1
|
Zhou L, Guo Q, Wang J, Zhou Z, Zhang Y. Association between cumulative intake of sugar-sweetened and artificially sweetened beverages and progression of coronary calcification: Insights from the CARDIA study. Nutr Metab Cardiovasc Dis 2024; 34:2807-2816. [PMID: 39443280 DOI: 10.1016/j.numecd.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS This study investigates the relationship between the cumulative intake of artificially sweetened beverages (ASBs) and sugar-sweetened beverages (SSBs) during young adulthood and the progression of coronary artery calcium (CAC) by midlife, using data from the Coronary Artery Risk Development in Young Adults study. METHODS AND RESULTS We included 2,466 participants with CAC measurement via computed tomography at the 15th, 20th, and 25th year follow-ups. Dietary intake was assessed using the CARDIA Diet History at baseline and years 7. Cumulative average beverage intake was calculated and categorized. Multivariable Cox regression models adjusted for demographic, lifestyle, and cardiovascular risk factors assessed associations between beverages consumption and CAC progression. Among the included participants, 1107 (44.9 %) were male, 1439 (58.4 %) were white, and the average age was 40.4 years with a standard deviation of 3.5 years. Over a 9.2±1.8-year follow-up, CAC progression was recorded in 715 participants. Higher cumulative ASBs intake was associated with increased CAC progression risk, with hazard ratios (95%CI, P-value) for low and high ASBs consumption being 1.35 (1.14, 1.60; P < 0.001) and 1.54 (1.15, 2.07; P < 0.001) compared to non-consumers. Participants consuming >2 servings/day of SSBs had a 37 % higher CAC progression risk (HR 1.37, 95 % CI 1.14-1.64, P < 0.001). However, no significant association was found between SSB consumption and CAC progression after adjusting for confounders. CONCLUSIONS Prolonged consumption of beverages, especially ASBs, in young adults is linked to an increased risk of CAC progression.
Collapse
Affiliation(s)
- Lingqu Zhou
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qi Guo
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Junjie Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zirui Zhou
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yinyin Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Chen J, Xia P. Health effects of synthetic additives and the substitution potential of plant-based additives. Food Res Int 2024; 197:115177. [PMID: 39593388 DOI: 10.1016/j.foodres.2024.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
The growth of the world population and the rapid industrialization of food have led to food producers' increased reliance on food additives. While food additives offer numerous conveniences and advantages in food applications, the potential risks associated with synthetic additives remain a significant concern. This report examines the current status of safety assessment and toxicity studies of common synthetic additives, including flavorings (sweeteners and flavor enhancers), colorants, preservatives (antimicrobials and antioxidants), and emulsifiers. The report also examines recent advances in promising plant-based alternative additives in terms of active ingredients, sensory properties, potential health benefits, food application challenges, and their related technologies (edible coatings/films and nanoencapsulation technologies), providing valuable references and insights for the sustainable development of food additives.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Wu Y, Lin Z, Chen F, Zhang X, Liu Y, Sun H. Evaluation of aspartame effects at environmental concentration on early development of zebrafish: Morphology and transcriptome 1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124792. [PMID: 39182820 DOI: 10.1016/j.envpol.2024.124792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The use of aspartame as an artificial sweetener is prevalent in a wide range of everyday food products, potentially leading to health complications such as obesity, diabetes mellitus, autism spectrum disorders, and neurodegeneration. Aspartame has also been detected in natural water bodies at a concentration of 0.49 μg/L, yet research on its ecotoxicological effects on aquatic life remains scarce. This study aimed to investigate the potential negative effects of environmentally relevant concentrations of aspartame on the development of various tissues and organs in zebrafish embryos. We used a zebrafish model to treat embryos with aspartame at environmental concentration and those higher than in the environment-up to 1000 times. We observed that after exposure to aspartame body length increased, pigmentation was delayed, and neutrophil production inhibited in zebrafish. Furthermore, transcriptome analysis revealed that early exposure of zebrafish embryos to aspartame affected the transcriptomics of various systems, primarily by downregulating genes related to immune cell production, eye and optic nerve development, nervous system development, and growth hormone-related transcription. Most of the genes associated with ferroptosis were upregulated. This study provides new insights into the ecotoxicological effects of aspartame on aquatic environments.
Collapse
Affiliation(s)
- Yitian Wu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Ziyuan Lin
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Zebrafish Research Platform, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Feng Chen
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Zebrafish Research Platform, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Xuan Zhang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Yanyan Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China.
| | - Huaqin Sun
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Zebrafish Research Platform, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China; Children's Medicine Key Laboratory of Sichuan Province, China.
| |
Collapse
|
4
|
Pandaram A, Paul J, Wankhar W, Thakur A, Verma S, Vasudevan K, Wankhar D, Kammala AK, Sharma P, Jaganathan R, Iyaswamy A, Rajan R. Aspartame Causes Developmental Defects and Teratogenicity in Zebra Fish Embryo: Role of Impaired SIRT1/FOXO3a Axis in Neuron Cells. Biomedicines 2024; 12:855. [PMID: 38672209 PMCID: PMC11048232 DOI: 10.3390/biomedicines12040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Aspartame, a widely used artificial sweetener, is present in many food products and beverages worldwide. It has been linked to potential neurotoxicity and developmental defects. However, its teratogenic effect on embryonic development and the underlying potential mechanisms need to be elucidated. We investigated the concentration- and time-dependent effects of aspartame on zebrafish development and teratogenicity. We focused on the role of sirtuin 1 (SIRT1) and Forkhead-box transcription factor (FOXO), two proteins that play key roles in neurodevelopment. It was found that aspartame exposure reduced the formation of larvae and the development of cartilage in zebrafish. It also delayed post-fertilization development by altering the head length and locomotor behavior of zebrafish. RNA-sequencing-based DEG analysis showed that SIRT1 and FOXO3a are involved in neurodevelopment. In silico and in vitro analyses showed that aspartame could target and reduce the expression of SIRT1 and FOXO3a proteins in neuron cells. Additionally, aspartame triggered the reduction of autophagy flux by inhibiting the nuclear translocation of SIRT1 in neuronal cells. The findings suggest that aspartame can cause developmental defects and teratogenicity in zebrafish embryos and reduce autophagy by impairing the SIRT1/FOXO3a axis in neuron cells.
Collapse
Affiliation(s)
- Athiram Pandaram
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai 600113, Tamil Nadu, India
| | - Jeyakumari Paul
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai 600113, Tamil Nadu, India
| | - Wankupar Wankhar
- Faculty of Paramedical Sciences, Assam down town University, Guwahati 781026, Assam, India
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Sakshi Verma
- Department of Pharmacy, Usha Martin University, Ranchi 835103, Jharkhand, India
| | - Karthick Vasudevan
- Department of Biotechnology, REVA University, Bangalore 560064, Karnataka, India
| | - Dapkupar Wankhar
- Faculty of Paramedical Sciences, Assam down town University, Guwahati 781026, Assam, India
| | - Ananth Kumar Kammala
- Department of Obstetrics and Gynaecology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Priyanshu Sharma
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ravindran Jaganathan
- Preclinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Ravindran Rajan
- Department of Physiology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai 600113, Tamil Nadu, India
| |
Collapse
|
5
|
Iizuka K. Is the Use of Artificial Sweeteners Beneficial for Patients with Diabetes Mellitus? The Advantages and Disadvantages of Artificial Sweeteners. Nutrients 2022; 14:4446. [PMID: 36364710 PMCID: PMC9655943 DOI: 10.3390/nu14214446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Artificial sweeteners have been developed as substitutes for sugar. Sucralose, acesulfame K (ACE K), aspartame, and saccharin are artificial sweeteners. Previously, artificial sweeteners were thought to be effective in treating obesity and diabetes. Human meta-analyses have reported that artificial sweeteners have no effect on body weight or glycemic control. However, recent studies have shown that artificial sweeteners affect glucose absorption in the intestinal tract as well as insulin and incretin secretion in humans and animals. Moreover, artificial sweeteners alter the composition of the microbiota and worsen the glycemic control owing to changes in the gut microbiota. The early intake of ACE K was also shown to suppress the taste response to sugar. Furthermore, a large cohort study showed that high artificial sweetener intake was associated with all-cause mortality, cardiovascular risk, coronary artery disease risk, cerebrovascular risk, and cancer risk. The role of artificial sweeteners in the treatment of diabetes and obesity should be reconsidered, and the replacement of sugar with artificial sweeteners in patients will require the long-term tracking of not only intake but also changes in blood glucose and weight as well as future guidance based on gut bacteria data. To utilize the beneficial properties of artificial sweeteners in treatment, further studies are needed.
Collapse
Affiliation(s)
- Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
6
|
Li X, Dong G, Han G, Du L, Li M. Zebrafish Behavioral Phenomics Links Artificial Sweetener Aspartame to Behavioral Toxicity and Neurotransmitter Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15393-15402. [PMID: 34874711 DOI: 10.1021/acs.jafc.1c06077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial sweeteners (ASs) are extensively used as food additives in drinks and beverages to lower calorie intake and prevent lifestyle diseases such as obesity. Although clinical and epidemiological data revealed the link between the chronic overconsumption of ASs and adverse health effects, there still exist controversies over the potential adverse neural toxic effect of ASs such as aspartame (APM), with acceptable daily intake (ADI) for a long time, on human health. In addition, whether APM and its metabolites are neurotoxic remains debatable due to a lack of data from an animal experiment or clinical investigation. Herein, to fully describe the potential neurological effect of APM, adult zebrafish served as the animal model to assess neurophysiological alteration induced by APM exposure within the range of the ADI (1, 10, and 100 mg/L) for 2 months. A cohort of standardized neurobehavioral phenotyping assays was conducted, including light/dark preference tests (LDP), novel tank diving tests, novel object recognition tests, social interaction tests, and color preference tests. For instance, in the LDP test, saccharin remarkably decreased the swimming time of zebrafish in the DARK part from 111 ± 10.8 (control group) to 72.2 ± 11.4 (100 mg/L groups). Besides, brain chemistry involved in the alteration of total neurotransmitters was determined by LC-MS/MS to confirm the behavioral results. Overall, current research studies revealed that APM within the range of the ADI altered the total behavioral profiles of zebrafish and disturbed the homeostasis of neurotransmitters in the brain. The present study has established a set of experimental paradigms, revealing the standardized procedure of using adult zebrafish to determine the neural activity or toxicity of AS molecules phenotypically. Zebrafish behavioral phenotyping methods, which were characterized by a cohort of behavioral fingerprints, can link the phenotypical alteration to changes in neurotransmitters in the brain, so as to provide a predictive reference for the further exploration of the molecular mechanism of phenotypic changes induced by ASs.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Guangxi Han
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
7
|
Saputra F, Lai YH, Fernandez RAT, Macabeo APG, Lai HT, Huang JC, Hsiao CD. Acute and Sub-Chronic Exposure to Artificial Sweeteners at the Highest Environmentally Relevant Concentration Induce Less Cardiovascular Physiology Alterations in Zebrafish Larvae. BIOLOGY 2021; 10:548. [PMID: 34207293 PMCID: PMC8233861 DOI: 10.3390/biology10060548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Artificial sweeteners are widely used food ingredients in beverages and drinks to lower calorie intake which in turn helps prevent lifestyle diseases such as obesity. However, as their popularity has increased, the release of artificial sweetener to the aquatic environment has also increased at a tremendous rate. Thus, our study aims to systematically explore the potential cardiovascular physiology alterations caused by eight commercial artificial sweeteners, including acesulfame-K, alitame, aspartame, sodium cyclamate, dulcin, neotame, saccharine and sucralose, at the highest environmentally relevant concentration on cardiovascular performance using zebrafish (Danio rerio) as a model system. Embryonic zebrafish were exposed to the eight artificial sweeteners at 100 ppb and their cardiovascular performance (heart rate, ejection fraction, fractional shortening, stroke volume, cardiac output, heartbeat variability, and blood flow velocity) was measured and compared. Overall, our finding supports the safety of artificial sweetener exposure. However, several finding like a significant increase in the heart rate and heart rate variability after incubation in several artificial sweeteners are noteworthy. Biomarker testing also revealed that saccharine significantly increase the dopamine level in zebrafish larvae, which is might be the reason for the cardiac physiology changes observed after saccharine exposure.
Collapse
Affiliation(s)
- Ferry Saputra
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan;
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Rey Arturo T. Fernandez
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana St., Manila 1015, Philippines; (R.A.T.F.); (A.P.G.M.)
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana St., Manila 1015, Philippines; (R.A.T.F.); (A.P.G.M.)
| | - Hong-Thih Lai
- Department of Aquatic Biosciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| |
Collapse
|
8
|
Lin Y, Rivera MS, Jiang T, Li G, Cotto I, Vosloo S, Carpenter CM, Larese-Casanova P, Giese RW, Helbling DE, Padilla IY, Rosario-Pabón Z, Vega CV, Cordero JF, Alshawabkeh AN, Pinto A, Gu AZ. Impact of Hurricane Maria on Drinking Water Quality in Puerto Rico. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9495-9509. [PMID: 32640159 PMCID: PMC7837318 DOI: 10.1021/acs.est.0c01655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study performed a comprehensive assessment of the impact of Hurricane Maria (HM) on drinking water quality in Puerto Rico (PR) by integrating targeted chemical analysis of both inorganic (18 trace elements) and organic trace pollutants (200 micropollutants) with high-throughput quantitative toxicogenomics and in vitro biomarkers-based toxicity assays. Average concentrations of 14 detected trace elements and 20 organic micropollutants showed elevation after HM. Arsenic, sucralose, perfluorooctanoic acid (PFOA), atrazine-2-hydroxy, benzotriazole, acesulfame, and prometon were at significantly (p < 0.05) higher levels in the post-HM than in the pre-HM samples. Thirteen micropollutants, including four pesticides, were only detected in posthurricane samples. Spatial comparison showed higher pollutant and toxicity levels in the samples from northern PR (where eight Superfund sites are located) than in those from southern PR. Distinctive pathway-specific molecular toxicity fingerprints for water extracts before and after HM and at different locations revealed changes in toxicity nature that likely resulted from the impact of HM on drinking water composition. Correlation analysis and Maximum Cumulative Ratio assessment suggested that metals (i.e., arsenic) and PFOA were the top ranked pollutants that have the potential to cause increased risk after HM, providing a possible direction for future water resource management and epidemiological studies.
Collapse
Affiliation(s)
- Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY
| | | | - Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | - Guangyu Li
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | - Irmarie Cotto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | - Solize Vosloo
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | | | | | - Roger W. Giese
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY
| | - Ingrid Y. Padilla
- Department of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez, PR
| | | | | | - José F. Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Akram N. Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA
| | - April Z. Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
9
|
Cruz-Rojas C, SanJuan-Reyes N, Fuentes-Benites MPAG, Dublan-García O, Galar-Martínez M, Islas-Flores H, Gómez-Oliván LM. Acesulfame potassium: Its ecotoxicity measured through oxidative stress biomarkers in common carp (Cyprinus carpio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:772-784. [PMID: 30096667 DOI: 10.1016/j.scitotenv.2018.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Acesulfame potassium (ACS) is a widely-used sweetener worldwide. Its presence has been demonstrated in diverse bodies of water. However, the deleterious effects this causes in aquatic organisms has not yet been identified, which generates controversy concerning the risks that ACS represents after its disposal into the bodies of water. Thus, the objective of this work was to evaluate if the exposure of ACS in environmentally-relevant concentrations was capable of producing oxidative stress in blood, liver, gill, brain and muscle of common carp (Cyprinus carpio). With this finality, the carp were exposed to two environmentally-relevant concentrations (0.05 and 149 μg L-1) at different exposure times (12, 24, 48, 72 and 96 h), having controls in the same conditions for each exposure time. Posteriorly, the following biomarkers of damage were evaluated: hydroperoxide content (HPC), level of lipoperoxidation (LPX) and protein carbonyl content (PCC), as well as the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). The results showed that ACS produces significant increase in damage biomarkers evaluated in all organs, mainly in gill, brain and muscle, as well as significant changes in the activity of antioxidant enzymes in the same organs. Thus, it is concluded that ACS is capable of producing oxidative stress in common carp (Cyprinus carpio).
Collapse
Affiliation(s)
- Claudia Cruz-Rojas
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, México
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, México; Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, C.P.07738 CDMX, Mexico
| | - María Paulina Aideé Gracia Fuentes-Benites
- Laboratorio de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Octavio Dublan-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, México
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, C.P.07738 CDMX, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, México.
| |
Collapse
|
10
|
Erbaş O, Erdoğan MA, Khalilnezhad A, Solmaz V, Gürkan FT, Yiğittürk G, Eroglu HA, Taskiran D. Evaluation of long-term effects of artificial sweeteners on rat brain: a biochemical, behavioral, and histological study. J Biochem Mol Toxicol 2018; 32:e22053. [PMID: 29660801 DOI: 10.1002/jbt.22053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/18/2018] [Accepted: 03/27/2018] [Indexed: 11/06/2022]
Abstract
The aim of the present study was to compare the effects of artificial sweeteners (aspartame, saccharin, and sucralose) on rat brain. Twenty-four adult male Sprague-Dawley rats were included in the study. The control group (n = 6) received regular tap water, whereas other groups received aspartame (3 mg/kg/day, n = 6,) or saccharin (3 mg/kg/day, n = 6) or sucralose (1.5 mg/kg/day, n = 6) in the drinking water. Following 6 weeks, the passive avoidance learning (PAL) test was performed to evaluate the neurobehavioral effects of sweeteners. The brains were assessed for lipid peroxides, neuron count, and Glial fibrillary acidic protein (GFAP) immunohistochemistry. Our results demonstrated that chronic intake of sweeteners significantly impaired PAL performance in all groups. Hippocampal CA1-CA3 areas revealed significantly lower neuronal count in aspartame and increased GFAP expression in all groups. Brain lipid peroxides were significantly higher in all groups. Our findings suggest that long-term consumption of artificial sweeteners may have harmful effects on cognition and hippocampal integrity in rats.
Collapse
Affiliation(s)
- Oytun Erbaş
- Department of Physiology, School of Medicine, Istanbul Bilim University, İstanbul, Turkey
| | | | | | - Volkan Solmaz
- Department of Neurology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Fulya Tuzcu Gürkan
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey
| | - Gürkan Yiğittürk
- Department of Histology and Embryology, School of Medicine, Ege University, Izmir, Turkey
| | - Hüseyin Avni Eroglu
- Department of Physiology, School of Medicine, Kafkas University, Kars, Turkey
| | - Dilek Taskiran
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
11
|
Cadmium exposure exacerbates severe hyperlipidemia and fatty liver changes in zebrafish via impairment of high-density lipoproteins functionality. Toxicol In Vitro 2017; 47:249-258. [PMID: 29197506 DOI: 10.1016/j.tiv.2017.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 09/25/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022]
Abstract
Cadmium (Cd) is a heavy metal with several toxicities that have destructive effect on most organ systems. However, its toxic effects on human lipoproteins are largely remained unknown especially in hyperlipidemic zebrafish model. Treatment of human high-density lipoprotein (HDL) with cadmium chloride (CdCl2, final 12 and 24μM) caused spontaneous formation of multimeric apoA-I as well as increased production of glycated extent products. Cd-HDL3 accelerated uptake of oxidized LDL (oxLDL) into macrophages and induced severe senescence in human dermal fibroblast (HDF) cells. Microinjection of Cd-HDL3 into zebrafish embryos resulted in acute embryonic toxicity with high mortality. Exposure of zebrafish embryos to water containing CdCl2 (final 12 and 24μM) caused early embryonic death along with increased production of oxidized products and impairment of skeletal development. Consumption of CdCl2 (12 and 24μM) by zebrafish for 4weeks resulted in severe elevation of plasma total cholesterol (TC) and triglyceride (TG) levels as well as cholesteryl ester (CE) transfer activity. Furthermore, consumption of CdCl2 resulted in acceleration of fatty liver changes and increased production of reactive oxygen species (ROS). In conclusion, CdCl2 caused structural modification of HDL3 and impaired the beneficial functions of HDL3, including anti-oxidation, anti-atherosclerosis, and anti-senescence effects. Consumption of CdCl2 also resulted in exacerbated hyperlipidemia and fatty liver changes in zebrafish via enhancement of cholesteryl ester transfer protein (CETP) activity.
Collapse
|
12
|
Ren Y, Geng J, Li F, Ren H, Ding L, Xu K. The oxidative stress in the liver of Carassius auratus exposed to acesulfame and its UV irradiance products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:755-762. [PMID: 27443459 DOI: 10.1016/j.scitotenv.2016.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Acesulfame (ACE) is listed as an emerging contaminant due to its environmental persistence and wide occurrence in the environment. ACE can be degraded partially in the regular UV disinfection process but the eco-toxicity of its irradiation products remains unclear. This study focused on the possible oxidative status change in the liver of Carassius auratus exposed to ACE and its irradiation products. The UV degradation of ACE follows pseudo-first-order kinetics, and eight irradiation products were identified. Fish were exposed 7days to 0.1 and 10mg/L ACE (ACE group) and ACE after UV irradiance (ACE-UV group). The oxidative stress in fish liver exposed to ACE group had no distinct change. However, in the ACE-UV group, the quantity of OH was induced by 17.96-55% and the MDA content increased by 16.28-68.28% compared to control. Time-effect exposure in the ACE-UV group showed that in the first 3days the quantity of OH reached its peak, causing severe inhibition of SOD and continuous inducement of GPx. GSH helped scavenge OH and decreased below control after 3days. An increased toxicity of ACE after UV irradiance was observed and its transfer after into aquatic environment needs to be recognized as an environmental risk.
Collapse
Affiliation(s)
- Yuhang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Fuchang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
13
|
Schlegel A. Zebrafish Models for Dyslipidemia and Atherosclerosis Research. Front Endocrinol (Lausanne) 2016; 7:159. [PMID: 28018294 PMCID: PMC5159437 DOI: 10.3389/fendo.2016.00159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death. Elevated circulating concentrations of lipids are a central pathogenetic driver of atherosclerosis. While numerous effective therapies for this condition have been developed, there is substantial unmet need for this pandemic illness. Here, I will review nutritional, physiological, genetic, and pathological discoveries in the emerging zebrafish model for studying dyslipidemia and atherosclerosis. The technical and physiological advantages and the pharmacological potential of this organism for discovery and validation of dyslipidemia and atherosclerosis targets are stressed through summary of recent findings. An emerging literature shows that zebrafish, through retention of a cetp ortholog gene and high sensitivity to ingestion of excess cholesterol, rapidly develops hypercholesterolemia, with a pattern of distribution of lipid species in lipoprotein particles similar to humans. Furthermore, recent studies leveraging the optical transparency of zebrafish larvae to monitor the fate of these ingested lipids have provided exciting insights to the development of dyslipidemia and atherosclerosis. Future directions for investigation are considered, with particular attention to the potential for in vivo cell biological study of atherosclerotic plaques.
Collapse
Affiliation(s)
- Amnon Schlegel
- University of Utah Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- *Correspondence: Amnon Schlegel,
| |
Collapse
|
14
|
Diethyl phthalate exposure is associated with embryonic toxicity, fatty liver changes, and hypolipidemia via impairment of lipoprotein functions. Toxicol In Vitro 2015; 30:383-93. [DOI: 10.1016/j.tiv.2015.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/12/2015] [Accepted: 09/25/2015] [Indexed: 11/22/2022]
|
15
|
Kim JY, Lee EY, Choi I, Kim J, Cho KH. Effects of the Particulate Matter₂.₅ (PM₂.₅) on Lipoprotein Metabolism, Uptake and Degradation, and Embryo Toxicity. Mol Cells 2015; 38:1096-104. [PMID: 26615830 PMCID: PMC4697001 DOI: 10.14348/molcells.2015.0194] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 11/27/2022] Open
Abstract
Particulate matter2.5 (PM2.5) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which PM2.5 aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous PM2.5 solution on lipoprotein metabolism. Collected PM2.5 from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. PM2.5 extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. PM2.5 treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by PM2.5 solution in a dose-dependent manner. Further, PM2.5 solution caused cellular senescence in human dermal fibroblast cells. Microinjection of PM2.5 solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of PM2.5 induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins.
Collapse
Affiliation(s)
- Jae-Yong Kim
- School of Biotechnology,
Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan, 712-749,
Korea
- BK21plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan, 712-749,
Korea
| | - Eun-Young Lee
- School of Biotechnology,
Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan, 712-749,
Korea
- BK21plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan, 712-749,
Korea
| | - Inho Choi
- School of Biotechnology,
Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan, 712-749,
Korea
- BK21plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan, 712-749,
Korea
| | - Jihoe Kim
- School of Biotechnology,
Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan, 712-749,
Korea
- BK21plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan, 712-749,
Korea
| | - Kyung-Hyun Cho
- School of Biotechnology,
Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan, 712-749,
Korea
- BK21plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan, 712-749,
Korea
| |
Collapse
|