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Katsuhiro Matsuura
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Izumi Watanabe
- Laboratory of Environmental Toxicology, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Kazuaki Sasaki
- Laboratory of Pharmacology, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, 11564, Saudi Arabia
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| |
Collapse
|
14
|
Lin Z, Li M, Wang YS, Tell LA, Baynes RE, Davis JL, Vickroy TW, Riviere JE. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine. J Vet Pharmacol Ther 2020; 43:385-420. [PMID: 32270548 PMCID: PMC7540321 DOI: 10.1111/jvp.12861] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models for chemicals in food animals are a useful tool in estimating chemical tissue residues and withdrawal intervals. Physiological parameters such as organ weights and blood flows are an important component of a PBPK model. The objective of this study was to compile PBPK‐related physiological parameter data in food animals, including cattle and swine. Comprehensive literature searches were performed in PubMed, Google Scholar, ScienceDirect, and ProQuest. Relevant literature was reviewed and tables of relevant parameters such as relative organ weights (% of body weight) and relative blood flows (% of cardiac output) were compiled for different production classes of cattle and swine. The mean and standard deviation of each parameter were calculated to characterize their variability and uncertainty and to allow investigators to conduct population PBPK analysis via Monte Carlo simulations. Regression equations using weight or age were created for parameters having sufficient data. These compiled data provide a comprehensive physiological parameter database for developing PBPK models of chemicals in cattle and swine to support animal‐derived food safety assessment. This work also provides a basis to compile data in other food animal species, including goats, sheep, chickens, and turkeys.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Yu-Shin Wang
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia
| | - Thomas W Vickroy
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
15
|
Wu X, Zhu M, Jiang Q, Wang L. Effects of Copper Sources and Levels on Lipid Profiles, Immune Parameters, Antioxidant Defenses, and Trace Element Residues in Broilers. Biol Trace Elem Res 2020; 194:251-258. [PMID: 31119639 DOI: 10.1007/s12011-019-01753-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/13/2019] [Indexed: 01/23/2023]
Abstract
The study was conducted to investigate the effects of copper sources and levels on lipid profiles, immune parameters, antioxidant defenses, and trace element contents of meat and liver in Arbor Acres broilers. A total of 504 male broilers were randomly divided into 7 groups with 6 replicates per group and 12 broilers per replicate. The experiment was used in a 3 × 2 + 1 factorial experiment design; broilers in the control group were fed a basal diet, and broilers in the other six groups were fed basal diets supplemented with 3 sources (copper sulfate, tribasic copper chloride, and copper methionate) and 2 levels (10 and 20 mg/kg). The results showed that the levels of cholesterol and low-density lipoprotein cholesterol in broilers were significantly decreased with the increase of dietary copper level (P < 0.05). Serum IL-6 and IgA contents, ceruloplasmin and GSH-Px activities, and liver copper contents of broilers increased significantly with dietary copper levels (P < 0.05). Compared with the control group, dietary copper supplementation significantly decreased serum cholesterol (P < 0.05) and significantly increased serum IL-6, ceruloplasmin, SOD, GSH-Px, and liver copper (P < 0.05). Dietary supplementation of basic copper chloride and copper methionate significantly decreased low-density lipoprotein cholesterol content and liver iron content (P < 0.05). In conclusion, dietary copper supplementation can effectively reduce serum cholesterol content and improve immune and antioxidant functions in broilers. Adding 20 mg/kg copper to broiler diet can increase the copper content in the liver, but it will not affect the copper content in the chicken.
Collapse
Affiliation(s)
- Xuezhuang Wu
- College of Animal Science, Anhui Science and Technology University, 1501 Huangshan Avenue, Bengbu, 233100, Anhui, China
| | - Mingxia Zhu
- College of Agronomy, Liaocheng University, 1 Hunan Road, Liaocheng, 252059, Shandong, China.
| | - Qingkui Jiang
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers-The State University of New Jersey, 225 Warren Street, Newark, NJ, 07103, USA.
| | - Lixin Wang
- College of Animal Science, Anhui Science and Technology University, 1501 Huangshan Avenue, Bengbu, 233100, Anhui, China
| |
Collapse
|
16
|
Vitale S, Hague DW, Foss K, de Godoy MC, Selmic LE. Comparison of Serum Trace Nutrient Concentrations in Epileptics Compared to Healthy Dogs. Front Vet Sci 2019; 6:467. [PMID: 31921923 PMCID: PMC6930867 DOI: 10.3389/fvets.2019.00467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Idiopathic epilepsy (IE) is a common cause of seizures in dogs. There are several investigations regarding serum concentrations of trace nutrients, including copper, selenium, zinc, manganese, and iron in human epileptics and animal models. However, research of this nature in dogs with epilepsy is lacking. The purpose of this prospective study was to compare serum concentrations of several trace nutrients in healthy dogs to dogs with idiopathic epilepsy. Healthy client-owned dogs (n = 50) and dogs with IE (n = 92) were enrolled and blood samples were collected for trace nutrient analysis. Epileptics were subdivided into three groups: controlled: n = 27, uncontrolled: n = 42, and untreated: n = 23. Serum was evaluated for concentrations of copper, selenium, zinc, cobalt, manganese, molybdenum, and iron using inductively coupled plasma mass spectroscopy. Uncontrolled epileptics had significantly higher manganese concentrations compared to normal dogs (p = 0.007). Untreated epileptics had higher iron levels than the other three groups (p = 0.04). Significantly higher levels of copper (p < 0.0001) were found in controlled and uncontrolled epileptics compared to normal or untreated dogs. Significantly higher levels of molybdenum (p = 0.01) were found in controlled epileptics compared to normal or untreated epileptics. Uncontrolled and controlled epileptics had significantly higher levels of selenium (p = 0.0003) vs. normal dogs, and uncontrolled epileptics had higher levels of zinc (p = 0.0002) than normal and untreated dogs. The significant difference in serum concentrations of several trace nutrients (manganese, selenium, and zinc) may suggest a role for these nutrients in the pathophysiology and/or treatment of epilepsy. Additionally, these results suggest that anti-convulsant therapy may affect copper and molybdenum metabolism.
Collapse
Affiliation(s)
- Samantha Vitale
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, United States
| | - Devon Wallis Hague
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, United States
| | - Kari Foss
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, United States
| | | | - Laura E Selmic
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|