1
|
Xia J, Chen C, Sun Y, Li S, Li Y, Cheng BR, Pang Y, Li Y, Li D, Lin Q. Panax quinquefolius saponins and panax notoginseng saponins attenuate myocardial hypoxia-reoxygenation injury by reducing excessive mitophagy. Cell Biochem Biophys 2024; 82:1179-1191. [PMID: 38713401 DOI: 10.1007/s12013-024-01267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE Panax quinquefolius saponins (PQS) and Panax notoginseng saponins (PNS) are key bioactive compounds in Panax quinquefolius L. and Panax notoginseng, commonly used in the treatment of clinical ischemic heart disease. However, their potential in mitigating myocardial ischemia-reperfusion injury remains uncertain. This study aims to evaluate the protective effects of combined PQS and PNS administration in myocardial hypoxia/reoxygenation (H/R) injury and explore the underlying mechanisms. METHODS To investigate the involvement of HIF-1α/BNIP3 mitophagy pathway in the myocardial protection conferred by PNS and PQS, we employed small interfering BNIP3 (siBNIP3) to silence key proteins of the pathway. H9C2 cells were categorized into four groups: control, H/R, H/R + PQS + PNS, and H/R + PQS + PNS+siBNIP3. Cell viability was assessed by Cell Counting Kit-8, apoptosis rates determined via flow cytometry, mitochondrial membrane potential assessed with the JC-1 fluorescent probes, intracellular reactive oxygen species detected with 2',7'-dichlorodihydrofluorescein diacetate, mitochondrial superoxide production quantified with MitoSOX Red, and autophagic flux monitored with mRFP-GFP-LC3 adenoviral vectors. Autophagosomes and their ultrastructure were visualized through transmission electron microscopy. Moreover, mRNA and protein levels were analyzed via real-time PCR and Western blotting. RESULTS PQS + PNS administration significantly increased cell viability, reduced apoptosis, lowered reactive oxygen species levels and mitochondrial superoxide production, mitigated mitochondrial dysfunction, and induced autophagic flux. Notably, siBNIP3 intervention did not counteract the cardioprotective effect of PQS + PNS. The PQS + PNS group showed downregulated mRNA expression of HIF-1α and BNIP3, along with reduced HIF-1α protein expression compared to the H/R group. CONCLUSIONS PQS + PNS protects against myocardial H/R injury, potentially by downregulating mitophagy through the HIF-1α/BNIP3 pathway.
Collapse
Affiliation(s)
- Junyan Xia
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, 100700, Beijing, China
| | - Cong Chen
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, 100053, Beijing, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Sinai Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, 100010, Beijing, China
| | - Yuxuan Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, 100078, Beijing, China
| | - Bai-Ru Cheng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, 100700, Beijing, China
| | - Yanting Pang
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, 100700, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, 100078, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, 100078, Beijing, China.
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, 100700, Beijing, China.
| |
Collapse
|
2
|
Han D, Chen R, Kan H, Xu Y. The bio-distribution, clearance pathways, and toxicity mechanisms of ambient ultrafine particles. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:95-106. [PMID: 38074989 PMCID: PMC10702920 DOI: 10.1016/j.eehl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 02/17/2024]
Abstract
Ambient particles severely threaten human health worldwide. Compared to larger particles, ultrafine particles (UFPs) are highly concentrated in ambient environments, have a larger specific surface area, and are retained for a longer time in the lung. Recent studies have found that they can be transported into various extra-pulmonary organs by crossing the air-blood barrier (ABB). Therefore, to understand the adverse effects of UFPs, it is crucial to thoroughly investigate their bio-distribution and clearance pathways in vivo after inhalation, as well as their toxicological mechanisms. This review highlights emerging evidence on the bio-distribution of UFPs in pulmonary and extra-pulmonary organs. It explores how UFPs penetrate the ABB, the blood-brain barrier (BBB), and the placental barrier (PB) and subsequently undergo clearance by the liver, kidney, or intestine. In addition, the potential underlying toxicological mechanisms of UFPs are summarized, providing fundamental insights into how UFPs induce adverse health effects.
Collapse
Affiliation(s)
- Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Kondratyeva EV, Vitkina TI. Effect Of Atmospheric Particulate Matter On The Functional State Of Mitochondria. RUSSIAN OPEN MEDICAL JOURNAL 2023. [DOI: 10.15275/rusomj.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
The health risks associated with outdoor air pollution are of global concern. Atmospheric air pollution negatively affects a number of key aspects of human health, including the functioning of the respiratory, cardiovascular and central nervous systems, but many issues remain unresolved about the relationship between atmospheric air pollution and the development and course of pathologies. The review analyzes data from Russian and foreign sources on the effect of atmospheric particulate matter on the functional state of mitochondria. The effect of air pollution on structural changes in mitochondria, ATP synthesis, production of reactive oxygen species, damage to mitochondrial DNA, and mitochondrial membrane potential has been shown. The data presented in the review indicate the need for further studies of the functional state of mitochondria under the impact of solid particles in atmospheric air.
Collapse
|
4
|
Sivakumar B, Kurian GA. PM 2.5 from diesel exhaust attenuated fisetin mediated cytoprotection in H9c2 cardiomyocytes subjected to ischemia reoxygenation by inducing mitotoxicity. Drug Chem Toxicol 2023; 46:15-23. [PMID: 34806509 DOI: 10.1080/01480545.2021.2003698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The impact of PM2.5 from diesel exhaust (termed as diesel particulate matter (DPM)) on ischemia re-oxygenation (IR) injury and the consequent effect of fisetin to attenuate this injury remains unclear. IR was induced in H9c2 cells after 24 hrs of fisetin treatment. The cells when incubated with 100 µg/mL of DPM followed by IR, induced 60% cell death which was escalated to 78% with DPM exposure. Fisetin significantly attenuated IR induced cytotoxicity, improved mitochondrial activity and reduced oxidative stress in normal cells but failed to render protection against IR in presence of DPM. Isolated mitochondria experiment confirmed the mitotoxic effect of DPM. Immunoblot analysis established the failure of fisetin to activate PI3K/Akt signaling pathway. Based on the above observations, we concluded that fisetin mediated protection against IR was abrogated with DPM exposure due to augmented mitochondrial dysfunction and inactivation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
5
|
Hamidou Soumana I, Ryu MH, Leitao Filho FS, Yang J, Orach J, Nislow C, Leung JM, Rider CF, Carlsten C. Exposure to diesel exhaust alters the functional metagenomic composition of the airway microbiome in former smokers. ENVIRONMENTAL RESEARCH 2023; 216:114826. [PMID: 36403657 DOI: 10.1016/j.envres.2022.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The lung microbiome plays a crucial role in airway homeostasis, yet we know little about the effects of exposures such as air pollution therein. We conducted a controlled human exposure study to assess the impact of diesel exhaust (DE) on the human airway microbiome. Twenty-four participants (former smokers with mild to moderate COPD (N = 9), healthy former smokers (N = 7), and control healthy never smokers (N = 8)) were exposed to DE (300 μg/m3 PM2.5) and filtered air (FA) for 2 h in a randomized order, separated by a 4-week washout. Endobronchial brushing samples were collected 24 h post-exposure and sequenced for the 16S microbiome, which was analyzed using QIIME2 and PICRUSt2 to examine diversity and metabolic functions, respectively. DE exposure altered airway microbiome metabolic functions in spite of statistically stable microbiome diversity. Affected functions included increases in: superpathway of purine deoxyribonucleosides degradation (pathway differential abundance 743.9, CI 95% 201.2 to 1286.6), thiazole biosynthesis I (668.5, CI 95% 139.9 to 1197.06), and L-lysine biosynthesis II (666.5, CI 95% 73.3 to 1257.7). There was an exposure-by-age effect, such that menaquinone biosynthesis superpathways were the most enriched function in the microbiome of participants aged >60, irrespective of smoking or health status. Moreover, exposure-by-phenotype analysis showed metabolic alterations in former smokers after DE exposure. These observations suggest that DE exposure induced substantial changes in the metabolic functions of the airway microbiome despite the absence of diversity changes.
Collapse
Affiliation(s)
- Illiassou Hamidou Soumana
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Julia Yang
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Juma Orach
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Janice M Leung
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Francis Rider
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Taskula S, Stetten L, von der Kammer F, Hofmann T. Platinum Nanoparticle Extraction, Quantification, and Characterization in Sediments by Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3307. [PMID: 36234435 PMCID: PMC9565847 DOI: 10.3390/nano12193307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Particulate emissions from vehicle exhaust catalysts are the primary contributors to platinum group elements (PGEs) being released into roadside environments, especially platinum (Pt) particles. With increasing traffic density, it is essential to quantify the emission, accumulation, and potential health effects of traffic-emitted Pt particles. In this study, three procedures were investigated to extract Pt nanoparticles (NPs) from sediments and characterize them by single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOF-MS). For this purpose, a reference sediment sample was spiked with manufactured Pt NPs. Pt NPs' extraction recoveries reached from 50% up to 102%, depending on the extraction procedure and whether the particle mass or number was used as the metric. Between 17% and 35% of the Pt NPs were found as unassociated Pt NPs and between 31% and 78% as Pt NPs hetero-aggregated with other sediment particles. Multi-elemental analysis of Pt-containing NPs in the pristine sediment revealed frequently co-occurring elements such as Au, Bi, and Ir, which can be used to determine a natural background baseline. Our results demonstrated that spICP-TOF-MS elemental characterization allows for distinguishing anthropogenic Pt NPs from the natural background. In the future, this could enable the sensitive monitoring of PGE release from anthropogenic sources such as vehicle exhausts.
Collapse
|
7
|
Wu T, Tong M, Chu A, Wu K, Niu X, Zhang Z. PM2.5-Induced Programmed Myocardial Cell Death via mPTP Opening Results in Deteriorated Cardiac Function in HFpEF Mice. Cardiovasc Toxicol 2022; 22:746-762. [PMID: 35593990 DOI: 10.1007/s12012-022-09753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022]
Abstract
PM2.5 exposure can induce or exacerbate heart failure and is associated with an increased risk of heart failure hospitalization and mortality; however, the underlying mechanisms remain unclear. This study focuses on the potential mechanisms underlying PM2.5 induction of cardiomyocyte programmed necrosis as well as its promotion of cardiac function impairment in a mouse model of heart failure with preserved ejection fraction (HFpEF). HFpEF mice were exposed to concentrated ambient PM2.5 (CAP) (CAP group) or filtered air (FA) (FA group) for 6 weeks. Changes in myocardial pathology and cardiac function were documented for comparisons between the two groups. In vitro experiments were performed to measure oxidative stress and mitochondrial permeability transition pore (mPTP) dynamics in H9C2 cells following 24 h exposure to PM2.5. Additionally, co-immunoprecipitation was conducted to detect p53 and cyclophilin D (CypD) interactions. The results showed exposure to CAP promoted cardiac function impairment in HFpEF mice. Myocardial pathology analysis and in vitro experiments demonstrated that PM2.5 led to mitochondrial damage in cardiomyocytes and, eventually, their necrosis. Moreover, our experiments also suggested that PM2.5 increases mitochondrial reactive oxygen species (ROS), induces DNA oxidative damage, and decreases the inner mitochondrial membrane potential (ΔΨm). This indicates the presence of mPTP opening. Co-immunoprecipitation results showed a p53/CypD interaction in the myocardial tissue of HFpEF mice in the CAP group. Inhibition of CypD by cyclosporin A was found to reverse PM2.5-induced mPTP opening and H9C2 cell death. In conclusion, PM2.5 induces mPTP opening to stimulate mitochondria-mediated programmed necrosis of cardiomyocytes, and it might exacerbate cardiac function impairment in HFpEF mice.
Collapse
Affiliation(s)
- Tingting Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
- The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Minghui Tong
- The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Aiai Chu
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Kaiyue Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China
| | - Xiaowei Niu
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zheng Zhang
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Mishra PK, Bhargava A, Kumari R, Bunkar N, Chauhan P, Mukherjee S, Shandilya R, Singh RD, Tiwari R, Chaudhury K. Integrated mitoepigenetic signalling mechanisms associated with airborne particulate matter exposure: A cross-sectional pilot study. ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101399. [DOI: 10.1016/j.apr.2022.101399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
9
|
Ageing Significantly Alters the Physicochemical Properties and Associated Cytotoxicity Profiles of Ultrafine Particulate Matters towards Macrophages. Antioxidants (Basel) 2022; 11:antiox11040754. [PMID: 35453439 PMCID: PMC9030427 DOI: 10.3390/antiox11040754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
There are still significant concerns about the detrimental effects and health risks of particulate matters (PMs) on the respiratory system. Notably, a largely overlooked knowledge gap is whether the environmental ageing process would change the physicochemical properties of PMs as well as the toxic influences of PMs on macrophages. Here, we applied ambient treatment of model PMs to mimic the real O3-induced ageing process and investigated ageing-determined cytotoxicity profile changes of PMs towards macrophages. The consequent distinct bioreactivity and toxicity towards macrophages are largely attributed to the changes of species of surface O-functional groups. Importantly, we unveiled the specific interactions between aged PMs and macrophages due to the variant contents of the surface carboxyl group, resulting in the divergent inflammatory activations and immune balance in the lung. Collectively, this study unearths the significance of ageing in altering particle cytotoxicity, and also provides additional understandings for consecutive investigations on the adverse effects of air pollution on the respiratory system.
Collapse
|
10
|
Sivakumar B, Kurian GA. Diesel particulate matter exposure deteriorates cardiovascular health and increases the sensitivity of rat heart towards ischemia reperfusion injury via suppressing mitochondrial bioenergetics function. Chem Biol Interact 2022; 351:109769. [PMID: 34875278 DOI: 10.1016/j.cbi.2021.109769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
Documents from previous studies do not sufficiently explain the pathophysiological alterations involved in rat hearts exposed to PM2.5 from diesel exhaust, termed as Diesel Particulate matter (DPM). In the present study, we explored the cardiovascular effect of DPM exposure on the recovery of heart from Ischemia reperfusion injury (IR) and explored the probable cause-effect relationship. Two groups of female Wistar rats were exposed to 0.5 mg/ml DPM for 1 h and 3 h durations daily for 21 days via a whole-body exposure system. At the end of 21st day, the animals were sacrificed and the heart was subjected to IR via Langendorff isolated rat heart perfusion system. 21 days of exposure altered cardiac electrophysiology and the ultra-structure of myocardium. Also, the same group of animals exhibited calcification in the vasculature. These changes were prominent in animals exposed to DPM for 3 h daily. Administration of DPM to H9C2 cells resulted in 15% and 36% cell death after 1hr and 3hrs of incubation, respectively. When the hearts were challenged to IR, both 1 h and 3 h exposed hearts exhibited a significant decline in IR recovery. At the sub-cellular level, DPM exposure reduced ATP levels, mitochondrial copy number, and increased oxidative stress after IR in both exposure groups. These changes were markedly seen in the interfibrillar mitochondrial fraction of the mitochondria. Hence, we conclude that exposure to PM2.5 from diesel exhaust alters electrophysiology and ultrastructure of heart and reduces the level of cellular mediators, thereby compromising the ability of heart to withstand IR injury.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
11
|
Sivakumar B, Kurian GA. Mitochondria and traffic-related air pollution linked coronary artery calcification: exploring the missing link. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:545-563. [PMID: 34821115 DOI: 10.1515/reveh-2020-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 06/13/2023]
Abstract
The continuing increase in the exposure to Traffic-related air pollution (TRAP) in the general population is predicted to result in a higher incidence of non-communicable diseases like cardiovascular disease. The chronic exposure of air particulate matter from TRAP upon the vascular system leads to the enhancement of deposition of calcium in the vasculature leading to coronary artery calcification (CAC), triggered by inflammatory reactions and endothelial dysfunction. This calcification forms within the intimal and medial layers of vasculature and the underlying mechanism that connects the trigger from TRAP is not well explored. Several local and systemic factors participate in this active process including inflammatory response, hyperlipidemia, presence of self-programmed death bodies and high calcium-phosphate concentrations. These factors along with the loss of molecules that inhibit calcification and circulating nucleation complexes influence the development of calcification in the vasculature. The loss of defense to prevent osteogenic transition linked to micro organelle dysfunction that includes deteriorated mitochondria, elevated mitochondrial oxidative stress, and defective mitophagy. In this review, we examine the contributory role of mitochondria involved in the mechanism of TRAP linked CAC development. Further we examine whether TRAP is an inducer or trigger for the enhanced progression of CAC.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
12
|
Brugge D, Lerman Ginzburg S, Hudda N, Sprague Martinez L, Meunier L, Hersey SP, Hochman I, Walker DI, Echevarria B, Thanikachalam M, Durant JL, Zamore W, Eliasziw M. A randomized crossover trial of HEPA air filtration to reduce cardiovascular risk for near highway residents: Methods and approach. Contemp Clin Trials 2021; 108:106520. [PMID: 34332159 DOI: 10.1016/j.cct.2021.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Near highway residents are exposed to elevated levels of traffic-related air pollution (TRAP), including ultrafine particles, which are associated with adverse health effects. The efficacy of using in-home air filtration units that reduce exposure and potentially yield health benefits has not been tested in a randomized controlled trial. METHODS We will conduct a randomized double-blind crossover trial of portable air filtration units for 200 adults 30 years and older who live in near-highway homes in Somerville, MA, USA. We will recruit participants from 172 households. The intervention periods will be one month of true or sham filtration, followed by a one-month wash out period and then a month of the alternate intervention. The primary health outcome will be systolic blood pressure (BP); secondary outcome measures will include diastolic and central BP, C-Reactive Protein (CRP) and D-dimer. Reasons for success or failure of the intervention will be evaluated in a subset of homes using indoor/outdoor monitoring for particulate pollution, personal monitoring, size and composition of particulate pollution, tracking of time spent in the room with the filter, and interviews for qualitative feedback. RESULTS This trial has begun recruitment and is expected to take 2-3 years to be completed. Recruitment has been particularly challenging because of additional precautions required by the COVID-19 pandemic. DISCUSSION This study has the potential to shed light on the value of using portable air filtration in homes close to highways to reduce exposure to TRAP and whether doing so has benefits for cardiovascular health.
Collapse
Affiliation(s)
- Doug Brugge
- Department of Public Health Sciences, University of Connecticut, Farmington, CT 06032, United States of America
| | - Shir Lerman Ginzburg
- UConn Health Department of Public Health Sciences, Farmington, CT 06032., United States of America.
| | - Neelakshi Hudda
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, 02476, United States of America
| | - Linda Sprague Martinez
- Macro Department, Boston University School of Social Work, Boston, MA 02215, United States of America
| | - Leigh Meunier
- UConn Health Department of Public Health Sciences, Farmington, CT 06032., United States of America
| | - Scott P Hersey
- Franklin W. Olin College of Engineering, Needham, MA 02492, United States of America
| | - Ira Hochman
- inTouch Technology Corp., Cambridge, MA 02142, United States of America
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029l, United States of America
| | - Ben Echevarria
- Welcome Project, Somerville, MA 02145, United States of America
| | - Mohan Thanikachalam
- Tufts University School of Medicine, Public Health and Community Medicine, 136 Harrison Avenue, Boston, MA 02111, United States of America
| | - John L Durant
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02476, United States of America
| | - Wig Zamore
- Somerville Transportation Equity Partnership, Somerville, MA 02145, United States of America
| | - Misha Eliasziw
- Department of Public Health and Community Medicine, Tufts University, Boston, MA 02111, United States of America
| |
Collapse
|
13
|
Yang X, Zhou Y, Liang H, Meng Y, Liu H, Zhou Y, Huang C, An B, Mao H, Liao Z. VDAC1 promotes cardiomyocyte autophagy in anoxia/reoxygenation injury via the PINK1/Parkin pathway. Cell Biol Int 2021; 45:1448-1458. [PMID: 33675282 DOI: 10.1002/cbin.11583] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/05/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022]
Abstract
Ischemia/reperfusion (I/R) is a well-known injury to the myocardium, but the mechanism involved remains elusive. In addition to the well-accepted apoptosis theory, autophagy was recently found to be involved in the process, exerting a dual role as protection in ischemia and detriment in reperfusion. Activation of autophagy is mediated by mitochondrial permeability transition pore (MPTP) opening during reperfusion. In our previous study, we showed that MPTP opening is regulated by VDAC1, a channel protein located in the outer membrane of mitochondria. Thus, upregulation of VDAC1 expression is a possible trigger to cardiomyocyte autophagy via an unclear pathway. Here, we established an anoxia/reoxygenation (A/R) model in vitro to simulate the I/R process in vivo. At the end of A/R treatment, VDAC1, Beclin 1, and LC3-II/I were upregulated, and autophagic vacuoles were increased in cardiomyocytes, which showed a connection of VDAC1 and autophagy development. These variations also led to ROS burst, mitochondrial dysfunction, and aggravated apoptosis. Knockdown of VDAC1 by RNAi could alleviate the above-mentioned cellular damages. Additionally, the expression of PINK1 and Parkin was enhanced after A/R injury. Furthermore, Parkin was recruited to mitochondria from the cytosol, which suggested that the PINK1/Parkin autophagic pathway was activated during A/R. Nevertheless, the PINK1/Parkin pathway was effectively inhibited when VDAC1 was knocked-down. Taken together, the A/R-induced cardiomyocyte injury was mediated by VDAC1 upregulation, which led to cell autophagy via the PINK1/Parkin pathway, and finally aggravated apoptosis.
Collapse
Affiliation(s)
- Xiaomei Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Yuancheng Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Haiyan Liang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Yan Meng
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Haocheng Liu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Ying Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Chunhong Huang
- Department of Biochemistry, College of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Binyi An
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongli Mao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Mangal A, Satsangi A, Lakhani A, Kumari KM. Characterization of ambient PM 1 at a suburban site of Agra: chemical composition, sources, health risk and potential cytotoxicity. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:621-642. [PMID: 33094390 DOI: 10.1007/s10653-020-00737-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The present study was conducted at a University campus of Agra to determine concentrations of crustal and trace elements in submicron mode (PM1) particles to reveal sources and detrimental effects of PM1-bound metals (Cr, Cd, Mn, Zn, As, Co, Pb, Cu and Ni) in samples collected in the foggy (1 December 2016-17 January 2017) and non-foggy periods (1 April 2016-30 June 2016). Samples were collected twice a week on preweighed quartz fibre filters (QM-A 47 mm) for 24 h using Envirotech APM 577 (flow rate 10 l min-1). Mass concentration of PM1 was 135.0 ± 28.2 and 54.0 ± 18.5 µg/m3 during foggy and non-foggy period, respectively; crustal and trace elements were 13 and 4% during foggy and 11 and 3% in the non-foggy period. Source identification by PCA (principal component analysis) suggested that biomass burning and coal combustion was the prominent sources in foggy period followed by resuspended soil dust, industrial and vehicular emission, whereas in non-foggy period resuspended soil dust was dominant followed by biomass burning and coal combustion, industrial and vehicular emissions. In both episodes, Mn has the highest Hq (hazard quotient) value and Cr has the highest IlcR (Incremental Lifetime Cancer Risk) value for both adults and children. In vitro cytotoxicity impact on macrophage (J774) cells was also tested using MTT assay which revealed decreasing cell viability with increasing particle mass.
Collapse
Affiliation(s)
- Ankita Mangal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India
| | - Aparna Satsangi
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India
| | - Anita Lakhani
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India
| | - K Maharaj Kumari
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute Dayalbagh, Agra, UP, 282005, India.
| |
Collapse
|
15
|
Daiber A, Kuntic M, Hahad O, Delogu LG, Rohrbach S, Di Lisa F, Schulz R, Münzel T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress - Implications for cardiovascular and neurodegenerative diseases. Arch Biochem Biophys 2020; 696:108662. [PMID: 33159890 DOI: 10.1016/j.abb.2020.108662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Environmental pollution is a major cause of global mortality and burden of disease. All chemical pollution forms together may be responsible for up to 12 million annual excess deaths as estimated by the Lancet Commission on pollution and health as well as the World Health Organization. Ambient air pollution by particulate matter (PM) and ozone was found to be associated with an all-cause mortality rate of up to 9 million in the year 2015, with the majority being of cerebro- and cardiovascular nature (e.g. stroke and ischemic heart disease). Recent evidence suggests that exposure to airborne particles and gases contributes to and accelerates neurodegenerative diseases. Especially, airborne toxic particles contribute to these adverse health effects. Whereas it is well established that air pollution in the form of PM may lead to dysregulation of neurohormonal stress pathways and may trigger inflammation as well as oxidative stress, leading to secondary damage of cardiovascular structures, the mechanistic impact of PM-induced mitochondrial damage and dysfunction is not well established. With the present review we will discuss similarities between mitochondrial damage and dysfunction observed in the development and progression of cardiovascular disease and neurodegeneration as well as those adverse mitochondrial pathomechanisms induced by airborne PM.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Lucia G Delogu
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
16
|
Kunovac A, Hathaway QA, Pinti MV, Taylor AD, Hollander JM. Cardiovascular adaptations to particle inhalation exposure: molecular mechanisms of the toxicology. Am J Physiol Heart Circ Physiol 2020; 319:H282-H305. [PMID: 32559138 PMCID: PMC7473925 DOI: 10.1152/ajpheart.00026.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Ambient air, occupational settings, and the use and distribution of consumer products all serve as conduits for toxicant exposure through inhalation. While the pulmonary system remains a primary target following inhalation exposure, cardiovascular implications are exceptionally culpable for increased morbidity and mortality. The epidemiological evidence for cardiovascular dysfunction resulting from acute or chronic inhalation exposure to particulate matter has been well documented, but the mechanisms driving the resulting disturbances remain elusive. In the current review, we aim to summarize the cellular and molecular mechanisms that are directly linked to cardiovascular health following exposure to a variety of inhaled toxicants. The purpose of this review is to provide a comprehensive overview of the biochemical changes in the cardiovascular system following particle inhalation exposure and to highlight potential biomarkers that exist across multiple exposure paradigms. We attempt to integrate these molecular signatures in an effort to provide direction for future investigations. This review also characterizes how molecular responses are modified in at-risk populations, specifically the impact of environmental exposure during critical windows of development. Maternal exposure to particulate matter during gestation can lead to fetal epigenetic reprogramming, resulting in long-term deficits to the cardiovascular system. In both direct and indirect (gestational) exposures, connecting the biochemical mechanisms with functional deficits outlines pathways that can be targeted for future therapeutic intervention. Ultimately, future investigations integrating "omics"-based approaches will better elucidate the mechanisms that are altered by xenobiotic inhalation exposure, identify biomarkers, and guide in clinical decision making.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
17
|
Isakov KMM, Legasto AC, Hossain R, Verzosa Weisman S, Toy D, Groner LK, Feibusch A, Escalon JG. A Case-Based Review of Vaping-Induced Injury-Pulmonary Toxicity and Beyond. Curr Probl Diagn Radiol 2020; 50:401-409. [PMID: 32703539 DOI: 10.1067/j.cpradiol.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022]
Abstract
The last 10 years has seen a steady rise in the use of electronic cigarettes ("e-cigarettes" or ECIGs) or "vape pens." Though initially developed to assist with smoking cessation, use among adolescents has been particularly high. A concomitant rise in ECIG-related injuries disproportionately affecting young patients has been recognized. This unique case series highlights both pulmonary and extra-pulmonary ECIG-induced injuries including vape tip ingestion, maxillofacial fractures after vape pen explosion, myocarditis, and several different manifestations of vaping-associated lung injury. Becoming familiar with expected imaging findings in the wide array of ECIG-induced complications will help radiologists recognize these findings, recommend further imaging as needed, facilitate early diagnosis by help referring clinicians elicit the relevant history from patients, and expedite appropriate treatment.
Collapse
Affiliation(s)
- Kimberly M M Isakov
- Department of Radiology, Division of Cardiothoracic Imaging, New York-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| | - Alan C Legasto
- Department of Radiology, Division of Cardiothoracic Imaging, New York-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| | - Rydhwana Hossain
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Stacey Verzosa Weisman
- Department of Radiology, Division of Cardiothoracic Imaging, New York-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| | - Dennis Toy
- Department of Radiology, Division of Cardiothoracic Imaging, New York-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| | - Lauren K Groner
- Department of Radiology, Division of Cardiothoracic Imaging, New York-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| | - Amanda Feibusch
- Department of Radiology, Division of Cardiothoracic Imaging, New York-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| | - Joanna G Escalon
- Department of Radiology, Division of Cardiothoracic Imaging, New York-Presbyterian Hospital - Weill Cornell Medical Center, New York, NY.
| |
Collapse
|
18
|
Short-term effects of ambient air pollution and outdoor temperature on biomarkers of myocardial damage, inflammation and oxidative stress in healthy adults. Environ Epidemiol 2019; 3:e078. [PMID: 33778346 PMCID: PMC7939428 DOI: 10.1097/ee9.0000000000000078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023] Open
Abstract
Supplemental Digital Content is available in the text. The mechanisms whereby ambient air pollution and temperature changes promote cardiac events remain incompletely described. Seventy-three nonsmoking healthy adults (mean age 23.3, SD 5.4 years) were followed with up to four repeated visits across 15 months in Beijing in 2014–2016. Biomarkers relevant to myocardial damage (high-sensitivity cardiac troponin I [hs-cTnI]), inflammation (growth differentiation factor-15 [GDF-15]), and oxidative stress (8-hydroxy-2′-deoxyguanosine [8-OHdG]) were measured at each visit, while ambient air pollution and temperature were monitored throughout the study. Linear mixed-effects models coupled with distributed lag nonlinear models were used to assess the impacts of each exposure measure on study outcomes. During follow-up, average daily concentrations of fine particulate matter and outdoor temperature were 62.9 µg/m3 (8.1–331.0 µg/m3) and 10.1 °C (−6.5°C to 29.5°C). Serum hs-cTnI levels were detectable in 18.2% of blood samples, with 27.4% of individuals having ≥1 detectable values. Higher levels of ambient particulates and gaseous pollutants (per interquartile range) up to 14 days before clinical visits were associated with significant alterations in hs-cTnI levels of 22.9% (95% CI, 6.4, 39.4) to 154.7% (95% CI, 94.4, 215.1). These changes were accompanied by elevations of circulating GDF-15 and urinary 8-OHdG levels. Both low (5th percentile, −2.5 °C) and high (95th percentile, 24.8°C) outdoor temperatures, with breakpoint at ~13.0°C as the reference level, were also associated with elevations of hs-cTnI levels. Short-term exposure to ambient air pollution and temperature was associated with cardiac troponin, a biomarker of myocardial damage, along with increased inflammation and oxidative stress responses. These findings extend our understanding of the biological mechanisms linking pervasive environmental exposure to adverse cardiac events.
Collapse
|
19
|
Caggiano R, Sabia S, Speranza A. Trace elements and human health risks assessment of finer aerosol atmospheric particles (PM 1). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36423-36433. [PMID: 31728947 DOI: 10.1007/s11356-019-06756-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/14/2019] [Indexed: 05/16/2023]
Abstract
The present study investigated PM1 (aerosol particles with an aerodynamic diameter ≤ 1.0 μm) mass concentrations and sixteen (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, S, Ti, and Zn) PM1-related trace elements. PM1 samples were collected in an anthropized area of international attention close to oil/gas pre-treatment plants in Agri Valley (Southern Italy). The PM1 mass concentrations varied from 3 to 16 μg/m3. The decreasing pattern of the trace element concentrations was S > Ca > Na > K ≈ Mg ≈ Fe> Al > Li > Cr > Zn > Ti> Cu > Ni ≈ Mn > Pb ≈ Cd. Anthropogenic local emissions such as biomass burning, vehicular traffic, and industrial sources mainly related to oil/gas pre-treatment plants were identified by the principal component analysis. Further, air mass back-trajectory analyses suggest an important contribute to the long-range transport on PM1 at Agri Valley. The carcinogenic (Cd, Cr(VI), Ni, and Pb) and non-carcinogenic (Cd, Cr(VI), Cu, Mn, Ni, Pb, and Zn) health risks both for children and for adults were assessed using the United State Environmental Protection Agency (USEPA) methods considering inhalation, ingestion, and dermal contact pathway. Chromium (VI) posed the highest carcinogenic risk for both children and adults. The integrated carcinogenic risks were respectively 3.45 × 10-5 and 1.38 × 10-4 for children and adults indicating that attention should be paid for carcinogenic health effects. Nickel posed the highest non-carcinogenic risk for children through inhalation pathway. The integrated non-carcinogenic risk showed a value higher than 1 highlighting that Cd, Cr(VI), Cu, Mn, Ni, Pb, and Zn may cause cumulative non-carcinogenic health effect for children from inhalation exposure.
Collapse
Affiliation(s)
- Rosa Caggiano
- IMAA, Istituto di Metodologie per l'Analisi Ambientale, CNR, C.da S. Loja, Z.I., 85050, Tito Scalo, PZ, Italy.
| | - Serena Sabia
- IMAA, Istituto di Metodologie per l'Analisi Ambientale, CNR, C.da S. Loja, Z.I., 85050, Tito Scalo, PZ, Italy
| | - Antonio Speranza
- IMAA, Istituto di Metodologie per l'Analisi Ambientale, CNR, C.da S. Loja, Z.I., 85050, Tito Scalo, PZ, Italy
| |
Collapse
|
20
|
Tong H, Zavala J, McIntosh-Kastrinsky R, Sexton KG. Cardiovascular effects of diesel exhaust inhalation: photochemically altered versus freshly emitted in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:944-955. [PMID: 31566091 PMCID: PMC7308149 DOI: 10.1080/15287394.2019.1671278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study was designed to compare the cardiovascular effects of inhaled photochemically altered diesel exhaust (aged DE) to freshly emitted DE (fresh DE) in female C57Bl/6 mice. Mice were exposed to either fresh DE, aged DE, or filtered air (FA) for 4 hr using an environmental irradiation chamber. Cardiac responses were assessed 8 hr after exposure utilizing Langendorff preparation with a protocol consisting of 20 min of perfusion and 20 min of ischemia followed by 2 hr of reperfusion. Cardiac function was measured by indices of left-ventricular-developed pressure (LVDP) and contractility (dP/dt) prior to ischemia. Recovery of post-ischemic LVDP was examined on reperfusion following ischemia. Fresh DE contained 460 µg/m3 of particulate matter (PM), 0.29 ppm of nitrogen dioxide (NO2) and no ozone (O3), while aged DE consisted of 330 µg/m3 of PM, 0.23 ppm O3 and no NO2. Fresh DE significantly decreased LVDP, dP/dtmax, and dP/dtmin compared to FA. Aged DE also significantly reduced LVDP and dP/dtmax. Data demonstrated that acute inhalation to either fresh or aged DE lowered LVDP and dP/dt, with a greater fall noted with fresh DE, suggesting that the composition of DE may play a key role in DE-induced adverse cardiovascular effects in female C57Bl/6 mice.
Collapse
Affiliation(s)
- Haiyan Tong
- Environmental Public Health Division, NHEERL, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Jose Zavala
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel McIntosh-Kastrinsky
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kenneth G. Sexton
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Campagnolo D, Cattaneo A, Corbella L, Borghi F, Del Buono L, Rovelli S, Spinazzé A, Cavallo DM. In-vehicle airborne fine and ultra-fine particulate matter exposure: The impact of leading vehicle emissions. ENVIRONMENT INTERNATIONAL 2019; 123:407-416. [PMID: 30622065 DOI: 10.1016/j.envint.2018.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Airborne particulate matter (PM) concentrations inside vehicle cabins are often extremely high compared to background levels. The present study was motivated by the fact that in the last few decades, the implementation of new emission standards has led to the reduction of vehicle particle emissions. This study addresses for the first time the relationship between leading vehicle (LV) emissions and in-cabin PM exposure levels in the immediately following vehicle (henceforth called the study vehicle - SV), with particular emphasis on the role of the LV's emission reduction technologies (e.g., diesel particulate filter-DPF) as an effective risk management measure. The study was performed using an instrumented study vehicle (always to be considered as the following vehicle) on a 26-km fixed route where 10 repeated tests were conducted during 60-minute trips. On-line monitoring of the fine 0.3-1 μm and 1-2.5 μm (PM0.3-1 and PM1-2.5) and ultra-fine particle (UFP) concentrations was performed inside the SV's car cabin with fixed ventilation settings (i.e., windows closed, air conditioning off, and recirculation fan off). Simultaneously, the license plate numbers of the LVs along the route were recorded to retrieve information pertaining to their fuel type and Euro emission standard category. The results clearly showed that the in-cabin PM levels were significantly affected by the LV's Euro emission standard. Regarding petrol-fuelled LVs, the median in-cabin particle exposure levels were statistically lower (e.g., -34% for PM0.3-1) when following vehicles with stricter emission standards (in particular, Euro 6) than when following a low-emission standard vehicle (i.e., Euro 0-2). Concerning diesel-fuelled LVs, a strong and significant decrease in the in-cabin median exposure levels (up to -62%, -44%, and -48% for UFPs, PM0.3-1, and PM1-2.5, respectively) was observed for recent-emission standards LVs (i.e., Euro 5-6) with respect to older-emission standard LVs (i.e., Euro 0-4). A specific analysis revealed that the in-cabin median exposure concentrations of PM were highly and significantly reduced by DPF-equipped LVs. For UFPs, this resulted in a 47% reduction compared to diesel-fuelled (non-DPF) LVs. For PM0.3-1, an approximate 80% reduction was observed compared to both petrol-fuelled and diesel-fuelled (non-DPF) LVs. For PM1-2.5, an approximate 38% reduction was observed compared to petrol-fuelled LVs and a 46% reduction compared to non-DPF LVs.
Collapse
Affiliation(s)
- Davide Campagnolo
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy.
| | - Andrea Cattaneo
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Leonardo Corbella
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Francesca Borghi
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Luca Del Buono
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Sabrina Rovelli
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Andrea Spinazzé
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Domenico M Cavallo
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| |
Collapse
|
22
|
Mariani J, Favero C, Spinazzè A, Cavallo DM, Carugno M, Motta V, Bonzini M, Cattaneo A, Pesatori AC, Bollati V. Short-term particulate matter exposure influences nasal microbiota in a population of healthy subjects. ENVIRONMENTAL RESEARCH 2018; 162:119-126. [PMID: 29291434 DOI: 10.1016/j.envres.2017.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/13/2017] [Accepted: 12/17/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Exposure to air pollutants, such as particulate matter (PM), represents a growing health problem. The aim of our study was to investigate whether PM could induce a dysbiosis in the nasal microbiota in terms of α-diversity and taxonomic composition. METHODS We investigated structure and characteristics of the microbiota of 40 healthy subjects through metabarcoding analysis of the V3-V4 regions of the 16s rRNA gene. Exposure to PM10 and PM2.5 was assessed with a personal sampler worn for 24h before sample collection (Day -1) and with measurements from monitoring stations (from Day -2 to Day -7). RESULTS We found an inverse association between PM10 and PM2.5 levels of the 3rd day preceding sampling (Day -3) and α-diversity indices (Chao1, Shannon and PD_whole_tree). Day -3 PM was inversely associated also with the majority of analyzed taxa, except for Moraxella, which showed a positive association. In addition, subjects showed different structural profiles identifying two groups: one characterized by an even community and another widely dominated by the Moraxella genus. CONCLUSIONS Our findings support the role of PM exposure in influencing microbiota and altering the normal homeostasis within the bacterial community. Whether these alterations could have a role in disease development and/or exacerbation needs further research.
Collapse
Affiliation(s)
- Jacopo Mariani
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, Como, Italy
| | | | - Michele Carugno
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Valeria Motta
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
23
|
Choi J, Oh JY, Lee YS, Min KH, Hur GY, Lee SY, Kang KH, Shim JJ. Harmful impact of air pollution on severe acute exacerbation of chronic obstructive pulmonary disease: particulate matter is hazardous. Int J Chron Obstruct Pulmon Dis 2018; 13:1053-1059. [PMID: 29681728 PMCID: PMC5881527 DOI: 10.2147/copd.s156617] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction Particulate matter and air pollution in Korea are becoming worse. There is a lack of research regarding the impact of particulate matter on patients with COPD. Therefore, the purpose of this study was to investigate the effects of various air pollution factors, including particulate matter, on the incidence rate of severe acute exacerbations of COPD (AECOPD) events. Methods We analyzed the relationship between air pollutants and AECOPD events that required hospitalization at Guro Hospital in Korea from January 1, 2015 to May 31, 2017. We used general linear models with Poisson distribution and log-transformation to obtain adjusted relative risk (RR). We conducted further analysis through the Comprehensive Air-quality Index (CAI) that is used in Korea. Results Among various other air pollutants, particulate matter was identified as a major source of air pollution in Korea. When the CAI score was over 50, the incidence rate of severe AECOPD events was statistically significantly higher [RR 1.612, 95% CI, 1.065-2.440, P=0.024]. Additionally, the particulate matter levels 3 days before hospitalization were statistically significant [RR 1.003, 95% CI, 1.001-1.005, P=0.006]. Conclusion Particulate matter and air pollution increase the incidence rate of severe AECOPD events. COPD patients should be cautioned against outdoor activities when particulate matter levels are high.
Collapse
Affiliation(s)
- Juwhan Choi
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jee Youn Oh
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young Seok Lee
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hoon Min
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gyu Young Hur
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung Yong Lee
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Ho Kang
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Jeong Shim
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
24
|
Tanwar V, Katapadi A, Adelstein JM, Grimmer JA, Wold LE. Cardiac pathophysiology in response to environmental stress: a current review. CURRENT OPINION IN PHYSIOLOGY 2017; 1:198-205. [PMID: 29552675 DOI: 10.1016/j.cophys.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose Environmental stressors are disturbing our ecosystem at an accelerating rate. An increasingly relevant stressor are air pollutants, whose levels are increasing worldwide with threats to human health. These air pollutants are associated with increased mortality and morbidity from cardiovascular diseases. In this review we discuss environmental stressors focusing mainly on the various types of air pollutants, their short-term and long-term cardiovascular effects, and providing the epidemiological evidence associated with adverse cardiovascular outcomes. Direct and indirect pathophysiological mechanisms are also linked with cardiovascular complications such as thrombosis, fibrinolysis, hypertension, ischemic heart diseases and arrhythmias. RESULTS Evidence to date suggests that humans are constantly being exposed to unhealthy levels of environmental toxicants with the potential of serious health conditions. Environmental stressors adversely affect the cardiovascular system and pose an increased risk for cardiovascular diseases for those who reside in highly polluted areas. CONCLUSION People with existing risk factors and those with established cardiovascular disease have increased susceptibility to environmental stressors. The literature reviewed in this article thus support public health policies aimed at reducing pollutant exposure to benefit public health.
Collapse
Affiliation(s)
- Vineeta Tanwar
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH.,College of Nursing, The Ohio State University, Columbus, OH
| | - Aashish Katapadi
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jeremy M Adelstein
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH
| | - Jacob A Grimmer
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH.,College of Nursing, The Ohio State University, Columbus, OH.,Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|