1
|
Elattar MM, Darwish RS, Hammoda HM, Dawood HM. An ethnopharmacological, phytochemical, and pharmacological overview of onion (Allium cepa L.). JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117779. [PMID: 38262524 DOI: 10.1016/j.jep.2024.117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Onion (Allium cepa L.) is one of the most widely distributed species within the Allium genus of family Amaryllidaceae. Onion has been esteemed for its medicinal properties since antiquity. It has been consumed for centuries in various indigenous cultures for the management of several ailments including microbial infections, respiratory, gastrointestinal, skin and cardio-vascular disorders, diabetes, renal colic, rheumatism, sexual impotence, menstrual pain, and headache. However, so far, there is a scarcity of recent data that compiles the plant chemistry, traditional practices, biological features, and toxicity. AIM OF THE WORK The aim of this review is to provide a comprehensive and analytical overview of ethnopharmacological uses, phytochemistry, pharmacology, industrial applications, quality control, and toxicology of onion, to offer new perspectives and broad scopes for future studies. MATERIALS AND METHODS The information gathered in this review was obtained from various sources including books, scientific databases such as Science Direct, Wiley, PubMed, Google Scholar, and other domestic and foreign literature. RESULTS Onion has a long history of use as a traditional medicine for management of various conditions including infectious, inflammatory, respiratory, cardiovascular diseases, diabetes, and erectile dysfunction. More than 400 compounds have been identified in onion including flavonoids, phenolic acids, amino acids, peptides, saponins and fatty acids. The plant extracts and compounds showed various pharmacological activities such as antimicrobial, antidiabetic, anti-inflammatory, anti-hyperlipidemic, anticancer, aphrodisiac, cardioprotective, and neuroprotective activities. In addition to its predominant medicinal uses, onion has found various applications in the functional food industry. CONCLUSION Extensive literature analysis reveals that onion extracts and bioactive constituents possess diverse pharmacological activities that can be beneficial for treating various diseases. However, the current research primarily revolves around the documentation of ethnic pharmacology and predominantly consists of in vitro studies, with relatively limited in vivo and clinical studies. Consequently, it is imperative for future investigations to prioritize and expand the scope of in vivo and clinical research. Additionally, it is strongly recommended to direct further research efforts towards toxicity studies and quality control of the plant. These studies will help bridge the current knowledge gaps and establish a solid basis for exploring the plant's potential uses in a clinical setting.
Collapse
Affiliation(s)
- Mariam M Elattar
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
2
|
Hassan DAE, Ghaleb SS, Zaki AR, Abdelmenem A, Nabil S, Alim MAA. The toxic effects of anabolic steroids "nandrolone decanoate" on cardiac and skeletal muscles with the potential ameliorative effects of silymarin and fenugreek seeds extract in adult male albino rats. BMC Pharmacol Toxicol 2023; 24:17. [PMID: 36922878 PMCID: PMC10015925 DOI: 10.1186/s40360-023-00658-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Anabolic steroids (AS) are commonly abused by body builders and athletes aiming to increase their strength and muscle mass but unfortunately, the long-term use of AS may lead to serious side effects. Nandrolone Decanoate is one of the Class II anabolic androgenic steroids which quickly spread globally and used clinically and illicitly. Our research was directed to assess the toxic effects of anabolic steroids on cardiac and skeletal muscles in male albino rats and to evaluate the potential ameliorative effects of fenugreek seeds extract and silymarin. METHODS Our research was done on 120 male albino rats that were allocated into 6 groups; group I: Served as a control group, group II: Received the anabolic steroid Nandrolone Decanoate, group III: Received silymarin orally, group IV: Received fenugreek seeds extract orally, group (V): Received the anabolic steroid Nandrolone Decanoate and silymarin and group (VI): Received the anabolic steroid Nandrolone Decanoate and fenugreek seeds extract. By the end of the study, rats were sacrificed, and blood samples were collected for biochemical analysis and autopsy samples for histopathological examination. RESULTS The anabolic steroids toxic effects on rats showed a significant decrease in serum High Density Lipoprotein (HDL) level and increase in cholesterol, triglycerides, and Low-Density Lipoprotein (LDL) levels. There was a significant elevation in cardiac troponin I level. As regards to histopathological examination of the cardiac and skeletal muscles, the study showed marked degenerative changes and necrosis. Both silymarin and fenugreek seeds extract provided a protective effect on the biochemical and histopathological changes. The antioxidant effects of silymarin and fenugreek seeds extract were evaluated on the heart, skeletal muscles and showed that, the tissue levels of Superoxide dismutase (SOD), Catalase and reduced glutathione (GSH) decreased in AS treated rats compared to the control group. On the other hand, the tissue Malondialdehyde (MDA) levels were elevated. CONCLUSIONS Anabolic steroids have a toxic effect on the cardiac and skeletal muscles of albino rats with improvement by treatment with fenugreek seeds extract and silymarin.
Collapse
Affiliation(s)
- Dalia Abd Elwahab Hassan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, 62511, Egypt.
| | - Sherien S Ghaleb
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Cairo, 62514, Egypt
| | - Amr Reda Zaki
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Ahmed Abdelmenem
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Shimaa Nabil
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Mostafa Abdallah Abdel Alim
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, 62511, Egypt
| |
Collapse
|
3
|
Zhao XX, Lin FJ, Li H, Li HB, Wu DT, Geng F, Ma W, Wang Y, Miao BH, Gan RY. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion ( Allium cepa L.). Front Nutr 2021; 8:669805. [PMID: 34368207 PMCID: PMC8339303 DOI: 10.3389/fnut.2021.669805] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Onion (Allium cepa L.) is a common vegetable, widely consumed all over the world. Onion contains diverse phytochemicals, including organosulfur compounds, phenolic compounds, polysaccharides, and saponins. The phenolic and sulfur-containing compounds, including onionin A, cysteine sulfoxides, quercetin, and quercetin glucosides, are the major bioactive constituents of onion. Accumulated studies have revealed that onion and its bioactive compounds possess various health functions, such as antioxidant, antimicrobial, anti-inflammatory, anti-obesity, anti-diabetic, anticancer, cardiovascular protective, neuroprotective, hepatorenal protective, respiratory protective, digestive system protective, reproductive protective, and immunomodulatory properties. Herein, the main bioactive compounds in onion are summarized, followed by intensively discussing its major health functions as well as relevant molecular mechanisms. Moreover, the potential safety concerns about onion contamination and the ways to mitigate these issues are also discussed. We hope that this paper can attract broader attention to onion and its bioactive compounds, which are promising ingredients in the development of functional foods and nutraceuticals for preventing and managing certain chronic diseases.
Collapse
Affiliation(s)
- Xin-Xin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Fang-Jun Lin
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Hang Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Wei Ma
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yu Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Bao-He Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| |
Collapse
|
4
|
Bafadam S, Mahmoudabady M, Niazmand S, Rezaee SA, Soukhtanloo M. Cardioprotective effects of Fenugreek ( Trigonella foenum-graceum) seed extract in streptozotocin induced diabetic rats. J Cardiovasc Thorac Res 2021; 13:28-36. [PMID: 33815699 PMCID: PMC8007891 DOI: 10.34172/jcvtr.2021.01] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/22/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction: Inadequate control of diabetes mellitus (DM) leads to considerable cardiovascular implications like diabetic cardiomyopathy (DCM). Cardiomyocyte apoptosis is one of the main mechanisms of DCM pathogenesis associated with hyperglycemia, oxidative stress, inflammation, hyperlipidemia and several other factors. Trigonella foenum-graecum (Fenugreek) has been long used as a traditional medicine and has many therapeutic effects, including anti-diabetic, anti-hyperlipidemia, anti-inflammatory and anti-oxidant properties. The current study aimed to investigate cardioprotective effects of fenugreek seed on diabetic rats. Methods: Diabetes was induced in forty-two male rats by injection of streptozotocin (STZ) (60 mg/ kg). Diabetic animals were treated with three different doses of fenugreek seed extract (50, 100 and 200 mg/kg) or metformin (300 mg/kg) for six weeks by gavage. Nondiabetic rats served as controls. Glucose, cholesterol, and triglycerides levels were measured in the blood samples, and oxidative stress markers as well as gene expression of ICAM1 , Bax and Bcl2 were assessed in the cardiac tissues of the experimental groups. Results: Diabetic rats exhibited increased serum glucose, cholesterol and triglycerides levels, elevated markers of oxidative stress thiobarbituric acid-reacting substances (TBARS) levels , total thiol groups (SH), catalase (CAT) and superoxide dismutase (SOD) activity, and enhanced apoptosis cell death (ratio of Bax/Bcl2). Fenugreek seed extract considerably improved metabolism abnormalities, attenuated oxidative stress and diminished apoptosis index. Conclusion: Our study suggests that fenugreek seed may protect the cardiac structure in STZ-induced diabetic rats by attenuating oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Soleyman Bafadam
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Mishra P, Srivastava AK, Yadav TC, Pruthi V, Prasad R. Pharmaceutical and Therapeutic Applications of Fenugreek Gum. ADVANCED STRUCTURED MATERIALS 2021:379-408. [DOI: 10.1007/978-3-030-54027-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Kianian F, Marefati N, Boskabady M, Ghasemi SZ, Boskabady MH. Pharmacological Properties of Allium cepa, Preclinical and Clinical Evidences; A Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:107-134. [PMID: 34567150 PMCID: PMC8457748 DOI: 10.22037/ijpr.2020.112781.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Onion or Allium cepa (A. cepa) is one of the most important condiment plants grown and consumed all over the world. This plant has various therapeutic effects attributed to its constituents, such as quercetin, thiosulphinates and phenolic acids. In the present article, various pharmacological and therapeutic effects of A. cepa were reviewed. Different online databases using keywords such as onion, A. cepa, therapeutic effects, and pharmacological effects until the end of December 2019 were searched for this purpose. Onion has been suggested to be effective in treating a broad range of disorders, including asthma, inflammatory disorders, dysentery, wounds, scars, keloids and pain. In addition, different studies have demonstrated that onion possesses numerous pharmacological properties, including anti-cancer, anti-diabetic and anti-platelet properties as well as the effect on bone, cardiovascular, gastrointestinal, nervous, respiratory, and urogenital systems effects such as anti-osteoporosis, anti-hypertensive, antispasmodic, anti-diarrheal, neuro-protective, anti-asthmatic and diuretic effects. The present review provides detailed the various pharmacological properties of onion and its constituents and possible underlying mechanisms. The results of multiple studies suggested the therapeutic effect of onion on a wide range of disorders.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- F. K. and N. M. contributed equally to this work
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- F. K. and N. M. contributed equally to this work
| | - Marzie Boskabady
- Dental Materials Research Center and Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyyedeh Zahra Ghasemi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Hosein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Bahramsoltani R, Rahimi R. An Evaluation of Traditional Persian Medicine for the Management of SARS-CoV-2. Front Pharmacol 2020; 11:571434. [PMID: 33324206 PMCID: PMC7724033 DOI: 10.3389/fphar.2020.571434] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
A new coronavirus causing severe acute respiratory syndrome (SARS-CoV-2) has emerged and with it, a global investigation of new antiviral treatments and supportive care for organ failure due to this life-threatening viral infection. Traditional Persian Medicine (TPM) is one of the most ancient medical doctrines mostly known with the manuscripts of Avicenna and Rhazes. In this paper, we first introduce a series of medicinal plants that would potentially be beneficial in treating SARS-CoV-2 infection according to TPM textbooks. Then, we review medicinal plants based on the pharmacological studies obtained from electronic databases and discuss their mechanism of action in SARS-CoV-2 infection. There are several medicinal plants in TPM with cardiotonic, kidney tonic, and pulmonary tonic activities, protecting the lung, heart, and kidney, the three main vulnerable organs in SARS-CoV-2 infection. Some medicinal plants can prevent "humor infection", a situation described in TPM which has similar features to SARS-CoV-2 infection. Pharmacological evaluations are in line with the therapeutic activities of several plants mentioned in TPM, mostly through antiviral, cytoprotective, anti-inflammatory, antioxidant, and anti-apoptotic mechanisms. Amongst the primarily-introduced medicinal plants from TPM, rhubarb, licorice, garlic, saffron, galangal, and clove are the most studied plants and represent candidates for clinical studies. The antiviral compounds isolated from these plants provide novel molecular structures to design new semisynthetic antiviral agents. Future clinical studies in healthy volunteers as well as patients suffering from pulmonary infections are necessary to confirm the safety and efficacy of these plants as complementary and integrative interventions in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
8
|
Pradeep SR, Barman S, Srinivasan K. Attenuation of diabetic nephropathy by dietary fenugreek (Trigonella foenum-graecum) seeds and onion (Allium cepa) via suppression of glucose transporters and renin-angiotensin system. Nutrition 2019; 67-68:110543. [PMID: 31408826 DOI: 10.1016/j.nut.2019.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The aim of this study was to determine the effects of dietary fenugreek (Trigonella foenum-graecum) seeds and onion on the hyperglycemia-stimulated glucose transporters and activation of renin-angiotensin system-mediated cascade of events leading to renal lesions in diabetic animals. METHODS The mechanistic aspects of nephroprotective influence of dietary fenugreek seeds (10%) and onion (3%) on diabetic renal lesions was investigated in streptozotocin diabetic rats. Renal damage was assessed by measuring proteinuria, enzymuria, expression of glucose transporters, renin-angiotensin system, and activities of polyol pathway enzymes. RESULTS Diabetes resulted in an upregulation of glucose transporters in kidney tissue, which was countered by these dietary interventions. The upregulation of renal angiotensin-converting enzyme and its receptor was also countered by these dietary interventions. Dietary fenugreek and onion significantly reduced metabolites of polyol pathway, nitric oxide, and N-acetyl-β-d-glucosaminidase activity. Markers of podocyte damage in kidney (nephrin, podocin, and podocalyxin) and their urinary excretion were normalized along with downregulation of the expression of kidney injury molecule-1 by these dietary interventions. Dietary fenugreek and onion effectively countered the diabetes-induced structural abnormalities of renal tissue. CONCLUSION Feeding fiber-rich fenugreek seeds and sulfur compounds-rich onion produced a blockade in glucose translocation and renin-angiotensin system in the early stage of diabetic nephropathy. This involved a downregulation of the expression of polyol pathway enzymes, partial restoration of the podocyte damage, revival of renal architecture and functional abnormality. The present study also suggested that these two dietary interventions offer a higher renoprotective influence when consumed together.
Collapse
Affiliation(s)
- Seetur R Pradeep
- Department of Biochemistry, Central Food Technological Research Institute, Mysore, India
| | - Susmita Barman
- Department of Biochemistry, Central Food Technological Research Institute, Mysore, India
| | - Krishnapura Srinivasan
- Department of Biochemistry, Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|