1
|
Zhang Y, Li X, Ciric B, Ma CG, Gran B, Rostami A, Zhang GX. Effect of Fingolimod on Neural Stem Cells: A Novel Mechanism and Broadened Application for Neural Repair. Mol Ther 2016; 25:401-415. [PMID: 28153091 DOI: 10.1016/j.ymthe.2016.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory demyelination and axonal damage of the CNS are hallmarks of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Fingolimod (FTY720), the first FDA-approved oral medication for MS, suppresses acute disease but is less effective at the chronic stage, and whether it has a direct effect on neuroregeneration in MS and EAE remains unclear. Here we show that FTY720, at nanomolar concentrations, effectively protected survival of neural stem cells (NSCs) and enhanced their development into mature oligodendrocytes (OLGs) in vitro, primarily through the S1P3 and S1P5 receptors. In vivo, treatment with either FTY720 or NSCs alone had no effect on the secondary progressive stage of remitting-relapsing EAE, but a combination therapy with FTY720 and NSCs promoted significant recovery, including ameliorated clinical signs and CNS inflammatory demyelination, enhanced MBP synthesis and remyelination, inhibited axonal degeneration, and reduced astrogliosis. Moreover, FTY720 significantly improved incorporation and survival of transplanted NSCs in the CNS and drove their differentiation into more OLGs but fewer astrocytes, thus promoting remyelination and CNS repair processes in situ. Our data demonstrate a novel effect of FTY720 on NSC differentiation and remyelination, broadening its possible application to NSC-based therapy in the secondary progressive stage of MS.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fingolimod Hydrochloride/pharmacology
- Humans
- Mice
- Multiple Sclerosis
- Myelin Sheath/drug effects
- Myelin Sheath/metabolism
- Nerve Regeneration
- Neural Stem Cells/cytology
- Neural Stem Cells/drug effects
- Neural Stem Cells/metabolism
- Oligodendroglia/cytology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Receptors, Lysosphingolipid/metabolism
- Signal Transduction
- Stem Cell Transplantation
- Treatment Outcome
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xing Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Shanxi Datong University Medical School, Datong 037009, China
| | - Bruno Gran
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham NG7 2RD, UK
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
2
|
Batioglu-Karaaltin A, Karaaltin MV, Oztel ON, Ovali E, Sener BM, Adatepe T, Yigit O, Bozkurt E, Baydar SY, Bagirova M, Uzun N, Allahverdiyev A. Human olfactory stem cells for injured facial nerve reconstruction in a rat model. Head Neck 2016; 38 Suppl 1:E2011-20. [PMID: 26829770 DOI: 10.1002/hed.24371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The purpose of this study was to show the efficacy of olfactory stem cells for injured facial nerve reconstruction in a rat model. METHODS Olfactory stem cells were isolated from the olfactory mucosa of human participants. A 2-mm excision was performed on the right facial nerve of all rats. Reconstruction was performed with a conduit in group 1 (n = 9); a conduit and phosphate-buffered saline in group 2 (n = 9); and a conduit and labeled olfactory stem cell in group 3 (n = 9). Rats were followed for whisker movements and electroneuronography (ENoG) analyses. RESULTS The whisker-movement scores for group 3 were significantly different from other groups (p < .001). ENoG showed that the amplitude values for group 3 were significantly different from group 1 and group 2 (p = .030; p < .001). Group 3 showed marked olfactory stem cell under a fluorescence microscope. CONCLUSION This study suggests that olfactory stem cells may be used as a potent cellular therapy for accelerating the regeneration of peripheral nerve injuries. © 2016 Wiley Periodicals, Inc. Head Neck 38: E2011-E2020, 2016.
Collapse
Affiliation(s)
- Aysegul Batioglu-Karaaltin
- Department of Otolaryngology, Head and Neck Surgery, Istanbul University Cerrahpasa Medicine Faculty, Istanbul, Turkey
| | - Mehmet Veli Karaaltin
- Department of Plastic and Reconstructive Surgery, Acibadem University Medicine Faculty, Istanbul, Turkey
| | - Olga Nehir Oztel
- Bioengineering Department, Yildiz Technical University, Faculty of Chemistry and Metallurgical Engineering, Istanbul, Turkey
| | | | - Belit Merve Sener
- Department of Otolaryngology, Head and Neck Surgery, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Turgut Adatepe
- EMG Laboratories, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Ozgur Yigit
- Department of Otolaryngology, Head and Neck Surgery, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Erol Bozkurt
- Department of Pathology, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Serap Yesilkir Baydar
- Bioengineering Department, Yildiz Technical University, Faculty of Chemistry and Metallurgical Engineering, Istanbul, Turkey
| | - Melahat Bagirova
- Bioengineering Department, Yildiz Technical University, Faculty of Chemistry and Metallurgical Engineering, Istanbul, Turkey
| | - Nurten Uzun
- Department of Neurology, Istanbul University Cerrahpasa Medicine Faculty, Istanbul, Turkey
| | - Adil Allahverdiyev
- Bioengineering Department, Yildiz Technical University, Faculty of Chemistry and Metallurgical Engineering, Istanbul, Turkey
| |
Collapse
|
3
|
Tso D, McKinnon RD. Cell replacement therapy for central nervous system diseases. Neural Regen Res 2015; 10:1356-8. [PMID: 26604878 PMCID: PMC4625483 DOI: 10.4103/1673-5374.165209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
The brain and spinal cord can not replace neurons or supporting glia that are lost through traumatic injury or disease. In pre-clinical studies, however, neural stem and progenitor cell transplants can promote functional recovery. Thus the central nervous system is repair competent but lacks endogenous stem cell resources. To make transplants clinically feasible, this field needs a source of histocompatible, ethically acceptable and non-tumorgenic cells. One strategy to generate patient-specific replacement cells is to reprogram autologous cells such as fibroblasts into pluripotent stem cells which can then be differentiated into the required cell grafts. However, the utility of pluripotent cell derived grafts is limited since they can retain founder cells with intrinsic neoplastic potential. A recent extension of this technology directly reprograms fibroblasts into the final graftable cells without an induced pluripotent stem cell intermediate, avoiding the pluripotent caveat. For both types of reprogramming the conversion efficiency is very low resulting in the need to amplify the cells in culture which can lead to chromosomal instability and neoplasia. Thus to make reprogramming biology clinically feasible, we must improve the efficiency. The ultimate source of replacement cells may reside in directly reprogramming accessible cells within the brain.
Collapse
Affiliation(s)
- Danju Tso
- Department of Surgery (Neurosurgery), Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Randall D. McKinnon
- Department of Surgery (Neurosurgery), Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Optogenetics applications for treating spinal cord injury. Asian Spine J 2015; 9:299-305. [PMID: 25901246 PMCID: PMC4404549 DOI: 10.4184/asj.2015.9.2.299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/08/2014] [Accepted: 11/16/2014] [Indexed: 12/28/2022] Open
Abstract
Cases of spinal cord injury (SCI) are increasing all over the world; and in USA alone, there are 273,000 patients, which not only leads to morbidity and mortality but also results in a great economic burden. Many approaches are being used at the pre-clinical and clinical level to treat SCI including therapeutic agents, surgical decompression, stem cell therapy etc. Recently, a new approach called optogenetics has emerged in which light sensitive proteins are used to switch neurons on and off, and this approach has great potential to be used as therapy due to its specificity and rapid response in milliseconds. Few animal studies have been performed so far in which the respiratory and bladder function of rats was restored through the use of optogenetics. On the basis of promising results obtained, in the future, this approach can prove to be a valuable tool to treat patients with SCI.
Collapse
|
5
|
Chen LX, Ma SM, Zhang P, Fan ZC, Xiong M, Cheng GQ, Yang Y, Qiu ZL, Zhou WH, Li J. Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury. PLoS One 2015; 10:e0115997. [PMID: 25790286 PMCID: PMC4366232 DOI: 10.1371/journal.pone.0115997] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/03/2014] [Indexed: 01/19/2023] Open
Abstract
Periventricular leukomalacia (PVL) is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs) have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI) was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.5 h. Animals were assigned to OPC transplantation or sham control groups and injected with OPCs or PBS, respectively, and sacrificed up to 6 weeks later for immunohistochemical analysis to investigate the survival and differentiation of transplanted OPCs. Apoptosis was evaluated by double immunolabeling of brain sections for caspase-3 and neuronal nuclei (NeuN), while proliferation was assessed using a combination of anti-Nestin and -bromodeoxyuridine antibodies. The expression of brain-derived neurotrophic factor (BDNF) and Bcl-2 was examined 7 days after OPC transplantation. The Morris water maze was used to test spatial learning and memory. The results showed that transplanted OPCs survived and formed a myelin sheath, and stimulated BDNF and Bcl-2 expression and the proliferation of neural stem cells (NSC), while inhibiting HI-induced neuronal apoptosis relative to control animals. Moreover, deficits in spatial learning and memory resulting from HI were improved by OPC transplantation. These results demonstrate an important neuroprotective role for OPCs that can potentially be exploited in cell-based therapeutic approaches to minimize HI-induced brain injury.
Collapse
Affiliation(s)
- Long-Xia Chen
- Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Si-Min Ma
- Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Peng Zhang
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Zi-Chuan Fan
- Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
| | - Man Xiong
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Guo-Qiang Cheng
- Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, 201102, China
| | - Yi Yang
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Zi-Long Qiu
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (WZ); (JL)
| | - Jin Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail: (WZ); (JL)
| |
Collapse
|
6
|
Kawano H, Katayama Y, Minagawa K, Shimoyama M, Henkemeyer M, Matsui T. A novel feedback mechanism by Ephrin-B1/B2 in T-cell activation involves a concentration-dependent switch from costimulation to inhibition. Eur J Immunol 2012; 42:1562-72. [PMID: 22622783 DOI: 10.1002/eji.201142175] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/25/2012] [Accepted: 02/16/2012] [Indexed: 11/10/2022]
Abstract
Bidirectional signals via Eph receptors/ephrins have been recognized as major forms of contact-dependent cell communications such as cell attraction and repulsion. T cells express EphBs, and their ligands, the ephrin-Bs, have been known as costimulatory molecules for T-cell proliferation. Recently, another remarkable feature of ephrin-As has emerged in the form of a concentration-dependent transition from promotion to inhibition in axon growth. Here we examined whether this modification plays a role in ephrin-B costimulation in murine primary T cells. Low doses of ephrin-B1 and ephrin-B2 costimulated T-cell proliferation induced by anti-CD3, but high concentrations strongly inhibited it. In contrast, ephrin-B3 showed a steadily increasing stimulatory effect. This modulation was virtually preserved in T cells from mice simultaneously lacking four genes, EphB1, EphB2, EphB3, and EphB6. High concentrations of ephrin-B1/B2, but not ephrin-B3, inhibited the anti-CD3-induced phosphorylation of Lck and its downstream signals such as Erk and Akt. Additionally, high doses of any ephrin-Bs could phosphorylate EphB4. However, only ephrin-B1/B2 but not ephrin-B3 recruited SHP1, a phosphatase to suppress the phosphorylation of Lck. These data suggest that EphB4 signaling could engage in negative feedback to TCR signals. T-cell activation may be finely adjusted by the combination and concentration of ephrin-Bs expressed in the immunological microenvironment.
Collapse
Affiliation(s)
- Hiroki Kawano
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Chen W, Tong YW. PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization. Acta Biomater 2012; 8:540-8. [PMID: 22005329 DOI: 10.1016/j.actbio.2011.09.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 08/26/2011] [Accepted: 09/20/2011] [Indexed: 11/19/2022]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microspheres, with properties such as slower degradation and more efficient drug delivery properties, have important benefits for neural tissue engineering. Our previous studies have shown PHBV microspheres to improve cell growth and differentiation. This study aimed to investigate if PHBV microspheres would support neurons to extend these benefits to neural tissue engineering. PHBV microspheres' suitability as neural tissue engineering scaffolds was investigated using PC12 cells, cortical neurons (CNs), and neural progenitor cells (NPCs) to cover a variety of neuronal types for different applications. Microspheres were fabricated using an emulsion-solvent-evaporation technique. DNA quantification, cell viability assays, and immunofluorescent staining were carried out. PC12 cultures on PHBV microspheres showed growth trends comparable to two-dimensional controls. This was further verified by staining for cell spreading. Also, CNs expressed components of the signaling pathway on PHBV microspheres, and had greater axon-dendrite segregation (4.1 times for axon stains and 2.3 times for dendrite stains) than on coverslips. NPCs were also found to differentiate into neurons on the microspheres. Overall, the results indicate that PHBV microspheres, as scaffolds for neural tissue engineering, supported a variety of neuronal cell types and promoted greater axon-dendrite segregation.
Collapse
Affiliation(s)
- Wenhui Chen
- NUS Graduate School for Integrative Sciences and Engineering, Department of Biomolecular and Chemical Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
8
|
Sadowski D, Kiel ME, Apicella M, Arriola AG, Chen CP, McKinnon RD. Teratogenic potential in cultures optimized for oligodendrocyte development from mouse embryonic stem cells. Stem Cells Dev 2011; 19:1343-53. [PMID: 20131970 DOI: 10.1089/scd.2009.0520] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We describe a rapid and efficient 5-step program of defined factors for the genesis of brain myelin-forming oligodendrocytes (OLs) from embryonic stem cells (ESCs). The OLs emerge on the same time frame in vitro as seen in vivo. Factors promoting neural induction (retinoids, noggin) are required, while exogenous Sonic hedgehog is not. In contrast we were unable to generate OLs by trans-differentiation of ethically neutral mesenchymal stem cells, indicating a requirement for cis-differentiation via neural ectoderm for OL genesis. In the ESC-derived cultures, our optimized protocol generated a mixed population with 49% O4(+), Olig2(+) OL lineage cells. These cultures also retained pluripotential markers including Oct4, and an analysis of embryoid body formation in vitro, and allogeneic grafts in vivo, revealed that the ESC-derived cultures also retained teratogenic cells. The frequency of embryoid body formation from terminal differentiated OL cultures was 0.001%, 100-fold lower than that from ESCs. Our results provide the first quantitative measurement of teratogenicity in ESC-derived, exhaustively differentiated allogeneic grafts, and demonstrate the unequivocal need to purify ESC-derived cells in order to generate a safe population for regenerative therapy.
Collapse
Affiliation(s)
- Dorota Sadowski
- Department of Surgery (Neurosurgery), UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
9
|
Arriola A, Kiel ME, Shi Y, McKinnon RD. Adjunctive MSCs enhance myelin formation by xenogenic oligodendrocyte precursors transplanted in the retina. Cell Res 2010; 20:728-31. [PMID: 20440303 DOI: 10.1038/cr.2010.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
Zhang N, Wimmer J, Qian SJ, Chen WS. Stem Cells: Current Approach and Future Prospects in Spinal Cord Injury Repair. Anat Rec (Hoboken) 2009; 293:519-30. [DOI: 10.1002/ar.21025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Transplanted myogenic progenitor cells express neuronal markers in the CNS and ameliorate disease in Experimental Autoimmune Encephalomyelitis. J Neuroimmunol 2009; 215:73-83. [DOI: 10.1016/j.jneuroim.2009.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 08/23/2009] [Accepted: 08/24/2009] [Indexed: 12/27/2022]
|
12
|
Abstract
Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.
Collapse
|
13
|
Tewarie RSN, Hurtado A, Bartels RH, Grotenhuis A, Oudega M. Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 2009; 32:105-14. [PMID: 19569457 PMCID: PMC2678281 DOI: 10.1080/10790268.2009.11760761] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.
Collapse
Affiliation(s)
- Rishi S. Nandoe Tewarie
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andres Hurtado
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ronald H Bartels
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andre Grotenhuis
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin Oudega
- 1Radboud University Medical Center, Nijmegen, Department of Neurosurgery, The Netherlands; 2International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland; 3Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Peru RL, Mandrycky N, Nait-Oumesmar B, Lu QR. Paving the axonal highway: from stem cells to myelin repair. ACTA ACUST UNITED AC 2009; 4:304-18. [PMID: 18759012 DOI: 10.1007/s12015-008-9043-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS), a demyelinating disorder of the central nervous system (CNS), remains among the most prominent and devastating diseases in contemporary neurology. Despite remarkable advances in anti-inflammatory therapies, the inefficiency or failure of myelin-forming oligodendrocytes to remyelinate axons and preserve axonal integrity remains a major impediment for the repair of MS lesions. To this end, the enhancement of remyelination through endogenous and exogenous repair mechanisms and the prevention of axonal degeneration are critical objectives for myelin repair therapies. Thus, recent advances in uncovering myelinating cell sources and the intrinsic and extrinsic factors that govern neural progenitor differentiation and myelination may pave a way to novel strategies for myelin regeneration. The scope of this review is to discuss the potential sources of stem/progenitor cells for CNS remyelination and the molecular mechanisms underlying oligodendrocyte myelination.
Collapse
Affiliation(s)
- Raniero L Peru
- Department of Developmental Biology and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | | | | | | |
Collapse
|
15
|
Kiel ME, Chen CP, Sadowski D, McKinnon RD. Stem cell-derived therapeutic myelin repair requires 7% cell replacement. Stem Cells 2008; 26:2229-36. [PMID: 18635868 DOI: 10.1634/stemcells.2008-0218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem cells (ESCs) hold great potential for therapeutic regeneration and repair in many diseases. However, many challenges remain before this can be translated into effective therapy. A principal and significant limit for outcome evaluations of clinical trials is to define the minimal graft population necessary for functional repair. Here we used a preclinical model for quantitative analysis of stem cell grafts, with wild-type ESC grafted into myelin mutant shiverer hosts, to determine minimum graft levels for therapeutic benefit. Using a timed motor function test we identified three groups, including recipients indistinguishable from nongrafted shiverer controls (time [t] = 20.1 +/- 1.1 seconds), mice with marginal improvement (t = 15.7 +/- 1 seconds), and mice with substantial phenotype rescue (t = 5.7 +/- 0.9 seconds). The motor function rescued chimeras also had a considerably extended life span (T(50) > 128 days) relative to both shiverer (T(50) = 108 days) and the nonrescued chimeras. Retrospective genotype analysis identified a strong correlation (r(2) = 0.85) between motor function and ESC-derived chimerism, with > 7% chimerism required for rescue in this murine model of central nervous system myelin pathology. These results establish the minimal levels of engraftment to anticipate therapeutic repair of a cell-autonomous defect by cell transplant therapy.
Collapse
Affiliation(s)
- Mary E Kiel
- UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, S-225, Piscataway NJ 08854, USA
| | | | | | | |
Collapse
|