1
|
Chen J, Lei KW, Li SY, Li DP, Wang YL, Wang X, Bai X, Huang YL. Dose effects of iron on growth, antioxidant potential, intestinal morphology, and intestinal barrier in yellow-feathered broilers. Poult Sci 2025; 104:104865. [PMID: 39919560 PMCID: PMC11851222 DOI: 10.1016/j.psj.2025.104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
This experiment was conducted to investigate the dose effects of iron on growth performance, antioxidant function, small intestinal histology, and intestinal barrier of 63-day-old yellow-feathered broilers. A total of 720 1-day-old male yellow-feathered broilers were randomly divided into 9 treatments, with 8 cages per treatment and 10 birds per cage. The Fe supplementation was 0, 20, 40, 60, 80, 160, 320, 640, and 1280 mg/kg, respectively, in the form of FeSO4•7H2O. The results showed that the ADG (P = 0.002) and ADFI (P < 0.001) decreased linearly with increased dietary Fe supplementation. Malondialdehyde (MDA) concentration in plasma (P = 0.001), duodenum (P < 0.001), and jejunum (P < 0.001) were increased linearly as dietary Fe increased. As dietary Fe increased, there was a linear decrease in the villus height and the villus height/crypt depth in the duodenum (P = 0.003; P = 0.001) and jejunum (P = 0.001; P < 0.001). Decreased secretory immunoglobulin A (sIgA) concentration in jejunal mucosa (P < 0.001) was observed with increased dietary Fe concentration. Lower jejunal sIgA concentrations were observed in birds consuming more than 160 mg/kg of Fe (P < 0.001). A quadratic response was found for jejunal diamine oxidase (DAO) activity (P = 0.011) as dietary Fe supplementation was increased. The highest response of DAO in jejunal mucosa was observed for broilers supplemented with 160 mg/kg of Fe. Furthermore, the mRNA expressions of ZO-1 (P < 0.001), occludin (P = 0.004), and claudin-1 (P = 0.007) in jejunal mucosa decreased linearly with increased dietary Fe concentration. Data from the study suggests that there is no need to supplement additional Fe to a corn-soybean-based diet for yellow-feathered broilers based on growth performance, antioxidant potential, small intestinal histology, and intestinal barrier. Chronic iron exposure (≥ 160 mg/kg) can damage the intestinal barrier function, and further increase of Fe supplementation can lead to oxidative stress and even cause growth inhibition for yellow-feathered broilers.
Collapse
Affiliation(s)
- J Chen
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - K W Lei
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - S Y Li
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - D P Li
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - Y L Wang
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - X Wang
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - X Bai
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - Y L Huang
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
2
|
He P, He H, Su C, Liu Y, Wang J, Wu Y, Wang B, Wang S, Zhao J. Amomum villosum Lour. alleviates pre-eclampsia by inducing enrichment of Bifidobacterium bifidum through vanillic acid to inhibit placental ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119217. [PMID: 39672393 DOI: 10.1016/j.jep.2024.119217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amomum villosum Lour. (AVL), a traditional Chinese medicine, is widely used to pregnancy-related vomiting and prevent miscarriage. Pre-eclampsia (PE) is a severe pregnancy syndrome. Recent studies have demonstrated interactions between PE and the digestive system. However, it is uncertain that AVL against PE was associated with the gut. AIM OF THE STUDY The current research examined the curative impact of AVL on PE and underly mechanisms based on the gut-placenta axis. MATERIALS AND METHODS A water decoction of AVL (WOA) was extracted in boiling water, and then the decoction was converted into dried particles by freeze drying. An NG-nitro-L-arginine methyl ester (L-NAME)-induced PE mouse model was established and the preventative activity of WOA was evaluated. Furthermore, the gut microbial composition and structure were analyzed using 16S rRNA gene sequencing. Fecal microbiota transplantation (FMT) experiment was applied to confirm the efficacy of gut microbiota remodeled by WOA. RESULTS WOA presented protective efficacy against PE. Notably, WOA induced a significant decrease in maternal hypertension and urine protein levels and promoted fetal intrauterine growth in a dose-dependent manner, thereby improving adverse pregnancy outcomes. Moreover, WOA modulated the angiogenic imbalance by decreasing the ratio between sFlt-1 (soluble fms-like tyrosine kinase 1) and PlGF (placental growth factor) to repair placental injury and inhibited placental ferroptosis by increasing the protein levels of FPN1, FTH1, xCT, and GPX4. Tight junction proteins (ZO-1, Occludin, Claudin1) in the placenta and colon were significantly upregulated by WOA, leading to enhanced placental and gut barriers. WOA rescued intestinal dysbiosis by enriching Bifidobacterium and Akkermansia. Fecal microbiota transplantation (FMT) experiments revealed that the protection of WOA on placenta and gut were dependent on the gut microbial composition. Furthermore, supplementation with both Bifidobacterium bifidum (B. bifidum) and vanillic acid (VA, the major component of WOA) ameliorated PE symptoms. Intriguingly, results from both in vivo and in vitro analyses indicated that the B. bifidum population was enriched by VA. CONCLUSIONS This research is the first to demonstrate that WOA prevents PE by enriching Bifidobacterium bifidum, strengthening the gut-placenta barrier, and inhibiting placental ferroptosis. Our findings provide compelling evidence for the vital involvement of the gut-placental axis in the protection of AVL on PE, presenting a novel target for the clinic.
Collapse
Affiliation(s)
- Peishi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Haoqing He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chang Su
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518103, China.
| | - Yarui Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jiahan Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yun Wu
- Shenzhen Tsumura Medicine Co. LTD, Shenzhen, Guangdong, 518057, China.
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518103, China.
| | - Shuhong Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen Institute for Drug Control, Shenzhen, Guangdong, 518103, China.
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; TCM-Integrated Hospital of Southern Medical University, Guangzhou, 510315, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
3
|
Liu Y, Li X, Guo Z, Li G, He L, Liu H, Cai S, Huo T. Diammonium glycyrrhizinate alleviates iron overload-induced liver injury in mice via regulating the gut-liver axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156216. [PMID: 39547094 DOI: 10.1016/j.phymed.2024.156216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Evidence indicates a close association between iron overload (IO) and the pathogenesis of chronic liver diseases, highlighting the potential for interventions targeted at IO to impede or decelerate the progression of chronic liver diseases. Diammonium glycyrrhizinate (DG), the medicinal form of glycyrrhizic acid, a principal constituent of licorice, has been clinically employed as a hepatoprotective agent; however, its protective effect against IO-induced liver injury and underlying molecular mechanisms remain elusive. PURPOSE The aim of the present study is to investigate the hepatoprotective effect of DG against IO-induced liver injury with a focus on the gut-liver axis. STUDY DESIGN AND METHODS Animal models of IO-induced liver injury and DG treatment have been established in vivo. Iron deposition, liver injury, intestinal barrier damage, and liver inflammation were assessed in mice treated with iron dextran or DG. The microbiome composition in feces was analyzed using 16S rRNA full-length sequencing. Bile acids (BAs) profiles in feces were detected by UPLC-Q-TOF-MS technique, and the expression levels of receptors, enzymes or transporters involved in BAs metabolism were also determined. RESULTS DG partially reduced the iron deposition and the levels of ferrous ion in the livers of mice with IO, thereby mitigating oxidative damage. DG also improved gut microbiota dysbiosis, repaired intestinal barrier damage, inhibited endotoxin translocation to the liver, and subsequently suppressed TLR4/NF-κB/NLRP3 pathway-mediated liver inflammation caused by IO. Moreover, DG modulated BAs metabolism disorder in IO mice, reducing the accumulation of BAs in the liver. CONCLUSION DG alleviates IO-induced liver injury in mice by regulating the gut-liver axis. This study provides novel insights into the underlying mechanisms through which DG ameliorates liver injury caused by IO.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Xiaohong Li
- The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Lu He
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Huan Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122.
| |
Collapse
|
4
|
Al-Qahtani SD, Abu Al-Ola KA, Al-Senani GM. Tannin-encapsulated electrospun nanofibrous membrane of cellulose nanowhiskers-reinforced polysulfone for colorimetric detection of iron(III). Int J Biol Macromol 2024; 281:136516. [PMID: 39396600 DOI: 10.1016/j.ijbiomac.2024.136516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
A nanocomposite of tannic acid and cellulose nanowhiskers (CNW)-reinforced polysulfone (PSF) was used to develop a metallochromic nanofibrous membrane sensor for iron(III) in aqueous media. Tannic acid was used as an active detecting probe, whereas the CNW@PSF composite was employed as a hosting material. Cellulose nanowhiskers (7-12 nm) were obtained from microcrystalline cellulose (MCC). According to the coloration parameters, a bathochromic shift from colorless (415 nm) to purple (561 nm) occurs when ferric cations bind to the phenolic hydroxyls of the tannic acid probe. The concentration of ferric was found to be directly correlated to the extent of the color change, demonstrating a detection limit of 0.1-250 ppm. This could be attributed to the creation of a coordinative complex between ferric ions and phenolic tannic acid. The generated nanofibers were inspected by energy-dispersive X-ray (EDX) and scanning electron microscopy (SEM). The electrospun nanofibrous membrane showed an average diameter between 75 and 150 nm. The tannic acid-containing nanofibers are remarkably reusable and simple. The tannic acid-encapsulated polysulfone nanofibrous membrane was used to detect various metal ions, demonstrating a high selectivity for Fe3+. The ideal pH range for the identification of Fe3+ was determined to be in the range of 4.25-6.75.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Khulood A Abu Al-Ola
- Chemistry Department, College of Sciences, Al-Madina Al-Munawarah, Taibah University, Al-Madina 30002, Saudi Arabia
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
5
|
He K, Long X, Jiang H, Qin C. The differential impact of iron on ferroptosis, oxidative stress, and inflammatory reaction in head-kidney macrophages of yellow catfish (Pelteobagrus fulvidraco) with and without ammonia stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105184. [PMID: 38643939 DOI: 10.1016/j.dci.2024.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Ammonia toxicity in fish is closely related to ferroptosis, oxidative stress, and inflammatory responses. Iron is an essential trace element that plays a key role in many biological processes for cells and organisms, including ferroptosis, oxidative stress response, and inflammation. This study aimed to investigate the effect of iron on indicators of fish exposed to ammonia, specifically on the three aspects mentioned above. The head kidney macrophages of yellow catfish were randomly assigned to one of four groups: CON (normal control), AM (0.046 mg L-1 total ammonia nitrogen), Fe (20 μg mL-1 FeSO4), and Fe + AM (20 μg mL-1 FeSO4, 0.046 mg L-1 total ammonia nitrogen). The cells were pretreated with FeSO4 for 6 h followed by ammonia for 24 h. The study found that iron supplementation led to an excessive accumulation of iron and ROS in macrophages, but it did not strongly induce ferroptosis, oxidative stress, or inflammatory responses. This was supported by a decrease in T-AOC, and the downregulation of SOD, as well as an increase in GSH levels and the upregulation of TFR1, CAT and Nrf2. Furthermore, the mRNA expression of HIF-1, p53 and the anti-inflammatory M2 macrophage marker Arg-1 were upregulated. The results also showed that iron supplementation increased the progression of some macrophages from early apoptosis to late apoptotic cells. However, the combined treatment of iron and ammonia resulted in a stronger intracellular ferroptosis, oxidative stress, and inflammatory reaction compared to either treatment alone. Additionally, there was a noticeable increase in necrotic cells in the Fe + AM and AM groups. These findings indicate that the biological functions of iron in macrophages of fish may vary inconsistently in the presence or absence of ammonia stress.
Collapse
Affiliation(s)
- Kewei He
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xinran Long
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Haibo Jiang
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China; College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, 310058, China.
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641112, China
| |
Collapse
|
6
|
Zhao J, Ma W, Wang S, Zhang K, Xiong Q, Li Y, Yu H, Du H. Differentiation of intestinal stem cells toward goblet cells under systemic iron overload stress are associated with inhibition of Notch signaling pathway and ferroptosis. Redox Biol 2024; 72:103160. [PMID: 38631120 PMCID: PMC11040173 DOI: 10.1016/j.redox.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
Iron overload can lead to oxidative stress and intestinal damage and happens frequently during blood transfusions and iron supplementation. However, how iron overload influences intestinal mucosa remains unknown. Here, the aim of current study was to investigate the effects of iron overload on the proliferation and differentiation of intestinal stem cells (ISCs). An iron overload mouse model was established by intraperitoneal injection of 120 mg/kg body weight iron dextran once a fortnight for a duration of 12 weeks, and an iron overload enteroid model was produced by treatment with 3 mM or 10 mM of ferric ammonium citrate for 24 h. We found that iron overload caused damage to intestinal morphology with a 64 % reduction in villus height/crypt depth ratio, and microvilli injury in the duodenum. Iron overload mediated epithelial function by inhibiting the expression of nutrient transporters and enhancing the expression of secretory factors in the duodenum. Meanwhile, iron overload inhibited the proliferation of ISCs and regulated their differentiation into secretory mature cells, such as goblet cells, through inhibiting Notch signaling pathway both in mice and enteroid. Furthermore, iron overload caused oxidative stress and ferroptosis in intestinal epithelial cells. In addition, ferroptosis could also inhibit Notch signaling pathway, and affected the proliferation and differentiation of ISCs. These findings reveal the regulatory role of iron overload on the proliferation and differentiation of ISCs, providing a new insight into the internal mechanism of iron overload affecting intestinal health, and offering important theoretical basis for the scientific application of iron nutrition regulation.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wan Ma
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sisi Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kang Zhang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingqing Xiong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunqin Li
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Hong Yu
- Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Huahua Du
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
7
|
Xia Y, Chen Z, Huang C, Shi L, Ma W, Chen X, Liu Y, Wang Y, Cai C, Huang Y, Liu W, Shi R, Luo Q. Investigation the mechanism of iron overload-induced colonic inflammation following ferric citrate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116241. [PMID: 38522287 DOI: 10.1016/j.ecoenv.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangqin Shi
- Chengdu University of Traditional Chinese Medicine, College of Basic Medicine, Chengdu 611130, China
| | - Wenjing Ma
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiwen Chen
- Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang 621000, China
| | - Yucong Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Wang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunyu Cai
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiang Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Riyi Shi
- Department of Basic Medical Sciences, Center for Paralysis Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Chen X, Liu H, Liu S, Zhang Z, Li X, Mao J. Excessive dietary iron exposure increases the susceptibility of largemouth bass (Micropterus salmoides) to Aeromonas hydrophila by interfering with immune response, oxidative stress, and intestinal homeostasis. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109430. [PMID: 38325595 DOI: 10.1016/j.fsi.2024.109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Iron is an essential cofactor in the fundamental metabolic pathways of organisms. Moderate iron intake can enhance animal growth performance, while iron overload increases the risk of pathogen infection. Although the impact of iron on the pathogen-host relationship has been confirmed in higher vertebrates, research in fish is extremely limited. The effects and mechanisms of different levels of iron exposure on the infection of Aeromonas hydrophila in largemouth bass (Micropterus salmoides) remain unclear. In this study, experimental diets were prepared by adding 0, 800, 1600, and 3200 mg/kg of FeSO4∙7H2O to the basal feed, and the impact of a 56-day feeding period on the mortality rate of largemouth bass infected with A. hydrophila was analyzed. Additionally, the relationships between mortality rate and tissue iron content, immune regulation, oxidative stress, iron homeostasis, gut microbiota, and tissue morphology were investigated. The results showed that the survival rate of largemouth bass infected with A. hydrophila decreased with increasing iron exposure levels. Excessive dietary iron intake significantly increased iron deposition in the tissues of largemouth bass, reduced the expression and activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, increased the content of lipid peroxidation product malondialdehyde, and thereby induced oxidative stress. Excessive iron supplementation could influence the immune response of largemouth bass by upregulating the expression of pro-inflammatory cytokines in the intestine and liver, while downregulating the expression of anti-inflammatory cytokines. Additionally, excessive iron intake could also affect iron metabolism by inducing the expression of hepcidin, disrupt intestinal homeostasis by interfering with the composition and function of the gut microbiota, and induce damage in the intestinal and hepatic tissues. These research findings provide a partial theoretical basis for deciphering the molecular mechanisms underlying the influence of excessive iron exposure on the susceptibility of largemouth bass to pathogenic bacteria.
Collapse
Affiliation(s)
- Xiaoli Chen
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China
| | - Hong Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475001, China
| | - Shuangping Liu
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zhifeng Zhang
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China
| | - Xiong Li
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China
| | - Jian Mao
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
9
|
Zhao D, Gao Y, Chen Y, Zhang Y, Deng Y, Niu S, Dai H. L-Citrulline Ameliorates Iron Metabolism and Mitochondrial Quality Control via Activating AMPK Pathway in Intestine and Improves Microbiota in Mice with Iron Overload. Mol Nutr Food Res 2024; 68:e2300723. [PMID: 38425278 DOI: 10.1002/mnfr.202300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/26/2024] [Indexed: 03/02/2024]
Abstract
SCOPE Oxidative stress caused by iron overload tends to result in intestinal mucosal barrier dysfunction and intestinal microbiota imbalance. As a neutral and nonprotein amino acid, L-Citrulline (L-cit) has been implicated in antioxidant and mitochondrial amelioration properties. This study investigates whether L-cit can alleviate iron overload-induced intestinal injury and explores the underlying mechanisms. METHODS AND RESULTS C57BL/6J mice are intraperitoneally injected with iron dextran, then gavaged with different dose of L-cit for 2 weeks. L-cit treatment significantly alleviates intestine pathological injury, oxidative stress, ATP level, and mitochondrial respiratory chain complex activities, accompanied by ameliorating mitochondrial quality control. L-cit-mediated protection is associated with the upregulation of Glutathione Peroxidase 4 (GPX4) expression, inhibition Nuclear Receptor Coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, and improvement of gut microbiota. To investigate the underlying molecular mechanisms, Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2) cells are treated with L-cit or AMP-activated Protein Kinase (AMPK) inhibitor. AMPK signaling has been activated by L-cit. Notably, Compound C abolishes L-cit's protection on intestinal barrier, mitochondrial function, and antioxidative capacity in IPEC-J2 cells. CONCLUSION L-cit may restrain ferritinophagy and ferroptosis to regulate iron metabolism, and induce AMPK pathway activation, which contributes to exert antioxidation, ameliorate iron metabolism and mitochondrial quality control, and improve intestinal microbiota. L-cit is a promising therapeutic strategy for iron overload-induced intestinal injury.
Collapse
Affiliation(s)
- Dai Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Yuan Gao
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Yiqin Chen
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Yingsi Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Yian Deng
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Sai Niu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| |
Collapse
|
10
|
Chen H, Qian Y, Jiang C, Tang L, Yu J, Zhang L, Dai Y, Jiang G. Butyrate ameliorated ferroptosis in ulcerative colitis through modulating Nrf2/GPX4 signal pathway and improving intestinal barrier. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166984. [PMID: 38061600 DOI: 10.1016/j.bbadis.2023.166984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Oxidative stress and intestinal inflammation are main pathological features of ulcerative colitis (UC). Ferroptosis, characterized by iron accumulation and lipid peroxidation, is closely related to the pathologic process of UC. 16S rRNA sequencing for intestinal microbiota analysis and gas chromatography-mass spectrometry (GC-MS) for short-chain fatty acid (SCFA) contents clearly demonstrated lower amounts of butyrate-producing bacteria and butyrate in colitis mice. However, the precise mechanisms of sodium butyrate (NaB) in treating UC remain largely unclear. We found that ferroptosis occurred in colitis models, as evidenced by the inflammatory response, intracellular iron level, mitochondria ultrastructural observations and associated protein expression. NaB inhibited ferroptosis in colitis, significantly rescued weight loss and colon shortening in mice and reduced inflammatory lesions and mitochondrial damage. Furthermore, NaB improved intestinal barrier integrity and markedly suppressed the expression of pro-ferroptosis proteins. Conversely, the protein expression of anti-ferroptosis markers including nuclear factor erythroid-related Factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4), was significantly upregulated with NaB treatment. Moreover, the knockdown of Nrf2 reversed the anti-colitis effect of NaB. Taken together, NaB exhibited a protective effect by ameliorating ferroptosis in experimental colitis through Nrf2/GPX4 signaling and improving intestinal barrier integrity, which provides a novel mechanism for NaB prevention of UC.
Collapse
Affiliation(s)
- Hangping Chen
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311200, Zhejiang, China
| | - Yifan Qian
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang, China
| | - Chensheng Jiang
- Department of Gastroenterology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322099, Zhejiang, China
| | - Leilei Tang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311200, Zhejiang, China
| | - Jiawen Yu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311200, Zhejiang, China
| | - Lingdi Zhang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311200, Zhejiang, China
| | - Yiyang Dai
- Department of Gastroenterology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322099, Zhejiang, China.
| | - Guojun Jiang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311200, Zhejiang, China.
| |
Collapse
|
11
|
Bao H, Wang Y, Xiong H, Xia Y, Cui Z, Liu L. Mechanism of Iron Ion Homeostasis in Intestinal Immunity and Gut Microbiota Remodeling. Int J Mol Sci 2024; 25:727. [PMID: 38255801 PMCID: PMC10815743 DOI: 10.3390/ijms25020727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Iron is a vital trace element that plays an important role in humans and other organisms. It plays an active role in the growth, development, and reproduction of bacteria, such as Bifidobacteria. Iron deficiency or excess can negatively affect bacterial hosts. Studies have reported a major role of iron in the human intestine, which is necessary for maintaining body homeostasis and intestinal barrier function. Organisms can maintain their normal activities and regulate some cancer cells in the body by regulating iron excretion and iron-dependent ferroptosis. In addition, iron can modify the interaction between hosts and microorganisms by altering their growth and virulence or by affecting the immune system of the host. Lactic acid bacteria such as Lactobacillus acidophilus (L. acidophilus), Lactobacillus rhamnosus (L. rhamnosus), and Lactobacillus casei (L. casei) were reported to increase trace elements, protect the host intestinal barrier, mitigate intestinal inflammation, and regulate immune function. This review article focuses on the two aspects of the iron and gut and generally summarizes the mechanistic role of iron ions in intestinal immunity and the remodeling of gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (H.X.); (Y.X.)
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (H.X.); (Y.X.)
| |
Collapse
|
12
|
Gu K, Wu A, Yu B, Zhang T, Lai X, Chen J, Yan H, Zheng P, Luo Y, Luo J, Pu J, Wang Q, Wang H, Chen D. Iron overload induces colitis by modulating ferroptosis and interfering gut microbiota in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167043. [PMID: 37717771 DOI: 10.1016/j.scitotenv.2023.167043] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Iron plays a pivotal role in various physiological processes, including intestinal inflammation, ferroptosis, and the modulation of the gut microbiome. However, the way these factors interact with each other is unclear. METHODS Mice models were fed with low, normal and high iron diets to assess their impacts on colitis, ferroptosis and gut microbiota. Untargeted fecal metabolomics analysis, 16S rRNA sequencing, histopathology analysis, real-time quantitative PCR and western blot were performed to analyze the differences in the intestinal inflammatory response and understanding its regulatory mechanisms between low, normal and high iron groups. RESULTS The iron overload changed the serum iron, colon iron and fecal iron. In addition, the iron overload induced the colitis, induced the ferroptosis and altered the microbiome composition in the fecal of mice. By using untargeted fecal metabolomics analysis to screen of metabolites in the fecal, we found that different metabolomics profiles in the fecal samples between iron deficiency, normal iron and iron overload groups. The correlation analysis showed that both of iron deficiency and overload were closely related to Dubosiella. The relationship between microbial communities (e.g., Akkermansia, Alistipes, and Dubosiella) and colitis-related parameters was highly significant. Additionally, Alistipes and Bacteroides microbial communities displayed a close association with ferroptosis-related parameters. Iron overload reduced the concentration of metabolites, which exert the anti-inflammatory effects (e.g., (+)-.alpha.-tocopherol) in mice. The nucleotide metabolism, enzyme metabolism and metabolic diseases were decreased and the lipid metabolism was increased in iron deficiency and iron overload groups compared with normal iron group. CONCLUSION Iron overload exacerbated colitis in mice by modulating ferroptosis and perturbing the gut microbiota. Iron overload-induced ferroptosis was associated with NRF2/GPX-4 signaling pathway. Specific microbial taxa and their associated metabolites were closely intertwined with both colitis and ferroptosis markers.
Collapse
Affiliation(s)
- Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Lai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Junzhou Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Junning Pu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
13
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
14
|
Peng R, Liu X, Wang C, Li F, Li T, Li L, Zhang H, Gao Y, Yu X, Zhang S, Zhang J. Iron overload enhances TBI-induced cardiac dysfunction by promoting ferroptosis and cardiac inflammation. Biochem Biophys Res Commun 2023; 682:46-55. [PMID: 37801989 DOI: 10.1016/j.bbrc.2023.09.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Previous studies have proved that cardiac dysfunction and myocardial damage can be found in TBI patients, but the underlying mechanisms of myocardial damage induced by TBI can't be illustrated. We want to investigate the function of ferroptosis in myocardial damage after TBI and determine if inhibiting iron overload might lessen myocardial injury after TBI due to the involvement of iron overload in the process of ferroptosis and inflammation. We detect the expression of ferroptosis-related proteins in cardiac tissue at different time points after TBI, indicating that TBI can cause ferroptosis in the heart in vivo. The echocardiography and myocardial enzymes results showed that ferroptosis can aggravate TBI-induced cardiac dysfunction. The result of DHE staining and 4-HNE expression showed that inhibition of ferroptosis can reduce ROS production and lipid peroxidation in myocardial tissue. In further experiments, DFO intervention was used to explore the effect of iron overload inhibition on myocardial ferroptosis after TBI, the production of ROS, expression of p38 MAPK and NF-κB was detected to explore the effect of iron overload on myocardial inflammation after TBI. The results above show that TBI can cause heart ferroptosis in vivo. Inhibition of iron overload can alleviate myocardial injury after TBI by reducing ferroptosis and inflammatory response induced by TBI.
Collapse
Affiliation(s)
- Ruilong Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Graduate School, Tianjin Medical University, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China
| | - Xilei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China
| | - Cong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Graduate School, Tianjin Medical University, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China
| | - Fanjian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Graduate School, Tianjin Medical University, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China
| | - Tuo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China; Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Lei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Graduate School, Tianjin Medical University, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China
| | - Hejun Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Graduate School, Tianjin Medical University, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China; Department of Neurosurgery, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Xuefang Yu
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, 300000, China.
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China; Tianjin Neurological Institute, Tianjin, 300000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, 300000, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300000, China.
| |
Collapse
|
15
|
Liu S, Dong Z, Tang W, Zhou J, Guo L, Gong C, Liu G, Wan D, Yin Y. Dietary iron regulates intestinal goblet cell function and alleviates Salmonella typhimurium invasion in mice. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2006-2019. [PMID: 37340176 DOI: 10.1007/s11427-022-2298-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/31/2023] [Indexed: 06/22/2023]
Abstract
Iron is an important micronutrient that plays a vital role in host defenses and bacterial pathogenicity. As iron treatments increase the risk of infection by stimulating the growth and virulence of bacterial pathogens, their roles in anti-infection immunity have frequently been underestimated. To estimate whether adequate dietary iron intake would help defend against pathogenic bacterial infection, mice were fed iron-deficient (2 mg kg-1 feed), iron-sufficient (35 mg kg-1 feed), or iron-enriched diet (350 mg kg-1 feed) for 12 weeks, followed by oral infection with Salmonella typhimurium. Our results revealed that dietary iron intake improved mucus layer function and decelerated the invasion of the pathogenic bacteria, Salmonella typhimurium. Positive correlations between serum iron and the number of goblet cells and mucin2 were found in response to total iron intake in mice. Unabsorbed iron in the intestinal tract affected the gut microbiota composition, and the abundance of Bacteroidales, family Muribaculaceae, was positively correlated with their mucin2 expression. However, the results from antibiotic-treated mice showed that the dietary iron-regulated mucin layer function was not microbial-dependent. Furthermore, in vitro studies revealed that ferric citrate directly induced mucin2 expression and promoted the proliferation of goblet cells in both ileal and colonic organoids. Thus, dietary iron intake improves serum iron levels, regulates goblet cell regeneration and mucin layer function, and plays a positive role in the prevention of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuan Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhenlin Dong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Wenjie Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Jian Zhou
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Liu Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chengyan Gong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guang Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
16
|
Zhang Q, Ding H, Yu X, Wang Q, Li X, Zhang R, Feng J. Plasma non-transferrin-bound iron uptake by the small intestine leads to intestinal injury and intestinal flora dysbiosis in an iron overload mouse model and Caco-2 cells. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2041-2055. [PMID: 37452897 DOI: 10.1007/s11427-022-2347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 07/18/2023]
Abstract
Iron overload often occurs during blood transfusion and iron supplementation, resulting in the presence of non-transferrin-bound iron (NTBI) in host plasma and damage to multiple organs, but effects on the intestine have rarely been reported. In this study, an iron overload mouse model with plasma NTBI was established by intraperitoneal injection of iron dextran. We found that plasma NTBI damaged intestinal morphology, caused intestinal oxidative stress injury and reactive oxygen species (ROS) accumulation, and induced intestinal epithelial cell apoptosis. In addition, plasma NTBI increased the relative abundance of Ileibacterium and Desulfovibrio in the cecum, while the relative abundance of Faecalibaculum and Romboutsia was reduced. Ileibacterium may be a potential microbial biomarker of plasma NTBI. Based on the function prediction analysis, plasma NTBI led to the weakening of intestinal microbiota function, significantly reducing the function of the extracellular structure. Further investigation into the mechanism of injury showed that iron absorption in the small intestine significantly increased in the iron group. Caco-2 cell monolayers were used as a model of the intestinal epithelium to study the mechanism of iron transport. By adding ferric ammonium citrate (FAC, plasma NTBI in physiological form) to the basolateral side, the apparent permeability coefficient (Papp) values from the basolateral to the apical side were greater than 3×10-6 cm s-1. Intracellular ferritin level and apical iron concentration significantly increased, and SLC39A8 (ZIP8) and SLC39A14 (ZIP14) were highly expressed in the FAC group. Short hairpin RNA (shRNA) was used to knock down ZIP8 and ZIP14 in Caco-2 cells. Transfection with ZIP14-specific shRNA decreased intracellular ferritin level and inhibited iron uptake. These results revealed that plasma NTBI may cause intestinal injury and intestinal flora dysbiosis due to the uptake of plasma NTBI from the basolateral side into the small intestine, which is probably mediated by ZIP14.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoxuan Ding
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaonan Yu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiwen Wang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuejiao Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruiqiang Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Feng
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Ezzat GM, Nassar AY, Bakr MH, Mohamed S, Nassar GA, Kamel AA. Acetylated Oligopeptide and N-acetyl cysteine Protected Against Oxidative Stress, Inflammation, Testicular-Blood Barrier Damage, and Testicular Cell Death in Iron-Overload Rat Model. Appl Biochem Biotechnol 2023; 195:5053-5071. [PMID: 36947366 DOI: 10.1007/s12010-023-04457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Multiple organs, including the testes, are damaged by iron overload. It has been shown that N-acetyl cysteine (NAC) influences oxidative stress in iron overload. The present study aimed to evaluate the roles of acetylated peptide (AOP) and NAC in the inhibition of iron-overload induced-testicular damage. At the beginning of the experiment, NAC (150 mg /kg) was given for a week to all 40 rats. Then, four groups were formed by dividing the animals (10 rats/group). Group I included healthy control rats. Group II (iron overload) was given intraperitoneal iron dextran (60 mg/kg/day) 5 days a week for 4 weeks. Group III (NAC) was given NAC orally at a dose of 150 mg/kg/day for 4 weeks in addition to iron dextran. Group IV (AOP) was given AOP orally at a dose of 150 mg/kg/day for 4 weeks besides iron dextran. When the experiment time was over, testosterone serum level, testicular B cell lymphoma-2 (BCL-2) and protein kinase B (PKB) protein levels, nuclear factor kappa-B (NF-κB), and Beclin1 mRNA expression levels, and malondialdehyde (MDA), and reduced glutathione (GSH) were determined by ELISA, quantitative reverse transcription-PCR, and chemical methods. Finally, histopathological examinations and immunohistochemical detection of claudin-1 and CD68 were performed. The iron overload group exhibited decreased testosterone, BCL-2, PKB, claudin-1, and GSH and increased MDA, NF-κB, Beclin1, and CD68, while both NAC and AOP treatments protected against the biochemical and histopathological disturbances occurring in the iron overload model. We concluded that NAC and AOP can protect against testes damage by iron overload via their antioxidant, anti-inflammatory, antiapoptotic, and ant-autophagic properties. The NAC and AOP may be used as preventative measures against iron overload-induced testicular damage.
Collapse
Affiliation(s)
- Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shimma Mohamed
- Department of Medical Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Gamal A Nassar
- Metabolic and Genetic disorders unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
18
|
Zeng Y, Zhou B, Huang L, Liu Y. Iron-rich Candida utilis improves intestinal health in weanling piglets. J Appl Microbiol 2023; 134:lxad135. [PMID: 37401152 DOI: 10.1093/jambio/lxad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
AIM This study aimed to investigate the effects of substituting inorganic iron in the diet of weanling piglets with iron-rich Candida utilis on gut morphology, immunity, barrier, and microbiota. METHODS AND RESULTS Seventy-two healthy 28-day-old Duroc × Landrace × Yorkshire desexed male weanling piglets were randomly assigned to 2 groups (n = 6), with 6 pens per group and 6 piglets in each pen. The control group was fed a basal diet containing ferrous sulfate (104 mg kg-1 iron), while the experimental group was fed a basal diet supplemented with iron-rich C. utilis (104 mg kg-1 iron). The results show that the growth performance of weanling piglets showed no significantly differences (P > 0.05). Iron-rich C. utilis significantly elevated villus height and decreased crypt depth in the duodenum and jejunum (P < 0.05). Additionally, there was a significant increase in SIgA content, a down-regulated of pro-inflammatory factors expression, and an up-regulated of anti-inflammatory factors expression in the jejunum and ileum of piglets fed iron-rich C. utilis (P < 0.05). The mRNA expression levels of ZO-1, Claudin-1, Occludin, and Mucin2 in the jejunum were significantly increased by iron-rich C. utilis, and were significantly increased ZO-1 and Claudin-1 in the ileum (P < 0.05). The colonic microbiota, however, was not significantly affected by iron-rich C. utilis (P > 0.05). CONCLUSION Iron-rich C. utilis improved intestinal morphology and structure, as well as intestinal immunity and intestinal barrier function.
Collapse
Affiliation(s)
- Yan Zeng
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Bingyu Zhou
- Hunan Institute of Microbiology, Changsha 410009, China
| | - LiHong Huang
- Hunan Institute of Microbiology, Changsha 410009, China
| | - YuBo Liu
- Hunan Institute of Microbiology, Changsha 410009, China
| |
Collapse
|
19
|
The Impacts of Iron Overload and Ferroptosis on Intestinal Mucosal Homeostasis and Inflammation. Int J Mol Sci 2022; 23:ijms232214195. [PMID: 36430673 PMCID: PMC9697168 DOI: 10.3390/ijms232214195] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Intestinal homeostasis is maintained through the interplay of the intestinal mucosa, local and systemic immune factors, and the microbial content of the gut. Iron is a trace mineral in most organisms, including humans, which is essential for growth, systemic metabolism and immune response. Paradoxically, excessive iron intake and/or high iron status can be detrimental to iron metabolism in the intestine and lead to iron overload and ferroptosis-programmed cell death mediated by iron-dependent lipid peroxidation within cell membranes, which contributes to several intestinal diseases. In this review, we comprehensively review recent findings on the impacts of iron overload and ferroptosis on intestinal mucosal homeostasis and inflammation and then present the progress of iron overload and ferroptosis-targeting therapy in intestinal diseases. Understanding the involved mechanisms can provide a new understanding of intestinal disease pathogenesis and facilitate advanced preventive and therapeutic strategies for intestinal dysfunction and diseases.
Collapse
|
20
|
Pan W, Gao H, Ying X, Xu C, Ye X, Shao Y, Hua M, Shao J, Zhang X, Fu S, Yang M. Food-derived bioactive oligopeptide iron complexes ameliorate iron deficiency anemia and offspring development in pregnant rats. Front Nutr 2022; 9:997006. [PMID: 36159485 PMCID: PMC9490415 DOI: 10.3389/fnut.2022.997006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate anemia treatment and other potential effects of two food-derived bioactive oligopeptide iron complexes on pregnant rats with iron deficiency anemia (IDA) and their offspring. Rats with IDA were established with a low iron diet and then mated. There were one control group and seven randomly assigned groups of pregnant rats with IDA: Control group [Control, 40 ppm ferrous sulfate (FeSO4)]; IDA model group (ID, 4 ppm FeSO4), three high-iron groups (H-FeSO4, 400 ppm FeSO4; MCOP-Fe, 400 ppm marine fish oligopeptide iron complex; WCOP-Fe, 400 ppm whey protein oligopeptide iron complex) and three low-iron groups (L-FeSO4, 40 ppm FeSO4; MOP-Fe, 40 ppm marine fish oligopeptide iron complex; WOP-Fe, 40 ppm whey protein oligopeptide iron complex). Rats in each group were fed the corresponding special diet during pregnancy until the day of delivery. After different doses of iron supplement, serum hemoglobin, iron, and ferritin levels in rats with IDA were significantly increased to normal levels (P < 0.05). Serum iron levels were significantly lower in two food-derived bioactive oligopeptide low-iron complex groups than in the low FeSO4 group (P<0.05). Liver malondialdehyde levels were significantly increased in the three high-iron groups compared with the other five groups (P < 0.05), and hemosiderin deposition was observed in liver tissue, indicating that the iron dose was overloaded and aggravated the peroxidative damage in pregnant rats. Liver inflammation was reduced in the three low-iron groups. Tumor necrosis factor α secretion was significantly decreased in all groups with supplemented oligopeptide (P < 0.05), with the concentration of tumor necrosis factor α declining to normal levels in the two whey protein oligopeptide iron complex groups. In the marine fish oligopeptide iron complex groups, body length, tail length, and weight of offspring were significantly increased (P < 0.05) and reached normal levels. Therefore, food-derived bioactive oligopeptide (derived from marine fish skin and milk) iron complexes may be an effective type of iron supplement for pregnancy to improve anemia, as well as reduce the side effects of iron overload, and improve the growth and nutritional status of offspring.
Collapse
Affiliation(s)
- Wenfei Pan
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - He Gao
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoling Ying
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caiju Xu
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Xiang Ye
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yelin Shao
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengdi Hua
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Xinxue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| | - Shaowei Fu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd., Beijing, China
| | - Min Yang
- Department of Nutrition and Food Hygiene School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Min Yang
| |
Collapse
|
21
|
Gao C, Koko MYF, Ding M, Hong W, Li J, Dong N, Hui M. Intestinal alkaline phosphatase (IAP, IAP Enhancer) attenuates intestinal inflammation and alleviates insulin resistance. Front Immunol 2022; 13:927272. [PMID: 35958560 PMCID: PMC9359302 DOI: 10.3389/fimmu.2022.927272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the effects of intestinal alkaline phosphatase (IAP) in controlled intestinal inflammation and alleviated associated insulin resistance (IR). We also explored the possible underlying molecular mechanisms, showed the preventive effect of IAP on IR in vivo, and verified the dephosphorylation of IAP for the inhibition of intestinal inflammation in vitro. Furthermore, we examined the preventive role of IAP in IR induced by a high-fat diet in mice. We found that an IAP + IAP enhancer significantly ameliorated blood glucose, insulin, low-density lipoprotein, gut barrier function, inflammatory markers, and lipopolysaccharide (LPS) in serum. IAP could dephosphorylate LPS and nucleoside triphosphate in a pH-dependent manner in vitro. Firstly, LPS is inactivated by IAP and IAP reduces LPS-induced inflammation. Secondly, adenosine, a dephosphorylated product of adenosine triphosphate, elicited anti-inflammatory effects by binding to the A2A receptor, which inhibits NF-κB, TNF, and PI3K-Akt signalling pathways. Hence, IAP can be used as a natural anti-inflammatory agent to reduce intestinal inflammation-induced IR.
Collapse
Affiliation(s)
- Chenzhe Gao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | | | | | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jianping Li
- College of Food, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
- *Correspondence: Na Dong, ; Mizhou Hui,
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, China
- *Correspondence: Na Dong, ; Mizhou Hui,
| |
Collapse
|
22
|
Han M, Fu X, Xin X, Dong Y, Miao Z, Li J. High Dietary Organic Iron Supplementation Decreases Growth Performance and Induces Oxidative Stress in Broilers. Animals (Basel) 2022; 12:1604. [PMID: 35804503 PMCID: PMC9264942 DOI: 10.3390/ani12131604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although Iron (Fe) is an essential nutrient that plays a vital role in respiratory processes, excessive Fe in the diet can affect the health of broilers. We investigated the effects of diet supplemented with high levels of iron chelates with lysine and glutamic acid (Fe−LG) on the growth performance, serum biochemical parameters, antioxidant status, and duodenal mRNA expression of Fe transporters in broilers. A total of 800 1-day-old male Arbor Acres broilers were assigned to 5 groups, with 8 replicates each. Broilers were fed a corn−soybean meal basal diet or basal diets supplemented with 40, 80, 400, or 800 mg Fe/kg as Fe−LG for 6 weeks. The body weight (BW) was increased in the 80 mg Fe/kg treatment group, but decreased in the 800 mg Fe/kg treatment group on day 21. During days 1−21, compared with the control group, the supplementation of the 80 mg Fe/kg increased the average daily gain (ADG) and average daily feed intake (ADFI); however, the supplementation of the 800 mg Fe/kg group decreased the ADG and increased the FCR in broilers (p < 0.05). The heart, liver, spleen, and kidney indices were reduced in the 800 mg Fe/kg treatment group (p < 0.05). The supplementation of the 800 mg Fe/kg group increased the serum aspartate aminotransferase activity and the levels of creatinine and urea nitrogen on day 42 (p < 0.05). The broilers had considerably low liver total superoxide dismutase activity and total antioxidant capacity in the 800 mg Fe/kg treatment group (p < 0.05). Serum and liver Fe concentrations were elevated in the 400 and 800 mg Fe/kg treatment groups, but were not affected in the 40 and 80 mg Fe/kg treatment groups. The duodenal Fe transporters divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1) were downregulated in the Fe−LG treatment groups (p < 0.05). We conclude that a high dietary supplement of 800 mg Fe/kg in broilers leads to detrimental health effects, causing kidney function injury and liver oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China; (M.H.); (X.F.); (X.X.); (Y.D.); (Z.M.)
| |
Collapse
|
23
|
Zhong Y, Fu D, Deng Z, Tang W, Mao J, Zhu T, Zhang Y, Liu J, Wang H. Lactic Acid Bacteria Mixture Isolated From Wild Pig Alleviated the Gut Inflammation of Mice Challenged by Escherichia coli. Front Immunol 2022; 13:822754. [PMID: 35154141 PMCID: PMC8825813 DOI: 10.3389/fimmu.2022.822754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Wild pigs usually showed high tolerance and resistance to several diseases in the wild environment, suggesting that the gut bacteria of wild pigs could be a good source for discovering potential probiotic strains. In our study, wild pig feces were sequenced and showed a higher relative abundance of the genus Lactobacillus (43.61% vs. 2.01%) than that in the domestic pig. A total of 11 lactic acid bacteria (LAB) strains including two L. rhamnosus, six L. mucosae, one L. fermentum, one L. delbrueckii, and one Enterococcus faecalis species were isolated. To investigate the synergistic effects of mixed probiotics strains, the mixture of 11 LAB strains from an intestinal ecology system was orally administrated in mice for 3 weeks, then the mice were challenged with Escherichia coli ATCC 25922 (2 × 109 CFU) and euthanized after challenge. Mice administrated with LAB strains showed higher (p < 0.05) LAB counts in feces and ileum. Moreover, alterations of specific bacterial genera occurred, including the higher (p < 0.05) relative abundance of Butyricicoccus and Clostridium IV and the lower (p < 0.05) abundance of Enterorhabdus in mice fed with mixed LAB strains. Mice challenged with Escherichia coli showed vacuolization of the liver, lower GSH in serum, and lower villus to the crypt proportion and Claudin-3 level in the gut. In contrast, administration of mixed LAB strains attenuated inflammation of the liver and gut, especially the lowered IL-6 and IL-1β levels (p < 0.05) in the gut. Our study highlighted the importance of gut bacterial diversity and the immunomodulation effects of LAB strains mixture from wild pig in gut health.
Collapse
Affiliation(s)
- Yifan Zhong
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Dongyan Fu
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Zhaoxi Deng
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Wenjie Tang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Jiangdi Mao
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Tao Zhu
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Yu Zhang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Jianxin Liu
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Haifeng Wang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
24
|
Asperti M, Brilli E, Denardo A, Gryzik M, Pagani F, Busti F, Tarantino G, Arosio P, Girelli D, Poli M. Iron distribution in different tissues of homozygous Mask (msk/msk) mice and the effects of oral iron treatments. Am J Hematol 2021; 96:1253-1263. [PMID: 34343368 PMCID: PMC9292262 DOI: 10.1002/ajh.26311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 11/06/2022]
Abstract
Iron-refractory iron deficiency anemia (IRIDA) is an autosomal recessive disorder caused by genetic mutations on TMPRSS6 gene which encodes Matriptase2 (MT2). An altered MT2 cannot appropriately suppress hepatic BMP6/SMAD signaling in case of low iron, hence hepcidin excess blocks dietary iron absorption, leading to a form of anemia resistant to oral iron supplementation. In this study, using the IRIDA mouse model Mask, we characterized homozygous (msk/msk) compared to asymptomatic heterozygous (msk/wt) mice, assessing the major parameters of iron status in different organs, at different ages in both sexes. The effect of carbonyl iron diet was analyzed as control iron supplementation being used for many studies in mice. It resulted effective in both anemic control and msk/msk mice, as expected, even if there is no information about its mechanism of absorption. Then, we mainly compared two forms of oral iron supplement, largely used for humans: ferrous sulfate and Sucrosomial iron. In anemic control mice, the two oral formulations corrected hemoglobin levels from 11.40 ± 0.60 to 15.38 ± 1.71 g/dl in 2-4 weeks. Interestingly, in msk/msk mice, ferrous sulfate did not increase hemoglobin likely due to ferroportin/hepcidin-dependent absorption, whereas Sucrosomial iron increased it from 11.50 ± 0.60 to 13.53 ± 0.64 g/dl mainly in the first week followed by a minor increase at 4 weeks with a stable level of 13.30 ± 0.80 g/dl, probably because of alternative absorption. Thus, Sucrosomial iron, already used in other conditions of iron deficiency, may represent a promising option for oral iron supplementation in IRIDA patients.
Collapse
Affiliation(s)
- Michela Asperti
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | | | - Andrea Denardo
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Magdalena Gryzik
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Francesca Pagani
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Fabiana Busti
- Department of Medicine University of Verona Verona Italy
| | | | - Paolo Arosio
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Domenico Girelli
- Department of Medicine University of Verona Verona Italy
- Azienda Ospedaliera Integrata Verona Veneto Region Referral Center for Iron Metabolism Disorders, GIMFer (Gruppo Interdisciplinare sulle Malattie del Ferro) Verona Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| |
Collapse
|
25
|
Al-Hassi HO, Ng O, Evstatiev R, Mangalika M, Worton N, Jambrich M, Khare V, Phipps O, Keeler B, Gasche C, Acheson AG, Brookes MJ. Intravenous iron is non-inferior to oral iron regarding cell growth and iron metabolism in colorectal cancer associated with iron-deficiency anaemia. Sci Rep 2021; 11:13699. [PMID: 34211054 PMCID: PMC8249613 DOI: 10.1038/s41598-021-93155-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/10/2021] [Indexed: 01/25/2023] Open
Abstract
Oral iron promotes intestinal tumourigenesis in animal models. In humans, expression of iron transport proteins are altered in colorectal cancer. This study examined whether the route of iron therapy alters iron transport and tumour growth. Colorectal adenocarcinoma patients with pre-operative iron deficiency anaemia received oral ferrous sulphate (n = 15), or intravenous ferric carboxymaltose (n = 15). Paired (normal and tumour tissues) samples were compared for expression of iron loading, iron transporters, proliferation, apoptosis and Wnt signalling using immunohistochemistry and RT-PCR. Iron loading was increased in tumour and distributed to the stroma in intravenous treatment and to the epithelium in oral treatment. Protein and mRNA expression of proliferation and iron transporters were increased in tumours compared to normal tissues but there were no significant differences between the treatment groups. However, intravenous iron treatment reduced ferritin mRNA levels in tumours and replenished body iron stores. Iron distribution to non-epithelial cells in intravenous iron suggests that iron is less bioavailable to tumour cells. Therefore, intravenous iron may be a better option in the treatment of colorectal cancer patients with iron deficiency anaemia due to its efficiency in replenishing iron levels while its effect on proliferation and iron metabolism is similar to that of oral iron treatment.
Collapse
Affiliation(s)
- Hafid O Al-Hassi
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Oliver Ng
- NIHR Nottingham Biomedical Research Centre and the University of Nottingham, Nottingham, UK
| | - Rayko Evstatiev
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Manuela Jambrich
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Oliver Phipps
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Barrie Keeler
- NIHR Nottingham Biomedical Research Centre and the University of Nottingham, Nottingham, UK
| | - Christoph Gasche
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Austin G Acheson
- NIHR Nottingham Biomedical Research Centre and the University of Nottingham, Nottingham, UK
| | - Matthew J Brookes
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK. .,The Royal Wolverhampton NHS Trust, Wolverhampton, UK.
| |
Collapse
|
26
|
Alemao CA, Budden KF, Gomez HM, Rehman SF, Marshall JE, Shukla SD, Donovan C, Forster SC, Yang IA, Keely S, Mann ER, El Omar EM, Belz GT, Hansbro PM. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy 2021; 76:714-734. [PMID: 32762040 DOI: 10.1111/all.14548] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of chronic immune and metabolic disorders is increasing rapidly. In particular, inflammatory bowel diseases, obesity, diabetes, asthma and chronic obstructive pulmonary disease have become major healthcare and economic burdens worldwide. Recent advances in microbiome research have led to significant discoveries of associative links between alterations in the microbiome and health, as well as these chronic supposedly noncommunicable, immune/metabolic disorders. Importantly, the interplay between diet, microbiome and the mucous barrier in these diseases has gained significant attention. Diet modulates the mucous barrier via alterations in gut microbiota, resulting in either disease onset/exacerbation due to a "poor" diet or protection against disease with a "healthy" diet. In addition, many mucosa-associated disorders possess a specific gut microbiome fingerprint associated with the composition of the mucous barrier, which is further influenced by host-microbiome and inter-microbial interactions, dietary choices, microbe immigration and antimicrobials. Our review focuses on the interactions of diet (macronutrients and micronutrients), gut microbiota and mucous barriers (gastrointestinal and respiratory tract) and their importance in the onset and/or progression of major immune/metabolic disorders. We also highlight the key mechanisms that could be targeted therapeutically to prevent and/or treat these disorders.
Collapse
Affiliation(s)
- Charlotte A. Alemao
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Kurtis F. Budden
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Henry M. Gomez
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Saima F. Rehman
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Jacqueline E. Marshall
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Chantal Donovan
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Samuel C. Forster
- Department of Molecular and Translational Sciences Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases Monash University Clayton VIC Australia
| | - Ian A. Yang
- Thoracic Program The Prince Charles Hospital Metro North Hospital and Health Service Brisbane QLD Australia
- Faculty of Medicine UQ Thoracic Research Centre The University of Queensland Brisbane QLD Australia
| | - Simon Keely
- Hunter Medical Research Institute Priority Research Centre for Digestive Health and Neurogastroenterology University of Newcastle New Lambton Heights NSW Australia
| | - Elizabeth R. Mann
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
- Faculty of Biology Medicine and Health Manchester Collaborative Centre for Inflammation Research Manchester Academic Health Science Centre University of Manchester Manchester UK
| | - Emad M. El Omar
- St George & Sutherland Clinical School Microbiome Research Centre University of New South Wales Sydney NSW Australia
| | - Gabrielle T. Belz
- Diamantina Institute University of Queensland Woolloongabba QLD Australia
- Department of Medical Biology Walter and Eliza Hall Institute of Medical Research University of Melbourne Parkville VIC Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| |
Collapse
|
27
|
Winiarska A, Filipska I, Knysak M, Stompór T. Dietary Phosphorus as a Marker of Mineral Metabolism and Progression of Diabetic Kidney Disease. Nutrients 2021; 13:789. [PMID: 33673618 PMCID: PMC7997399 DOI: 10.3390/nu13030789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Phosphorus is an essential nutrient that is critically important in the control of cell and tissue function and body homeostasis. Phosphorus excess may result in severe adverse medical consequences. The most apparent is an impact on cardiovascular (CV) disease, mainly through the ability of phosphate to change the phenotype of vascular smooth muscle cells and its contribution to pathologic vascular, valvular and other soft tissue calcification. Chronic kidney disease (CKD) is the most prevalent chronic disease manifesting with the persistent derangement of phosphate homeostasis. Diabetes and resulting diabetic kidney disease (DKD) remain the leading causes of CKD and end-stage kidney disease (ESRD) worldwide. Mineral and bone disorders of CKD (CKD-MBD), profound derangement of mineral metabolism, develop in the course of the disease and adversely impact on bone health and the CV system. In this review we aimed to discuss the data concerning CKD-MBD in patients with diabetes and to analyze the possible link between hyperphosphatemia, certain biomarkers of CKD-MBD and high dietary phosphate intake on prognosis in patients with diabetes and DKD. We also attempted to clarify if hyperphosphatemia and high phosphorus intake may impact the onset and progression of DKD. Careful analysis of the available literature brings us to the conclusion that, as for today, no clear recommendations based on the firm clinical data can be provided in terms of phosphorus intake aiming to prevent the incidence or progression of diabetic kidney disease.
Collapse
Affiliation(s)
| | | | | | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10561 Olsztyn, Poland; (A.W.); (I.F.); (M.K.)
| |
Collapse
|