1
|
Nyvltova P, Capek J, Handl J, Petira F, Rousarova E, Ticha L, Jelinkova S, Rousar T. Mitochondrial damage precedes the changes of glutathione metabolism in CdCl 2 treated neuronal SH-SY5Y cells. Food Chem Toxicol 2024; 193:114953. [PMID: 39209146 DOI: 10.1016/j.fct.2024.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Cadmium crosses the blood-brain barrier inducing damage to neurons. Cell impairment is predominantly linked to oxidative stress and glutathione (GSH) depletion. On the other hand, several reports have described an increase of GSH levels in neuronal cells after CdCl2 exposure. Therefore, the aim of the present report was to investigate the relation between changes in GSH levels and mitochondrial damage in neuronal cells after CdCl2 treatment. To characterize neuronal impairment after CdCl2 treatment (0-200 μM) for 1-48 h, we used the SH-SY5Y cell line. We analyzed GSH metabolism and determined mitochondrial activity using high-resolution respirometry. CdCl2 treatment induced both the decreases and increases of GSH levels in SH-SY5Y cells. GSH concentration was significantly increased in cells incubated with up to 50 μM CdCl2 but only 100 μM CdCl2 induced GSH depletion linked to increased ROS production. The overexpression of proteins involved in GSH synthesis increased in response to 50 and 100 μM CdCl2 after 6 h. Finally, strong mitochondrial impairment was detected even in 50 μM CdCl2 treated cells after 24 h. We conclude that a significant decrease in mitochondrial activity can be observed in 50 μM CdCl2 even without the occurrence of GSH depletion in SH-SY5Y cells.
Collapse
Affiliation(s)
- Pavlina Nyvltova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Filip Petira
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Erika Rousarova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Lenka Ticha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Stepanka Jelinkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
2
|
Liu D, Yang S, Yu S. Interactions Between Ferroptosis and Oxidative Stress in Ischemic Stroke. Antioxidants (Basel) 2024; 13:1329. [PMID: 39594471 PMCID: PMC11591163 DOI: 10.3390/antiox13111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Ischemic stroke is a devastating condition that occurs due to the interruption of blood flow to the brain, resulting in a range of cellular and molecular changes. In recent years, there has been growing interest in the role of ferroptosis, a newly identified form of regulated cell death, in ischemic stroke. Ferroptosis is driven by the accumulation of lipid peroxides and is characterized by the loss of membrane integrity. Additionally, oxidative stress, which refers to an imbalance between prooxidants and antioxidants, is a hallmark of ischemic stroke and significantly contributes to the pathogenesis of the disease. In this review, we explore the interactions between ferroptosis and oxidative stress in ischemic stroke. We examine the underlying mechanisms through which oxidative stress induces ferroptosis and how ferroptosis, in turn, exacerbates oxidative stress. Furthermore, we discuss potential therapeutic strategies that target both ferroptosis and oxidative stress in the treatment of ischemic stroke. Overall, this review highlights the complex interplay between ferroptosis and oxidative stress in ischemic stroke and underscores the need for further research to identify novel therapeutic targets for this condition.
Collapse
Affiliation(s)
| | - Sha Yang
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Shuguang Yu
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| |
Collapse
|
3
|
Cui T, Dai X, Guo H, Wang D, Huang B, Pu W, Chu X, Zhang C. Molybdenum and cadmium co-induce necroptosis through Th1/Th2 imbalance-mediated endoplasmic reticulum stress in duck ovaries. J Environ Sci (China) 2024; 142:92-102. [PMID: 38527899 DOI: 10.1016/j.jes.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 03/27/2024]
Abstract
Cadmium (Cd) and excess molybdenum (Mo) pose serious threats to animal health. Our previous study has determined that Cd and/or Mo exposure can cause ovarian damage of ducks, while the specific mechanism is still obscure. To further investigate the toxic mechanism of Cd and Mo co-exposure in the ovary, forty 8-day-old female ducks were randomly allocated into four groups for 16 weeks, and the doses of Cd and Mo in basic diet per kg were as follows: control group, Mo group (100 mg Mo), Cd group (4 mg Cd), and Mo + Cd group (100 mg Mo + 4 mg Cd). Cadmium sulfate 8/3-hydrate (CdSO4·8/3H2O) and hexaammonium molybdate ((NH4)6Mo7O24·4H2O) were the origins of Cd and Mo, respectively. At the 16th week of the experiment, all ovary tissues were collected for the detection of related indexes. The data indicated that Mo and/or Cd induced trace element disorders and Th1/Th2 balance to divert toward Th1 in the ovary, which activated endoplasmic reticulum (ER) stress and then provoked necroptosis through triggering RIPK1/RIPK3/MLKL signaling pathway, and eventually caused ovarian pathological injuries and necroptosis characteristics. The alterations of above indicators were most apparent in the joint group. Above all, this research illustrates that Mo and/or Cd exposure can initiate necroptosis through Th1/Th2 imbalance-modulated ER stress in duck ovaries, and Mo and Cd combined exposure aggravates ovarian injuries. This research explores the molecular mechanism of necroptosis caused by Mo and/or Cd, which reveals that ER stress attenuation may be a therapeutic target to alleviate necroptosis.
Collapse
Affiliation(s)
- Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
Turkez H, Alak G, Ozgeris FB, Cilingir Yeltekin A, Ucar A, Parlak V, Şuţan NA, Atamanalp M. Borax attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/ROS balance in acrylamide-induced neurotoxicity in rainbow trout. Drug Chem Toxicol 2024:1-10. [PMID: 38938109 DOI: 10.1080/01480545.2024.2370916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
Acrylamide (ACR) can have adverse environmental effects because of its multiple applications. Relevant scientific literatures of the existence of ACR residues in foods following processing steps have raised concern in the biochemistry, chemistry and safety of this vinyl substance. The interest has focused on the hepatotoxicity of ACR in animals and humans and on the ACR content mitigation and its detoxification. Borax (BX), as a naturally occurring antioxidant featured boron compound, was selected in this investigation to assess its possible neuro-protective potential against ACR-induced neurotoxicity. Nrf2 axis signaling pathways and detoxification response to oxidative stress after exposure to ACR in brains of rainbow trout, and the effect of BX application on reducing ACR-induced neurotoxicity were investigated. Rainbow trout were acutely exposed to ACR (12.5 mg/L) alone or simultaneously treated with BX (0.75 mg/L) during 96h. The exposed fish were sampled at 48th and 96th and oxidative stress response endpoints, 8-OHdG, Nrf2, TNF-α, caspase-3, in addition to IL-6 activities and the levels of AChE and BDNF in brain tissues of rainbow trout (Oncorhynchus mykiss) were evaluated. Samples showed decreases in the levels of ACR-mediated biomarkers used to assess neural toxicity (SOD, CAT, GPx, AChE, BDNF, GSH), increased levels of MDA, MPO, DNA damage and apoptosis. ACR disrupted the Nrf2 pathway, and induced neurotoxicity. Inhibited activities' expressions under simultaneous administration experiments, revealed the protective effects of BX against ACR-induced toxicity damage. The obtained data allow the outline of early multi-parameter signaling pathways in rainbow trout.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Seaafod Processing, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
| | - Fatma Betul Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkey
| | | | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | | | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Yu J, Fu R, Buhe A, Xu B. Quercetin attenuates lipopolysaccharide-induced hepatic inflammation by modulating autophagy and necroptosis. Poult Sci 2024; 103:103719. [PMID: 38603936 PMCID: PMC11017357 DOI: 10.1016/j.psj.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Lipopolysaccharide (LPS) from Gram-negative bacteria initially induces liver inflammation with proinflammatory cytokines expressions. However, the underlying hepatoprotective mechanism of quercetin on LPS-induced hepatic inflammation remains unclear. Specific pathogen-free chicken embryos (n = 120) were allocated control vehicle, PBS with or without ethanol vehicle, LPS (125 ng/egg) with or without quercetin treatment (10, 20, or 40 nmol/egg, respectively), quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated abovementioned solutions via the allantoic cavity. At embryonic d 19, the livers of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, and immunohistochemistry investigation. We found that the liver presented inflammatory response (heterophils infiltration) after LPS induction. The LPS-induced mRNA expressions of inflammation-related factors (TLR4, TNFα, IL-1β, IL-10, IL-6, MYD88, NF-κB1, p38, and MMP3) were upregulated after LPS induction when compared with the PBS group, while quercetin could downregulate these expressions as compared with the LPS group. Quercetin significantly decreased the immunopositivity to TLR4 and MMP3 in the treatment group when compared with the LPS group. Quercetin could significantly downregulate the mRNA expressions of autophagy-related genes (ATG5, ATG7, Beclin-1, LC3A, and LC3B) and necroptosis-related genes (Fas, Bcl-2, Drp1, and RIPK1) after LPS induction. Quercetin significantly decreased the immunopositivity to LC3 in the treatment group when compared with the LPS group; meanwhile, quercetin significantly decreased the protein expressions of LC3-I, LC3-II, and the rate of LC3-II/LC3-I. In conclusions, quercetin can alleviate hepatic inflammation induced by LPS through modulating autophagy and necroptosis.
Collapse
Affiliation(s)
- Jinhai Yu
- Camellia Research Institute, The Innovation Institute of Agricultural Technology, Department of Life Science, Shangrao Normal University, Shangrao 334001, China.
| | - Rong Fu
- Department of Literature and Media, Shangrao Normal University, Shangrao 334001, China
| | - Amin Buhe
- Department of Cancer Surgery, Beijing Shijitan Hospital Affiliated with Capital Medical University, Beijing 100038, China
| | - Bing Xu
- Camellia Research Institute, The Innovation Institute of Agricultural Technology, Department of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
6
|
Xu YR, Talukder M, Li CX, Zhao YX, Zhang C, Ge J, Li JL. Nano-selenium alleviates cadmium-induced neurotoxicity in cerebrum via inhibiting gap junction protein connexin 43 phosphorylation. ENVIRONMENTAL TOXICOLOGY 2024; 39:1163-1174. [PMID: 37860879 DOI: 10.1002/tox.24001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.
Collapse
Affiliation(s)
- Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
7
|
Kamal R, Paul P, Thakur S, Singh SK, Awasthi A. Quercetin in Oncology: A Phytochemical with Immense Therapeutic Potential. Curr Drug Targets 2024; 25:740-751. [PMID: 38988154 DOI: 10.2174/0113894501292466240627050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Quercetin is a natural flavonoid with various pharmacological actions such as anti-inflammatory, antioxidant, antimicrobial, anticancer, antiviral, antidiabetic, cardioprotective, neuroprotective, and antiviral activities. Looking at these enormous potentials, researchers have explored how they can be used to manage numerous cancers. It's been studied for cancer management due to its anti-angiogenesis, anti-metastatic, and antiproliferative mechanisms. Despite having these proven pharmacological activities, the clinical use of quercetin is limited due to its first-- pass metabolism, poor solubility, and bioavailability. To address these shortcomings, researchers have fabricated various nanocarriers-based formulations to fight cancer. The present review overshadows the pharmacological potential, mechanisms, and application of nanoformulations against different cancers. Teaser: Explore the potential of Quercetin, a natural flavonoid with diverse pharmacological activities, and its nanoformulations in managing various cancers.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Priyanka Paul
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
8
|
Yu M, Jiang C, Liang J, Zhang H, Teng X, Kang L. HSP27-HSP40-HSP70-HSP90 pathway participated in molecular mechanism of selenium alleviating lead-caused oxidative damage and proteotoxicity in chicken Bursa of Fabricius. Anim Biotechnol 2023; 34:4403-4414. [PMID: 36542527 DOI: 10.1080/10495398.2022.2155175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lead (Pb), a toxic environmental pollutant, is hazardous to the health of humans and birds. Bursa of Fabricius (BF) is a unique organ of birds. Toxic substances can attack BF and induce proteotoxicity. Increased heat shock proteins (HSPs) can induce oxidative damage. Selenium (Se) can alleviate harmful substance-caused oxidative damage. This study aimed to investigate whether Pb can cause oxidative damage and proteotoxicity, as well as Se reverse Pb-caused chicken BF toxicity. A model of chickens treated with Se and Pb alone and in combination was established. BFs were collected on days 30, 60, and 90. H&E and qRT-PCR were performed to observe the microstructure and to detect HSP27, HSP40, HSP60, HSP70, and HSP90 mRNA levels, respectively, in BFs. Multivariate correlation analysis and principal component analysis were conducted to explore the correlation among the five HSPs. In our results, Pb caused BF damage and up-regulated the five HSPs at three time points, causing oxidative damage and proteotoxicity via HSP27-HSP40-HSP70-HSP90 pathway. Furthermore, Pb caused time-dependent stress on HSP27, HSP40, HSP60, and HSP70. In addition, Se relieved Pb-caused damage and up-regulation of HSPs. Taken together, we concluded that Se alleviated Pb-caused oxidative injury and proteotoxicity in chicken BFs via the HSP27-HSP40-HSP70-HSP90 pathway.
Collapse
Affiliation(s)
- Meijin Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Chunyu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiatian Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lu Kang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
9
|
Wu T, Sheng Y, Tian Y, Wang C. Vitexin Regulates Heat Shock Protein Expression by Modulating ROS Levels Thereby Protecting against Heat-Stress-Induced Apoptosis. Molecules 2023; 28:7639. [PMID: 38005362 PMCID: PMC10675196 DOI: 10.3390/molecules28227639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Heat stress due to high temperatures can cause heat stroke, pyrexia, heat cramps, heart disease, and respiratory diseases, which seriously affect human health. Vitexin has been shown to alleviate heat stress; however, its mechanism of action remains unclear. Therefore, in this study, we used Caco-2 cells to establish a heat stress model and vitamin C as a positive control to investigate the regulatory effects of vitexin on heat-stress-induced apoptosis and the related mechanisms using Cell Counting Kit-8, flow cytometry, real-time quantitative polymerase chain reaction, and Western blot. The results showed that the mRNA expressions of Hsp27, Hsp70, and Hsp90 induced by heat stress could be effectively inhibited at vitexin concentrations as low as 30 μM. After heat stress prevention and heat stress amelioration in model cells based on this concentration, intracellular reactive oxygen species (ROS) levels and the mRNA level and the protein expression of heat shock proteins (Hsp70 and Hsp90) and apoptotic proteins were reduced. In addition, compared with the heat stress amelioration group, the expression of BCL2 mRNA and its protein (anti-apoptotic protein Bcl-2) increased in the heat stress prevention group, while the expression of BAX, CYCS, CASP3, and PARP1 mRNAs and their proteins (apoptotic proteins Bax, Cytochrome C, cle-Caspase-3, and cle-PARP1) were decreased. In summary, the heat-stress-preventive effect of vitexin was slightly better than its heat-stress-ameliorating effect, and its mechanism may be through the inhibition of intracellular ROS levels and thus the modulation of the expressions of Hsp70 and Hsp90, which in turn protects against heat-stress-induced apoptosis. This study provides a theoretical basis for the prevention and amelioration of heat stress using vitexin.
Collapse
Affiliation(s)
- Tong Wu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
10
|
Liu J, Zhou M, Xu Q, Lv Q, Guo J, Qin X, Xu X, Chen S, Zhao J, Xiao K, Liu Y. Quercetin Ameliorates Deoxynivalenol-Induced Intestinal Injury and Barrier Dysfunction Associated with Inhibiting Necroptosis Signaling Pathway in Weaned Pigs. Int J Mol Sci 2023; 24:15172. [PMID: 37894853 PMCID: PMC10607508 DOI: 10.3390/ijms242015172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Quercetin (Que) is a flavonol compound found in plants, which has a variety of biological activities. Necroptosis, a special form of programmed cell death, plays a vital role in the development of many gastrointestinal diseases. This study aimed to explore whether Que could attenuate the intestinal injury and barrier dysfunction of piglets after deoxynivalenol (DON) exposure through modulating the necroptosis signaling pathway. Firstly, twenty-four weaned piglets were used in a 2 × 2 factorial design and the main factors, including Que (basal diet or diet supplemented with 100 mg/kg Que) and DON exposure (control feed or feed contaminated with 4 mg/kg DON). After feeding for 21 d, piglets were killed for samples. Next, the intestinal porcine epithelial cell line (IPEC-1) was pretreated with or without Que (10 μmol/mL) in the presence or absence of a DON challenge (0.5 μg/mL). Dietary Que increased the body weight, average daily gain, and average daily feed intake (p < 0.05) through the trial. Que supplementation improved the villus height, and enhanced the intestinal barrier function (p < 0.05) indicated by the higher protein expression of occludin and claudin-1 (p < 0.05) in the jejunum of the weaned piglets after DON exposure. Dietary Que also down-regulated the protein abundance of total receptor interacting protein kinase 1 (t-RIP1), phosphorylated RIP1 (p-RIP1), p-RIP3, total mixed lineage kinase domain-like protein (t-MLKL), and p-MLKL (p < 0.05) in piglets after DON exposure. Moreover, Que pretreatment increased the cell viability and decreased the lactate dehydrogenase (LDH) activity (p < 0.05) in the supernatant of IPEC-1 cells after DON challenge. Que treatment also improved the epithelial barrier function indicated by a higher transepithelial electrical resistance (TEER) (p < 0.001), lower fluorescein isothiocyanate-labeled dextran (FD4) flux (p < 0.001), and better distribution of occludin and claudin-1 (p < 0.05) after DON challenge. Additionally, pretreatment with Que also inhibited the protein abundance of t-RIP1, p-RIP1, t-RIP3, p-RIP3, t-MLKL, and p-MLKL (p < 0.05) in IPEC-1 cells after DON challenge. In general, our data suggest that Que can ameliorate DON-induced intestinal injury and barrier dysfunction associated with suppressing the necroptosis signaling pathway.
Collapse
Affiliation(s)
- Jiahao Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Mohan Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Qilong Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Qingqing Lv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Xiaoye Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China (X.Q.); (X.X.); (S.C.)
| |
Collapse
|
11
|
Talukder M, Bi SS, Lv MW, Ge J, Zhang C, Li JL. Involvement of the heat shock response (HSR) regulatory pathway in cadmium-elicited cerebral damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106648-106659. [PMID: 37730984 DOI: 10.1007/s11356-023-29880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
The heat shock response (HSR) is a cellular protective mechanism that is characterized by the induction of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) in response to diverse cellular and environmental stressors, including cadmium (Cd). However, little is known about the relationship between the damaging effects of Cd and the HSR pathway in the chicken cerebrum following Cd exposure. To explore whether Cd exposure elicits cerebral damage and triggers the HSR pathway, chicks were exposed to Cd in the daily diet at different concentrations (35, 70, or 140 mg/kg feed) for 90 days, while a control group was fed the standard diet without Cd. Histopathological examination of cerebral tissue from Cd-exposed chickens showed neuronal damage, as evidenced by swelling and degeneration of neurons, loss of neurons, and capillary damage. Cd exposure significantly increased mRNA expression of HSF1, HSF2, and HSF3, and mRNA and protein expression of three major stress-inducible HSPs (HSP60, HSP70, and HSP90). Moreover, Cd exposure differentially modulated mRNA expression of small HSP (sHSPs), most notably reducing expression of HSP27 (HSPB1). Furthermore, Cd exposure increased TUNEL-positive neuronal apoptotic cells and up-regulated protein expression of caspase-1, caspase-8, caspase-3, and p53, leading to apoptosis. Taken together, these data demonstrate that activation of the HSR and apoptotic pathways by Cd exposure is involved in Cd-elicited cerebral damage in the chicken. Synopsis for the graphical abstract Cadmium (Cd)-induced neuronal damage triggers the heat shock response (HSR) by activating heat shock transcription factors (HSFs) and subsequent induction of major heat shock proteins (notably, HSP60, HSP70, and HSP90). Moreover, Cd exposure activates caspase-1, caspase-8, caspase-3, and p53 protein, thereby resulting in neuronal apoptosis in the chicken brain.
Collapse
Affiliation(s)
- Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
12
|
Wang J, Chen Y, Li M, Xia S, Zhao K, Fan H, Ni J, Sun W, Jia X, Lai S. The effects of differential feeding on ileum development, digestive ability and health status of newborn calves. Front Vet Sci 2023; 10:1255122. [PMID: 37745216 PMCID: PMC10514501 DOI: 10.3389/fvets.2023.1255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Pre-weaning is the most important period for the growth and development of calves. Intestinal morphology, microbial community and immunity are initially constructed at this stage, and even have a lifelong impact on calves. Early feeding patterns have a significant impact on gastrointestinal development and microbial communities. This study mainly analyzed the effects of three feeding methods on the gastrointestinal development of calves, and provided a theoretical basis for further improving the feeding mode of calves. it is very important to develop a suitable feeding mode. In this study, we selected nine newborn healthy Holstein bull calves were randomly selected and divided into three groups (n = 3), which were fed with starter + hay + milk (SH group), starter + milk (SF group), total mixed ration + milk (TMR group). After 80 days of feeding Feeding to 80 days of age after, the ileum contents and blood samples were collected, and the differences were compared and analyzed by metagenomic analysis and serum metabolomics analysis. Results show that compared with the other two groups, the intestinal epithelium of the SH group was more complete and the goblet cells developed better. The feeding method of SH group was more conducive to the development of calves, with higher daily gain and no pathological inflammatory reaction. The intestinal microbial community was more conducive to digestion and absorption, and the immunity was stronger. These findings are helpful for us to explore better calf feeding patterns. In the next step, we will set up more biological replicates to study the deep-seated reasons for the differences in the development of pre-weaning calves. At the same time, the new discoveries of neuro microbiology broaden our horizons and are the focus of our future attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Zhang D, Hong L, Zhang RS, Zhang Q, Yao J, Wang J, Zhang N. Identification of the key mechanisms of action of Si-Ni-San in uveitis using bioinformatics and network pharmacology. Medicine (Baltimore) 2023; 102:e34615. [PMID: 37653797 PMCID: PMC10470687 DOI: 10.1097/md.0000000000034615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Uveitis is an eye disease with a high rate of blindness, whose pathogenesis is not completely understood. Si-Ni-San (SNS) has been used as a traditional medicine to treat uveitis in China. However, its mechanism of action remains unclear. This study explored the potential mechanisms of SNS in the treatment of uveitis through network pharmacology and bioinformatics. METHODS Using R language and Perl software, the active components and predicted targets of SNS, as well as the related gene targets of uveitis, were mined through the Traditional Chinese Medicine Systems Pharmacology, Therapeutic Target, Gene Expression Omnibus, GeneCards, and DrugBank databases. The network diagram of active components and intersection targets was constructed using Cytoscape software and the String database. The CytoNCA plug-in was used to conduct topological analysis on the network diagram and screen out the core compounds and key targets. The genes were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. Chemoffice, Pymol, AutoDock, and Vina were used to analyze the molecular docking of key targets and core compounds of diseases through the PubChem database. RESULTS JUN, RELA, and MAPK may play important roles in the treatment of uveitis by SNS. Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that core genes were mainly concentrated in MAPK, toll-like receptor, tumor necrosis factor, and nucleotide oligomerization domain-like receptor signaling pathways. In addition, molecular docking results showed that the bioactive compounds (kaempferol, luteolin, naringin, and quercetin) exhibited good binding ability to JUN, RELA, and MAPK. CONCLUSION Based on these findings, SNS exhibits multi-component and multi-target synergistic action in the treatment of uveitis, and its mechanism may be related to anti-inflammatory and immune regulation.
Collapse
Affiliation(s)
- Dandan Zhang
- Dalian Women and Children’s Medical Group, Dalian, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Ha Er Bin Shi, China
| | - Liu Hong
- Dalian Women and Children’s Medical Group, Dalian, China
| | - Rui Su Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qian Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Yao
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiadi Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Banan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Xia Y, Zhang Y, Zhang J, Du Y, Wang Y, Xu A, Li S. Cadmium exposure induces necroptosis of porcine spleen via ROS-mediated activation of STAT1/RIPK3 signaling pathway. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:382-392. [PMID: 37452679 DOI: 10.1002/em.22565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Cadmium (Cd), a heavy metal, is used in a wide range of applications, such as plastics, electroplating process, electronics, and so forth. Due to its bioaccumulation ability, Cd can contaminate soil, water, air and food. To determine the effect of Cd exposure on the necroptosis in pig spleen and its mechanistic investigation, we constructed a model in pigs by feeding them food containing 20 mg/kg Cd. In this study, we analyzed the effects of Cd exposure on pig spleen through HE staining, Quantitative real-time PCR (qRT-PCR), Western blot (WB), and principal component analysis (PCA). Results show that Cd exposure can destroy the structure and function of pig spleen, which is closely related to necroptosis. Further results show that Cd exposure can induce necroptosis through ROS-mediated activation of Signal transducer and activator of transcription 1/Receptor-Interacting Serine/Threonine-Protein Kinase 3 (STAT1/RIPK3) signaling pathway in pig spleen. Additionally, Cd exposure also can affect the stability of mitochondrial-associated endoplasmic reticulum membrane (MAMs) structure, which also contributes to the process of necroptosis. Our study provides insights into the physiological toxicity caused by Cd exposure.
Collapse
Affiliation(s)
- Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jintao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yongzhen Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anqi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
15
|
Abd El-Emam MM, Mostafa M, Farag AA, Youssef HS, El-Demerdash AS, Bayoumi H, Gebba MA, El-Halawani SM, Saleh AM, Badr AM, El Sayed S. The Potential Effects of Quercetin-Loaded Nanoliposomes on Amoxicillin/Clavulanate-Induced Hepatic Damage: Targeting the SIRT1/Nrf2/NF-κB Signaling Pathway and Microbiota Modulation. Antioxidants (Basel) 2023; 12:1487. [PMID: 37627483 PMCID: PMC10451903 DOI: 10.3390/antiox12081487] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
Amoxicillin/clavulanate (Co-Amox), a commonly used antibiotic for the treatment of bacterial infections, has been associated with drug-induced liver damage. Quercetin (QR), a naturally occurring flavonoid with pleiotropic biological activities, has poor water solubility and low bioavailability. The objective of this work was to produce a more bioavailable formulation of QR (liposomes) and to determine the effect of its intraperitoneal pretreatment on the amelioration of Co-Amox-induced liver damage in male rats. Four groups of rats were defined: control, QR liposomes (QR-lipo), Co-Amox, and Co-Amox and QR-lipo. Liver injury severity in rats was evaluated for all groups through measurement of serum liver enzymes, liver antioxidant status, proinflammatory mediators, and microbiota modulation. The results revealed that QR-lipo reduced the severity of Co-Amox-induced hepatic damage in rats, as indicated by a reduction in serum liver enzymes and total liver antioxidant capacity. In addition, QR-lipo upregulated antioxidant transcription factors SIRT1 and Nrf2 and downregulated liver proinflammatory signatures, including IL-6, IL-1β, TNF-α, NF-κB, and iNOS, with upregulation in the anti-inflammatory one, IL10. QR-lipo also prevented Co-Amox-induced gut dysbiosis by favoring the colonization of Lactobacillus, Bifidobacterium, and Bacteroides over Clostridium and Enterobacteriaceae. These results suggested that QR-lipo ameliorates Co-Amox-induced liver damage by targeting SIRT1/Nrf2/NF-κB and modulating the microbiota.
Collapse
Affiliation(s)
- Mahran Mohamed Abd El-Emam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Amina A. Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Banha 13518, Egypt;
| | - Heba S. Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Azza S. El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agriculture Research Centre (ARC), Animal Health Research Institute (AHRI), Zagazig 44516, Egypt;
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Mohammed A. Gebba
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
- Department of Anatomy and Embryology, Faculty of Medicine, Merit University, Sohag 82524, Egypt
| | - Sawsan M. El-Halawani
- Department of Biotechnology, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt;
| | - Abdulrahman M. Saleh
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Amira M. Badr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh P.O. Box 11451, Saudi Arabia
| | - Shorouk El Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
16
|
Cai J, Liu P, Zhang X, Shi B, Jiang Y, Qiao S, Liu Q, Fang C, Zhang Z. Micro-algal astaxanthin improves lambda-cyhalothrin-induced necroptosis and inflammatory responses via the ROS-mediated NF-κB signaling in lymphocytes of carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2023:108929. [PMID: 37414307 DOI: 10.1016/j.fsi.2023.108929] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Lambda-cyhalothrin (LCY) is a widely used toxic pesticide that causes harmful effects on the immune organs of fish and aquatic species. Micro-algal astaxanthin (MAA), a heme pigment found in haematococcus pluvialis, has been shown to benefit antioxidants and immunity in aquaculture. To investigate how MAA protects carp lymphocytes from LCY-induced immunotoxicity, a model of fish lymphocytes treated with LCY and/or MAA was established. Lymphocytes from carp (Cyprinus carpio L.) were given LCY (80 μM) and/or MAA (50 μM) as a treatment for a period of 24 h. Firstly, LCY exposure resulted in excessive ROS and malondialdehyde production and reduces antioxidant enzymes (SOD and CAT), indicating a reduced capacity of the antioxidant system. Secondly, the results of flow cytometry and AO/EB labeling proved that lymphocytes treated with LCY have a larger ratio of necroptosis. In addition, LCY upregulated the levels of necroptosis-related regulatory factors (RIP1, RIP3 and MLKL) via the ROS-mediated NF-κB signaling pathway in lymphocytes. Thirdly, LCY treatment caused increased secretion of inflammatory genes (IL-6, INF-γ, IL-4, IL-1β and TNF-α), leading to immune dysfunction in lymphocytes. Surprisingly, LCY-induced immunotoxicity was inhibited by MAA treatment, indicating that it effectively attenuated the LCY-induced changes described above. Overall, we concluded that MAA treatment could ameliorate LCY-induced necroptosis and immune dysfunction by inhibiting the ROS-mediated NF-κB signaling in lymphocytes. It provides insights into the protection of farmed fish from agrobiological threats in fish under LCY and the value of MAA applications in aquaculture.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yangyang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shenqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
17
|
Gupta R, Kumari S, Tripathi R, Ambasta RK, Kumar P. Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Res Rev 2023; 86:101855. [PMID: 36681250 DOI: 10.1016/j.arr.2023.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Necroptosis, a regulated form of cell death, is involved in the genesis and development of various life-threatening diseases, including cancer, neurological disorders, cardiac myopathy, and diabetes. Necroptosis initiates with the formation and activation of a necrosome complex, which consists of RIPK1, RIPK2, RIPK3, and MLKL. Emerging studies has demonstrated the regulation of the necroptosis cell death pathway through the implication of numerous post-translational modifications, namely ubiquitination, acetylation, methylation, SUMOylation, hydroxylation, and others. In addition, the negative regulation of the necroptosis pathway has been shown to interfere with brain homeostasis through the regulation of axonal degeneration, mitochondrial dynamics, lysosomal defects, and inflammatory response. Necroptosis is controlled by the activity and expression of signaling molecules, namely VEGF/VEGFR, PI3K/Akt/GSK-3β, c-Jun N-terminal kinases (JNK), ERK/MAPK, and Wnt/β-catenin. Herein, we briefly discussed the implication and potential of necrosome activation in the pathogenesis and progression of neurological manifestations, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic brain injury, and others. Further, we present a detailed picture of natural compounds, micro-RNAs, and chemical compounds as therapeutic agents for treating neurological manifestations.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
18
|
Xiao K, Zhou M, Lv Q, He P, Qin X, Wang D, Zhao J, Liu Y. Protocatechuic acid and quercetin attenuate ETEC-caused IPEC-1 cell inflammation and injury associated with inhibition of necroptosis and pyroptosis signaling pathways. J Anim Sci Biotechnol 2023; 14:5. [PMID: 36721159 PMCID: PMC9890695 DOI: 10.1186/s40104-022-00816-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/02/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Necroptosis and pyroptosis are newly identified forms of programmed cell death, which play a vital role in development of many gastrointestinal disorders. Although plant polyphenols have been reported to protect intestinal health, it is still unclear whether there is a beneficial role of plant polyphenols in modulating necroptosis and pyroptosis in intestinal porcine epithelial cell line (IPEC-1) infected with enterotoxigenic Escherichia coli (ETEC) K88. This research was conducted to explore whether plant polyphenols including protocatechuic acid (PCA) and quercetin (Que), attenuated inflammation and injury of IPEC-1 caused by ETEC K88 through regulating necroptosis and pyroptosis signaling pathways. METHODS IPEC-1 cells were treated with PCA (40 μmol/L) or Que (10 μmol/L) in the presence or absence of ETEC K88. RESULTS PCA and Que decreased ETEC K88 adhesion and endotoxin level (P < 0.05) in cell supernatant. PCA and Que increased cell number (P < 0.001) and decreased lactate dehydrogenases (LDH) activity (P < 0.05) in cell supernatant after ETEC infection. PCA and Que improved transepithelial electrical resistance (TEER) (P < 0.001) and reduced fluorescein isothiocyanate-labeled dextran (FD4) flux (P < 0.001), and enhanced membrane protein abundance of occludin, claudin-1 and ZO-1 (P < 0.05), and rescued distribution of these tight junction proteins (P < 0.05) after ETEC infection. PCA and Que also declined cell necrosis ratio (P < 0.05). PCA and Que reduced mRNA abundance and concentration of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-8 (P < 0.001), and down-regulated gene expression of toll-like receptors 4 (TLR4) and its downstream signals (P < 0.001) after ETEC infection. PCA and Que down-regulated protein abundance of total receptor interacting protein kinase 1 (t-RIP1), phosphorylated-RIP1 (p-RIP1), p-RIP1/t-RIP1, t-RIP3, p-RIP3, mixed lineage kinase domain-like protein (MLKL), p-MLKL, dynamin- related protein 1 (DRP1), phosphoglycerate mutase 5 (PGAM5) and high mobility group box 1 (HMGB1) (P < 0.05) after ETEC infection. Moreover, PCA and Que reduced protein abundance of nod-like receptor protein 3 (NLRP3), nod-like receptors family CARD domain-containing protein 4 (NLRC4), apoptosis-associated speck-like protein containing a CARD (ASC), gasdermin D (GSDMD) and caspase-1 (P < 0.05) after ETEC infection. CONCLUSIONS In general, our data suggest that PCA and Que are capable of attenuating ETEC-caused intestinal inflammation and damage via inhibiting necroptosis and pyroptosis signaling pathways.
Collapse
Affiliation(s)
- Kan Xiao
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Mohan Zhou
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Qingqing Lv
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Pengwei He
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Xu Qin
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Dan Wang
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Jiangchao Zhao
- grid.411017.20000 0001 2151 0999Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701 USA
| | - Yulan Liu
- grid.412969.10000 0004 1798 1968Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| |
Collapse
|
19
|
Balakrishnan KN, Ramiah SK, Zulkifli I. Heat Shock Protein Response to Stress in Poultry: A Review. Animals (Basel) 2023; 13:ani13020317. [PMID: 36670857 PMCID: PMC9854570 DOI: 10.3390/ani13020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Compared to other animal species, production has dramatically increased in the poultry sector. However, in intensive production systems, poultry are subjected to stress conditions that may compromise their well-being. Much like other living organisms, poultry respond to various stressors by synthesising a group of evolutionarily conserved polypeptides named heat shock proteins (HSPs) to maintain homeostasis. These proteins, as chaperones, play a pivotal role in protecting animals against stress by re-establishing normal protein conformation and, thus, cellular homeostasis. In the last few decades, many advances have been made in ascertaining the HSP response to thermal and non-thermal stressors in poultry. The present review focuses on what is currently known about the HSP response to thermal and non-thermal stressors in poultry and discusses the factors that modulate its induction and regulatory mechanisms. The development of practical strategies to alleviate the detrimental effects of environmental stresses on poultry will benefit from detailed studies that describe the mechanisms of stress resilience and enhance our understanding of the nature of heat shock signalling proteins and gene expression.
Collapse
Affiliation(s)
- Krishnan Nair Balakrishnan
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Suriya Kumari Ramiah
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Idrus Zulkifli
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-4882
| |
Collapse
|
20
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
21
|
Zhang N, Zhang Q, Zhang R, Zhang D. Exploring the mechanism of wendan decoction in the treatment of ischemic stroke using bioinformatics and network pharmacology. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
22
|
Zhang W, Xu M, Wen S, Wang L, Zhang K, Zhang C, Zou H, Gu J, Liu X, Bian J, Liu Z, Yuan Y. Puerarin alleviates cadmium-induced rat neurocyte injury by alleviating Nrf2-mediated oxidative stress and inhibiting mitochondrial unfolded protein response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114239. [PMID: 36326556 DOI: 10.1016/j.ecoenv.2022.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a highly neurotoxic environmental pollutant. Puerarin (Pur) is a natural antioxidant isolated from Kudzu root that exhibits a powerful neuroprotective effect. Herein, we illustrated the mechanism underlying the protective effect of Pur on Cd-induced rat neurocyte injury in an in vivo rat model as well as in vitro using PC12 cells and primary rat cerebral cortical neurons. First, the results showed that Pur alleviated Cd-induced cerebral cortical pathological damage and decreased the viability of neurocytes. Furthermore, Cd activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which plays a negative role in Cd-induced rat neurocyte injury. In addition, Pur alleviated Cd-induced oxidative stress by enhancing antioxidant defense, reducing reactive oxygen species (ROS) accumulation and lipid peroxidation, and inhibiting activation of the Nrf2 signaling pathway in rat neurocytes. Moreover, Pur inhibited the Cd-induced mitochondrial unfolded protein response (UPRmt) in rat neurocytes. Overall, Pur alleviated Cd-induced rat neurocyte injury by alleviating Nrf2-mediated oxidative stress and inhibiting UPRmt.
Collapse
Affiliation(s)
- Wenhua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingchang Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chaofan Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
23
|
Lv S, Jiang Y, Li Y, Huang R, Peng L, Ma Z, Lu N, Lin X, Yan J. Comparative and evolutionary analysis of RIP kinases in immune responses. Front Genet 2022; 13:796291. [PMID: 36263437 PMCID: PMC9573974 DOI: 10.3389/fgene.2022.796291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
The group of receptor-interacting protein (RIP) kinases has seven members (RIPK1–7), with one homologous kinase domain but distinct non-kinase regions. Although RIPK1–3 have emerged as key modulators of inflammation and cell death, few studies have connected RIPK4–7 to immune responses. The divergence in domain structures and paralogue information in the Ensembl database have raised question about the phylogeny of RIPK1–7. In this study, phylogenetic trees of RIPK1–7 and paralogues constructed using full-length amino acid sequences or Kinase domain demonstrate that RIPK6 and RIPK7 are distinct from RIPK1–5 and paralogues shown in the Ensembl database are inaccurate. Comparative and evolutionary analyses were subsequently performed to gain new clues about the potential functions of RIPK3–7. RIPK3 gene loss in birds and animals that undergo torpor, a common physiological phenomenon in cold environments, implies that RIPK3 may be involved in ischemia-reperfusion injury and/or high metabolic rate. The negligible expression of RIPK4 and RIPK5 in immune cells is likely responsible for the lack of studies on the direct role of these members in immunity; RIPK6 and RIPK7 are conserved among plants, invertebrates and vertebrates, and dominantly expressed in innate immune cells, indicating their roles in innate immunity. Overall, our results provide insights into the multifaceted and conserved biochemical functions of RIP kinases.
Collapse
Affiliation(s)
- Shangge Lv
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health. University of Memphis, Memphis, TN, United States
| | - Yuzheng Li
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Ruilin Huang
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingyu Peng
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaoyin Ma
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Lu
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| | - Xiaoying Lin
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| | - Jie Yan
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| |
Collapse
|
24
|
Li X, Ge M, Zhu W, Wang P, Wang J, Tai T, Wang Y, Sun J, Shi G. Protective Effects of Astilbin Against Cadmium-Induced Apoptosis in Chicken Kidneys via Endoplasmic Reticulum Stress Signaling Pathway. Biol Trace Elem Res 2022; 200:4430-4443. [PMID: 34799836 DOI: 10.1007/s12011-021-03029-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd) can cause endoplasmic reticulum stress (ERS) and apoptosis in animals. The kidney is an organ seriously affected by Cd because it can accumulate metal ions. Astilbin (ASB) is a dihydroflavonol rhamnoside, which has an anti-renal injury effect. This study aimed to evaluate the protective effect of ASB on Cd-induced ERS and apoptosis in the chicken kidney. In this study, a total of 120 1-day-old chickens were randomly divided into 4 groups. Chickens were fed with a basic diet (Con group), ASB 40 mg/kg (ASB group), CdCl2 150 mg/kg + ASB 40 mg/kg (ASB/Cd group), and CdCl2 150 mg/kg (Cd group) for 90 days. The results showed that Cd exposure induced pathological and ultrastructural damages and apoptosis in chicken kidneys. Compared with the Con group, metallothionein (MT1/MT2) level, nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, ERS-related genes 78-kDa glucose-regulated protein (Grp78), protein kinase PKR-like endoplasmic reticulum kinase (Perk), activating transcription factor 4 (Atf4) and CAAT/enhancer-binding protein (C/EBP) homologous protein (Chop), and pro-apoptotic gene B-cell lymphoma 2 (Bcl-2)-associated X (Bax), caspase-12, caspase-9, caspase-3 expression levels, and apoptotic rate were significantly increased in the Cd group. The expression level of Bcl-2 was significantly decreased in the Cd group. ASB/Cd combined treatment significantly improves the damage of chicken kidneys by ameliorating Cd-induced kidney ERS and apoptosis. Cd can cause the disorder of the GRP78 signal axis, activate the PERK-ATF4-CHOP pathway, aggravate the structural damage and dysfunction of ER, and promote the apoptosis of chicken kidneys, while the above changes were significantly alleviated in the ASB/Cd group. The results showed that ASB antagonizes the negative effects of Cd and against Cd-induced apoptosis in chicken kidneys via ERS signaling pathway.
Collapse
Affiliation(s)
- Xiuyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Weifeng Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Panpan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Jiangfeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Tiange Tai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Yuxi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Jianxu Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
25
|
Qi X, Ren Z, Cui Y, Zhang J, Zhang Y, Wang S, Lin H. Cadmium induces apoptosis by miR-9-5p targeting PTEN and regulates the PI3K/AKT pathway in the piglet adrenal gland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73001-73010. [PMID: 35616841 DOI: 10.1007/s11356-022-20734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is an environmental pollutant that can cause endocrine organ damage. To explore the effect of subacute CdCl2 exposure on piglet adrenal gland tissue and its mechanism based on the establishment of this model, bioinformatics, TUNEL assay, western blot (WB), and qRT-PCR methods were used to detect related indicators. The results showed that after Cd exposure, antioxidant enzymes decreased, heat shock protein increased, and miR-9-5p-gene of phosphatase and tensin homolog (PTEN) upregulates the phosphatidylinositol-3-kinase (PI3K/AKT) pathway. After this pathway was activated, the expression of the apoptosis-related factors cysteinyl aspartate-specific proteinase 3 and 9 (caspase 3 and 9), B-cell lymphoma-2-associated X (BAX) was increased sharply, and the expression of B-cell lymphoma-2 (BCL2) was significantly decreased. The changes in these indicators indicate that Cd exposure induces apoptosis and causes tissue damage in the adrenal gland of piglets. This study aims to reveal the toxic effects of CdCl2 in animals and will provide new ideas for the toxicology of Cd.
Collapse
Affiliation(s)
- Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zeheng Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jinxi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
26
|
Lin T, Nie G, Hu R, Luo J, Xing C, Hu G, Zhang C. Involvement of calcium homeostasis and unfolded protein response in autophagy co-induced by molybdenum and cadmium in duck (Anas platyrhyncha) brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38303-38314. [PMID: 35076842 DOI: 10.1007/s11356-022-18738-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Excess molybdenum (Mo) and cadmium (Cd) are harmful to animals, but neurotoxicity caused by Mo and Cd co-exposure in ducks is yet unknown. To assess joint impacts of Mo and Cd on autophagy via calcium homeostasis and unfolded protein response (UPR) in duck brain, 40 healthy 7-day-old ducks (Anas platyrhyncha) were assigned to 4 groups at random and fed diets supplemented with different doses of Mo or/and Cd for 16 weeks, respectively. Brain tissues were excised for experiment. Results exhibited that Mo or/and Cd disturbed calcium homeostasis by decreased ATPase activities and increased calcium (Ca) content, and upregulated calcium homeostasis-related factors Ca2+/CAM-dependent kinase IIɑ (CaMKIIɑ), calcineurin (CaN), inositol-1,4,5-trisphosphate receptor (IP3R), and calreticulin (CRT) expression levels. Meanwhile, the upregulation of UPR-related factor expression levels indicated that Mo or/and Cd activated UPR. Moreover, Mo or/and Cd triggered autophagy through promoting the number of autophagosomes and LC3II immunofluorescence intensity and altering autophagy key factor expression levels. Correlation analysis showed that there were obvious connections among Ca2+ homeostasis, endoplasmic reticulum (ER) stress, and autophagy induced by Mo or/and Cd. Thence, it can be speculated that autophagy initiated by Mo or/and Cd may be associated with interfering Ca2+ homeostasis and triggering UPR.
Collapse
Affiliation(s)
- Tianjin Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West Street, Economic and Technological Development District, Nanchang, 330032, Jiangxi, People's Republic of China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
27
|
Liu L, Zhao L, Liu Y, Yu X, Qiao X. Rutin Ameliorates Cadmium-Induced Necroptosis in the Chicken Liver via Inhibiting Oxidative Stress and MAPK/NF-κB Pathway. Biol Trace Elem Res 2022; 200:1799-1810. [PMID: 34091842 DOI: 10.1007/s12011-021-02764-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd) is a recognized toxic metal and exerts serious hepatotoxicity in animals and humans. Rutin (RUT) is a dietary bioflavonoid with strong antioxidant and anti-inflammatory potential. However, little is known about the alleviating effect of RUT against Cd-induced liver necroptosis. The aim of this study was to ascertain the ameliorative mechanism of RUT on necroptosis triggered by Cd in chicken liver. One hundred twenty-eight 100-day-old Isa hens were randomly divided into four groups: the control group, RUT group, Cd + RUT cotreated group, and Cd group. Cd exposure prominently elevated Cd accumulation and the activities of liver function indicators (ALT and AST). Furthermore, the histopathological results, the overexpression of genes (RIPK1, RIPK3, and MLKL) related to the necroptosis pathway, and low Caspase 8 levels in Cd-exposed chicken liver indicated that Cd intoxication induced necroptosis in chicken liver. Meanwhile, Cd administration drastically increased the levels of oxidizing stress biomarkers (ROS production, MDA content, iNOS activity, and NO generation), and obviously reduced the activities of antioxidant enzymes (SOD, GPx, and CAT) and total antioxidant capacity (T-AOC) in chicken liver. Cd treatment promoted the expression of the main members of the MAPK and NF-κB pathways (JNK, ERK, P38, NF-κB, and TNF-α) and activated heat shock proteins (HSP27, HSP40, HSP60, HSP70, and HSP90). However, RUT application remarkably alleviated these Cd-induced variations and necroptosis injury. Overall, our study demonstrated that RUT might prevent Cd-induced necroptosis in the chicken liver by inhibiting oxidative stress and MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Lili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, 150040, China.
| | - Liangyou Zhao
- Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yuan Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, 150040, China
| | - Xiaoli Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, China.
| |
Collapse
|
28
|
Zhao W, Song Y, Wang QQ, Han S, Li XX, Cui Y, Gao H, Yuan R, Yang S. Cryptotanshinone Induces Necroptosis through Ca2+ Release and ROS Production in vitro and in vivo. Curr Mol Pharmacol 2022; 15:1009-1023. [PMID: 35086466 DOI: 10.2174/1874467215666220127112201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Necroptosis is a type of programmed necrosis mediated by receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3), which is morphologically characterized by enlarged organelles, ruptured plasma membrane, and subsequent loss of intracellular contents. Cryptotanshinone (CPT), a diterpene quinone compound extracted from the root of Salvia miltiorrhiza Bunge, has been reported to have significant anticancer activities. However, the detailed mechanism of CPT has not been clearly illustrated. OBJECTIVE The present study aimed to explore the cell death type and mechanisms of CPT-induced in non-small cell lung cancer (NSCLC) cells. METHODS The cytotoxicity of CPT on A549 cells was assessed by MTS assay. Ca2+ release and reactive oxygen species (ROS) generation were detected by flow cytometry. The changes in mitochondrial membrane potential (MMP) were observed through JC-1 staining. The expressions of p-RIP1, p-RIP3, p-MLKL, and MAPKs pathway proteins were analyzed by western blotting analysis. The efficacy of CPT in vivo was evaluated by the Lewis lung carcinoma (LLC) xenograft mice model. Blood samples were collected for hematology analysis. ELISA investigated the effects of CPT on tumor necrosis factor α (TNF-α). Hematoxylin and eosin staining (HE) was used to determine the tumor tissues. Proteins' expression of tumor tissues was quantified by western blotting. RESULTS CPT inhibited the cell viability of A549 cells in a time- and concentration-dependent manner, which was reversed by Necrostatin-1 (Nec-1). In addition, CPT treatment increased the expression of p-RIP1, p-RIP3, p-MLKL, the release of Ca2+, ROS generation, and the MAPKs pathway activated in A549 cells. Moreover, animal experiment results showed that intraperitoneal injection of CPT (15 mg/kg and 30 mg/kg) significantly inhibited tumor growth in C57BL/6 mice without affecting the bodyweight and injuring the organs. CONCLUSION Our findings suggested that CPT-induced necroptosis via RIP1/RIP3/MLKL signaling pathway both in vitro and in vivo, indicating that CPT may be a promising agent in the treatment of NSCLC.
Collapse
Affiliation(s)
- Wentong Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yuanbo Song
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
29
|
Dwivedi S, D'Souza LC, Shetty NG, Raghu SV, Sharma A. Hsp27, a potential EcR target, protects nonylphenol-induced cellular and organismal toxicity in Drosophila melanogaster. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118484. [PMID: 34774861 DOI: 10.1016/j.envpol.2021.118484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Deciphering the potential mechanism of chemical-induced toxicity enables us to alleviate the cellular and organismal dysfunction. The environmental presence of nonylphenol (endocrine disruptor) has a major health concern due to its widespread usage in our day-to-day life. The current study establishes a novel functional link among nonylphenol-induced oxidative stress, Heat shock protein 27 (Hsp27, member of stress protein family), and Ecdysone receptor (EcR, a nuclear receptor), which eventually coordinates the nonylphenol-induced sub-cellular and organismal level toxicity in a genetically tractable model Drosophila melanogaster. Drosophila larvae exposed to nonylphenol (0.05, 0.5 and 5.0 μg/mL) showed a significant decrease in Hsp27 and EcR mRNA levels in the midgut. In concurrence, reactive oxygen species (ROS) levels were increased with a corresponding decline in glutathione (GSH) level and Thioredoxin reductase (TrxR) activity. Increased lipid peroxidation (LPO), protein carbonyl (PC) contents, and cell death were also observed in a correlation with the nonylphenol concentrations. Sub-cellular toxicity poses a negative organismal response, which was evident by delayed larval development and reduced Drosophila emergence. Subsequently, a positive genetic correlation (p < 0.001) between EcR and Hsp27 revealed that nonylphenol-dependent EcR reduction is a possible link for the downregulation of Hsp27. Further, Hsp27 overexpression in midgut cells showed a reduction in nonylphenol-induced intracellular ROS, LPO, PC content, and cell death through the TrxR mediated regenerative pathway and reduced GSH level improving the organismal response to the nonylphenol exposure. Altogether, the study elucidates the potential EcR-Hsp27 molecular interactions in mitigating the nonylphenol-induced cellular and organismal toxicity.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Nidhi Ganesh Shetty
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India; Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Molecular Genetics and Cancer, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri, Karnataka, 574199, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
30
|
Alshammari GM, Al-Qahtani WH, Alshuniaber MA, Yagoub AEA, Al-Khalifah AS, Al-Harbi LN, Alhussain MH, AlSedairy SA, Yahya MA. Quercetin improves the impairment in memory function and attenuates hippocampal damage in cadmium chloride-intoxicated male rats by suppressing acetylcholinesterase and concomitant activation of SIRT1 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
31
|
Talukder M, Bi SS, Jin HT, Ge J, Zhang C, Lv MW, Li JL. Cadmium induced cerebral toxicity via modulating MTF1-MTs regulatory axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117083. [PMID: 33965856 DOI: 10.1016/j.envpol.2021.117083] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Metal-responsive transcription factor 1 (MTF1) participates in redox homeostasis and heavy metals detoxification via regulating the expression of metal responsive genes. However, the exact role of MTF1 in Cd-induced cerebral toxicity remains unclear. Herein, we explored the mechanism of Cd-elicited cerebral toxicity through modulating MTF1/MTs pathway in chicken cerebrum exposed to different concentrations of Cd (35 mg, 70 mg, and 140 mg/kg CdCl2) via diet. Notably, cerebral tissues showed varying degrees of microstructural changes under Cd exposure. Cd exposure significantly up-regulated the expression of metal transporters (DMT1, ZIP8, and ZIP10) with concomitant elevated Cd level, as determined by ICP-MS. Cd significantly altered other cerebral biometals concentrations (particularly, Zn, Fe, Se, Cr, Mo, and Pb) and redox balance, resulting in increased cerebral oxidative stress. More importantly, Cd exposure suppressed MTF1 mRNA and nuclear protein levels and its target metal-responsive genes, notably metallothioneins (MT1 and MT2), and Fe and Cu transporter genes (FPN1, ATOX1, and XIAP). Moreover, Cd disrupted the regulation of expression of selenoproteome (particularly, GPxs and SelW), and cerebral Se level. Overall, our data revealed that molecular mechanisms associated with Cd-induced cerebral damage might include over-expression of DMT1, ZIP8 and ZIP10, and suppression of MTF1 and its main target metal-responsive genes as well as several selenoproteins.
Collapse
Affiliation(s)
- Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hai-Tao Jin
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150010, China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
32
|
Yang L, Wang Y, Zhang C, Cheng H. Perampanel, an AMPAR antagonist, alleviates experimental intracerebral hemorrhage‑induced brain injury via necroptosis and neuroinflammation. Mol Med Rep 2021; 24:544. [PMID: 34080030 PMCID: PMC8185517 DOI: 10.3892/mmr.2021.12183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality and morbidity due to the lack of effective therapies. The alpha‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazolepropionic acid receptor antagonist perampanel has been reported to alleviate early brain injury following subarachnoid hemorrhage and traumatic brain injury by reducing reactive oxygen species, apoptosis, autophagy, and necroptosis. Necroptosis is a caspase‑independent programmed cell death mechanism that serves a vital role in neuronal cell death following ICH. However, the precise role of necroptosis in perampanel‑mediated neuroprotection following ICH has not been confirmed. The present study aimed to investigate the neuroprotective effects and potential molecular mechanisms of perampanel in ICH‑induced early brain injury by regulating neural necroptosis in C57BL/6 mice and in a hemin‑induced neuron damage cell culture model. Mortality, neurological score, brain water content, and neuronal death were evaluated. The results demonstrated that perampanel treatment increased the survival rate and neurological score, and increased neuron survival. In addition, perampanel treatment downregulated the protein expression levels of receptor interacting serine/threonine kinase (RIP) 1, RIP3, and mixed lineage kinase domain like pseudokinase, and of the cytokines IL‑1β, IL‑6, TNF‑α, and NF‑κB. These results indicated that perampanel‑mediated inhibition of necroptosis and neuroinflammation ameliorated neuronal death in vitro and in vivo following ICH. The neuroprotective capacity of perampanel was partly dependent on the PTEN pathway. Taken together, the results of the present study demonstrated that perampanel improved neurological outcomes in mice and reduced neuronal death by protecting against neural necroptosis and neuroinflammation.
Collapse
Affiliation(s)
- Lixiang Yang
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yue Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Can Zhang
- Department of Neurosurgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Huilin Cheng
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
33
|
Cadmium exposure induces inflammation and necroptosis in porcine adrenal gland via activating NF-κB/MAPK pathway. J Inorg Biochem 2021; 223:111516. [PMID: 34237625 DOI: 10.1016/j.jinorgbio.2021.111516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is a heavy metal harmful to animals and humans. Cd exposure causes inflammation or necroptosis in many tissues, including adrenal tissue. However, the current researches on the effects of Cd2+ in adrenal tissues are not enough. Therefore, in our experiment Cd chloride (CdCl2) was added to the piglet's diet at a concentration of 20 mg/kg to study the effects of Cd2+ exposure on the porcine adrenal tissue. Our results showed that Cd2+ exposure could cause inflammation by activating the nuclear factor kappa-B (NF-κB) pathway, which in turn induced necroptosis in adrenal tissue with the activated mitogen-activated protein kinase (MAPK) pathway. The expression increase of inflammatory factors and necroptosis downstream genes, and the downregualtion of cysteinyl aspartate specific proteinase 8 (Caspase 8) proved that Cd2+ exposure caused inflammation and necroptosis in adrenal tissue. We conclude that this report provides more basic theoretical data for exploring the mechanism of adrenal injury.
Collapse
|