1
|
Lee W, Lin SL, Chiang CS, Chen JY, Chieng WW, Huang SR, Chang TY, Linju Yen B, Hung MC, Chang KC, Lee HT, Jeng LB, Shyu WC. Role of HIF-1α-Activated IL-22/IL-22R1/Bmi1 Signaling Modulates the Self-Renewal of Cardiac Stem Cells in Acute Myocardial Ischemia. Stem Cell Rev Rep 2024; 20:2194-2214. [PMID: 39264501 PMCID: PMC11554697 DOI: 10.1007/s12015-024-10774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Impaired tissue regeneration negatively impacts on left ventricular (LV) function and remodeling after acute myocardial infarction (AMI). Little is known about the intrinsic regulatory machinery of ischemia-induced endogenous cardiac stem cells (eCSCs) self-renewing divisions after AMI. The interleukin 22 (IL-22)/IL-22 receptor 1 (IL-22R1) pathway has emerged as an important regulator of several cellular processes, including the self-renewal and proliferation of stem cells. However, whether the hypoxic environment could trigger the self-renewal of eCSCs via IL-22/IL-22R1 activation remains unknown. In this study, the upregulation of IL-22R1 occurred due to activation of hypoxia-inducible factor-1α (HIF-1α) under hypoxic and ischemic conditions. Systemic IL-22 administration not only attenuated cardiac remodeling, inflammatory responses, but also promoted eCSC-mediated cardiac repair after AMI. Unbiased RNA microarray analysis showed that the downstream mediator Bmi1 regulated the activation of CSCs. Therefore, the HIF-1α-induced IL-22/IL-22R1/Bmi1 cascade can modulate the proliferation and activation of eCSCs in vitro and in vivo. Collectively, investigating the HIF-1α-activated IL-22/IL-22R1/Bmi1 signaling pathway might offer a new therapeutic strategy for AMI via eCSC-induced cardiac repair.
Collapse
Affiliation(s)
- Wei Lee
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
| | - Syuan-Ling Lin
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Chih-Sheng Chiang
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung, 404, Taiwan
- Neuroscience and Brain Disease Center and New Drug Development Center, CMU, Taichung, 404, Taiwan
| | - Jui-Yu Chen
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Wee-Wei Chieng
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Shu-Rou Huang
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Ting-Yu Chang
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, 350, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Research Centers for Cancer Biology and Molecular Medicine, CMU, Taichung, 404, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, CMUH, Taichung, 404, Taiwan
- School of Medicine, CMU, Taichung, 404, Taiwan
| | - Hsu-Tung Lee
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, 404, Taiwan
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
- Organ Transplantation Center, CMUH, Taichung, 404, Taiwan
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung, 404, Taiwan.
- Neuroscience and Brain Disease Center and New Drug Development Center, CMU, Taichung, 404, Taiwan.
- Department of Neurology, CMUH, Taichung, 404, Taiwan.
- Department of Occupational Therapy, Asia University, No. 2, Yude Rd., North Dist, Taichung City, 404332, Taiwan.
| |
Collapse
|
2
|
Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. Int J Mol Sci 2020; 21:ijms21207701. [PMID: 33080988 PMCID: PMC7589970 DOI: 10.3390/ijms21207701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in Western countries. Post-myocardial infarction heart failure can be considered a degenerative disease where myocyte loss outweighs any regenerative potential. In this scenario, regenerative biology and tissue engineering can provide effective solutions to repair the infarcted failing heart. The main strategies involve the use of stem and progenitor cells to regenerate/repair lost and dysfunctional tissue, administrated as a suspension or encapsulated in specific delivery systems. Several studies demonstrated that effectiveness of direct injection of cardiac stem cells (CSCs) is limited in humans by the hostile cardiac microenvironment and poor cell engraftment; therefore, the use of injectable hydrogel or pre-formed patches have been strongly advocated to obtain a better integration between delivered stem cells and host myocardial tissue. Several approaches were used to refine these types of constructs, trying to obtain an optimized functional scaffold. Despite the promising features of these stem cells’ delivery systems, few have reached the clinical practice. In this review, we summarize the advantages, and the novelty but also the current limitations of engineered patches and injectable hydrogels for tissue regenerative purposes, offering a perspective of how we believe tissue engineering should evolve to obtain the optimal delivery system applicable to the everyday clinical scenario.
Collapse
|
3
|
Michalak M, Agellon LB. Stress Coping Strategies in the Heart: An Integrated View. Front Cardiovasc Med 2018; 5:168. [PMID: 30519562 PMCID: PMC6258784 DOI: 10.3389/fcvm.2018.00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
The heart is made up of an ordered amalgam of cardiac cell types that work together to coordinate four major processes, namely energy production, electrical conductance, mechanical work, and tissue remodeling. Over the last decade, a large body of information has been amassed regarding how different cardiac cell types respond to cellular stress that affect the functionality of their elaborate intracellular membrane networks, the cellular reticular network. In the context of the heart, the manifestations of stress coping strategies likely differ depending on the coping strategy outcomes of the different cardiac cell types, and thus may underlie the development of distinct cardiac disorders. It is not clear whether all cardiac cell types have similar sensitivity to cellular stress, how specific coping response strategies modify their unique roles, and how their metabolic status is communicated to other cells within the heart. Here we discuss our understanding of the roles of specialized cardiac cells that together make the heart function as an organ with the ability to pump blood continuously and follow a regular rhythm.
Collapse
Affiliation(s)
- Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada
| |
Collapse
|
4
|
Induction of the mitochondrial NDUFA4L2 protein by HIF-1a regulates heart regeneration by promoting the survival of cardiac stem cell. Biochem Biophys Res Commun 2018; 503:2226-2233. [PMID: 29953852 DOI: 10.1016/j.bbrc.2018.06.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
The adult mammalian heart doesn't regenerate after cardiomyocyte injury, which was mainly caused by the severe and persistent effects of cardiomyopathy. Recently, some studies reported that the mammalian heart can regenerate under low oxygen environment. However, the mechanism that the mammalian heart can regenerate remains unknown. Here, we used cardiac stem cells (CSCs) to be planted in serum-free medium under hypoxia environment to understand the mechanism of HIF1α/NDUFA4L2 in the regulation of hypoxia-alleviated apoptosis. Our results revealed that hypoxia can alleviated CSCs apoptosis. Hypoxia inhibited the level of cleaved-caspase3 and stimulated the expression of stabilized HIF-1α. DMOG promotes the survival of CSCs and the protein expression of NDUFA4L2. 2-ME repressed the survival of CSCs and the protein expression of NDUFA4L2. CHIP assay showed that HIF-1α regulated the survival of CSCs by augmenting the combination of HIF-1α and NDUFA4L2's HRE. Knockdown of NDUFA4L2 reversed the role of hypoxia in the survival of CSCs. Taken together, hypoxia promotes the viability of CSCs in serum-free medium by HIF-1α/NDUFA4L2 signaling pathway.
Collapse
|
5
|
Bloch W. Lifelong training for improved function of the injured heart. Eur J Prev Cardiol 2017; 24:1854-1855. [PMID: 28969494 DOI: 10.1177/2047487317734894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne
| |
Collapse
|
6
|
Hou J, Wang L, Long H, Wu H, Wu Q, Zhong T, Chen X, Zhou C, Guo T, Wang T. Hypoxia preconditioning promotes cardiac stem cell survival and cardiogenic differentiation in vitro involving activation of the HIF-1α/apelin/APJ axis. Stem Cell Res Ther 2017; 8:215. [PMID: 28962638 PMCID: PMC5622481 DOI: 10.1186/s13287-017-0673-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cardiac stem cells (CSCs) transplantation has been regarded as an optimal therapeutic approach for cardiovascular disease. However, inferior survival and low differentiation efficiency of these cells in the local infarct site reduce their therapeutic efficacy. In this study, we investigated the influence of hypoxia preconditioning (HP) on CSCs survival and cardiogenic differentiation in vitro and explored the relevant mechanism. METHODS CSCs were obtained from Sprague-Dawley rats and cells of the third passage were cultured in vitro and exposed to hypoxia (1% O2). Cells survival and apoptosis were evaluated by MTS assay and flow cytometry respectively. Cardiogenic differentiation was induced by using 5-azacytidine for another 24 h after the cells experienced HP. Normoxia (20% O2) was used as a negative control during the whole process. Cardiogenic differentiation was assessed 2 weeks after the induction. Relevant molecules were examined after HP and during the differentiation process. Anti-hypoxia-inducible factor-1α (HIF-1α) small interfering RNA (siRNA), anti-apelin siRNA, and anti-putative receptor protein related to the angiotensin receptor AT1 (APJ) siRNA were transfected in order to block their expression, and relevant downstream molecules were detected. RESULTS Compared with the normoxia group, the hypoxia group presented more rapid growth at time points of 12 and 24 h (p < 0.01). Cells exhibited the highest proliferation rate at the time point of 24 h (p < 0.01). The cell apoptosis rate significantly declined after 24 h of hypoxia exposure (p < 0.01). Expression levels of HIF-1α, apelin, and APJ were all enhanced after HP. The percentage of apelin, α-SA, and cTnT positive cells was greatly increased in the HP group after 2 weeks of induction. The protein level of α-SA and cTnT was also significantly elevated at 7 and 14 days (p < 0.01). HIF-1α, apelin, and APJ were all increased at different time points during the cardiogenic differentiation process (p < 0.01). Knockdown of HIF-1α, apelin or APJ by siRNAs resulted in a significant reduction of α-SA and cTnT. HIF-1α blockage caused a remarkable decrease of apelin and APJ (p < 0.01). Expression levels of apelin and APJ were depressed after the inhibition of apelin (p < 0.01). CONCLUSION HP could effectively promote CSCs survival and cardiogenic differentiation in vitro, and this procedure involved activation of the HIF-1α/apelin/APJ axis. This study provided a new perspective for exploring novel strategies to enhance CSCs transplantation efficiency.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Xuxiang Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Wang Z, Dong N, Niu Y, Zhang Z, Zhang C, Liu M, Zhou T, Wu Q, Cheng K. Transplantation of human villous trophoblasts preserves cardiac function in mice with acute myocardial infarction. J Cell Mol Med 2017; 21:2432-2440. [PMID: 28524367 PMCID: PMC5618685 DOI: 10.1111/jcmm.13165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/05/2017] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, cell therapies have provided promising strategies for the treatment of ischaemic cardiomyopathy. Particularly, the beneficial effects of stem cells, including bone marrow stem cells (BMSCs), endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), have been demonstrated by substantial preclinical and clinical studies. Nevertheless stem cell therapy is not always safe and effective. Hence, there is an urgent need for alternative sources of cells to promote cardiac regeneration. Human villous trophoblasts (HVTs) play key roles in embryonic implantation and placentation. In this study, we show that HVTs can promote tube formation of human umbilical vein endothelial cells (HUVECs) on Matrigel and enhance the resistance of neonatal rat cardiomyocytes (NRCMs) to oxidative stress in vitro. Delivery of HVTs to ischaemic area of heart preserved cardiac function and reduced fibrosis in a mouse model of acute myocardial infarction (AMI). Histological analysis revealed that transplantation of HVTs promoted angiogenesis in AMI mouse hearts. In addition, our data indicate that HVTs exert their therapeutic benefit through paracrine mechanisms. Meanwhile, injection of HVTs to mouse hearts did not elicit severe immune response. Taken together, our study demonstrates HVT may be used as a source for cell therapy or a tool to study cell-derived soluble factors for AMI treatment.
Collapse
Affiliation(s)
- Zegen Wang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Thrombosis and Hemostasis Key Laboratory, Ministry of Education Engineering Center for Hematological Disease, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yayan Niu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhiwei Zhang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ce Zhang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Ke Cheng
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Jung JH, Fu X, Yang PC. Exosomes Generated From iPSC-Derivatives: New Direction for Stem Cell Therapy in Human Heart Diseases. Circ Res 2017; 120:407-417. [PMID: 28104773 PMCID: PMC5260934 DOI: 10.1161/circresaha.116.309307] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in modern society. The adult heart innately lacks the capacity to repair and regenerate the damaged myocardium from ischemic injury. Limited understanding of cardiac tissue repair process hampers the development of effective therapeutic solutions to treat CVD such as ischemic cardiomyopathy. In recent years, rapid emergence of induced pluripotent stem cells (iPSC) and iPSC-derived cardiomyocytes presents a valuable opportunity to replenish the functional cells to the heart. The therapeutic effects of iPSC-derived cells have been investigated in many preclinical studies. However, the underlying mechanisms of iPSC-derived cell therapy are still unclear, and limited engraftment of iPSC-derived cardiomyocytes is well known. One facet of their mechanism is the paracrine effect of the transplanted cells. Microvesicles such as exosomes secreted from the iPSC-derived cardiomyocytes exert protective effects by transferring the endogenous molecules to salvage the injured neighboring cells by regulating apoptosis, inflammation, fibrosis, and angiogenesis. In this review, we will focus on the current advances in the exosomes from iPSC derivatives and discuss their therapeutic potential in the treatment of CVD.
Collapse
Affiliation(s)
- Ji-Hye Jung
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA
| | - Xuebin Fu
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA
| | - Phillip C Yang
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Stanford University School of Medicine, CA.
| |
Collapse
|
9
|
Hou J, Long H, Zhou C, Zheng S, Wu H, Guo T, Wu Q, Zhong T, Wang T. Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro. Stem Cell Res Ther 2017; 8:4. [PMID: 28095922 PMCID: PMC5242041 DOI: 10.1186/s13287-016-0454-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/11/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have limited potential of cardiogenic differentiation. In this study, we investigated the influence of long noncoding RNA Braveheart (lncRNA-Bvht) on cardiogenic differentiation of MSCs in vitro. Methods MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells were divided into three groups: blank control, null vector control, and lncRNA-Bvht. All three groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24 h, and 24 h of reoxygenation (20% O2). Cardiogenic differentiation was induced using 5-AZA for another 24 h. Normoxia (20% O2) was applied as a negative control during the whole process. Cardiogenic differentiation was assessed, and expressions of cardiac-specific transcription factors and epithelial-mesenchymal transition (EMT)-associated biomarkers were detected. Anti-mesoderm posterior1 (Mesp1) siRNA was transfected in order to block its expression, and relevant downstream molecules were examined. Results Compared with the blank control and null vector control groups, the lncRNA-Bvht group presented a higher percentage of differentiated cells of the cardiogenic phenotype in vitro both under the normal condition and after hypoxia/re-oxygenation. There was an increased level of cTnT and α-SA, and cardiac-specific transcription factors including Nkx2.5, Gata4, Gata6, and Isl-1 were significantly upregulated (P < 0.01). Expressions of EMT-associated genes including Snail, Twist and N-cadherin were much higher (P < 0.01). Mesp1 exhibited a distinct augmentation following lncRNA-Bvht transfection. Expressions of relevant cardiac-specific transcription factors and EMT-associated genes all presented a converse alteration in the condition of Mesp1 inhibition prior to lncRNA-Bvht transfection. Conclusion lncRNA-Bvht could efficiently promote MSCs transdifferentation into cells with the cardiogenic phenotype in vitro. It might function via enhancing the expressions of cardiac-specific transcription factors and EMT-associated genes. Mesp1 could be a pivotal intermediary in the procedure.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
10
|
Liu W, Pu Y, Wang C, Gu C, Zhang X. Expression profiles of long noncoding RNAs in cardiac stem cells under hyperglycemic conditions. Int J Cardiol 2016; 222:933-939. [DOI: 10.1016/j.ijcard.2016.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
|
11
|
Jiang C, Zheng D, Feng YL, Guo J, Li HR, Zhang AD. Short- and Long-term Therapeutic Efficacies of Intravenous Transplantation of Bone Marrow Stem Cells on Cardiac Function in Rats with Acute Myocardial Infarction: A Meta-analysis of Randomized Controlled Trials. ACTA ACUST UNITED AC 2016; 31:142-8. [PMID: 27733220 DOI: 10.1016/s1001-9294(16)30042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
<strong>Objective</strong> To investigate the short- and long-term therapeutic efficacies of intravenous trans- plantation of bone marrow stem cells (MSCs) in rats with experimental myocardial infarction by meta- analysis. <strong>Methods</strong> Randomized controlled trials were systematically searched from PubMed, Science Citation Index (SCI), Chinese journal full-text database (CJFD) up to December 2014. While the experimental groups (MSCs groups) were injected MSCs intravenously, the control groups were injected Delubecco's minimum essential medium (DMEM) or phosphate buffered saline (PBS). Subgroup analysis for each outcome measure was performed for the observing time point after the transplantation of MSCs. Weighted mean differences (WMD) and 95% confidence intervals (CI) were calculated for outcome parameters including ejection fraction (EF) and fractional shortening (FS), which were measured by echocardiogram after intravenous injection and analyzed by RevMan 5.2 and STATA 12.0. <strong>Results</strong> Data from 9 studies (190 rats) were included in the meta-analysis. As compared to the control groups, the cardiac function of the experimental groups were not improved at day 7 (EF: WMD=0.08, 95%CI -1.32 to 1.16, P>0.01; FS: WMD=-0.12, 95%CI -0.90 to 0.65, P>0.01) until at day 14 after MSCs' transplantation (EF: WMD=10.79, 95%CI 9.16 to 12.42, P<0.01; FS: WMD=11.34, 95%CI 10.44 to 12.23, P<0.01), and it lasted 4 weeks or more after transplantation of MSCs (EF: WMD=13.94, 95%CI 12.24 to 15.64, P<0.01; FS: WMD=9.64, 95%CI 7.98 to 11.31, P<0.01). <strong>Conclusion</strong> The therapeutic efficacies of MSCs in rats with myocardid infarction become increasing apparent as time advances since 2 weeks after injection.
Collapse
Affiliation(s)
- Can Jiang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dong Zheng
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yun-Lu Feng
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jun Guo
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hai-Rui Li
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ai-Dong Zhang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
12
|
Peroxisome Proliferator-Activated Receptor Gamma Promotes Mesenchymal Stem Cells to Express Connexin43 via the Inhibition of TGF-β1/Smads Signaling in a Rat Model of Myocardial Infarction. Stem Cell Rev Rep 2016; 11:885-99. [PMID: 26275398 DOI: 10.1007/s12015-015-9615-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In this study, we hypothesized that activation of PPAR-γ enhanced MSCs survival and their therapeutic efficacy via upregulating the expression of Cx43. METHODS MI was induced in 50 male Sprague-Dawley rats. The rats were randomized into five groups: MI group and four intervention groups, including the MSCs group, combined therapy group (MSCs+ pioglitazone), pioglitazone group and PBS group. Two weeks later, 5 × 10(6) MSCs labeled with PKH26 in PBS were injected into the infarct anterior ventricular free wall in the MSCs and combined therapy groups, and PBS alone was injected into the infarct anterior ventricular free wall in the PBS group. Pioglitazone (3 mg/kg/day) was given to the combined therapy and pioglitazone groups by oral gavage at the same time for another 2 weeks. Myocardial function and relevant signaling molecules involved were all examined thereafter. RESULTS Heart function was enhanced after MSCs treatment for 2 weeks post MI. A significant improvement of heart function was observed in the combined therapy group in contrast to the other three intervention groups. Compared with the MSCs group, there was a higher level of PPAR-γ in the combined therapy group; Cx43 was remarkably increased in different regions of the left ventricle; TGF-β1 was decreased in the infarct zone and border zone. To the downstream signaling molecules, mothers against Smad proteins including Smad2 and Smad3 presented a synchronized alteration with TGF-β1; no differences of the expressions of ERK1/2 and p38 could be discovered in the left ventricular cardiac tissue. CONCLUSIONS MSCs transplantation combined with pioglitazone administration improved cardiac function more effectively after MI. Activation of PPAR-γ could promote MSCs to express Cx43. Inhibition of TGF-β1/Smads signaling pathway might be involved in the process.
Collapse
|
13
|
Faiella W, Atoui R. Therapeutic use of stem cells for cardiovascular disease. Clin Transl Med 2016; 5:34. [PMID: 27539581 PMCID: PMC4990528 DOI: 10.1186/s40169-016-0116-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022] Open
Abstract
Stem cell treatments are a desirable therapeutic option to regenerate myocardium and improve cardiac function after myocardial infarction. Several different types of cells have been explored, each with their own benefits and limitations. Induced pluripotent stem cells possess an embryonic-like state and therefore have a high proliferative capacity, but they also pose a risk of teratoma formation. Mesenchymal stem cells have been investigated from both bone marrow and adipose tissue. Their immunomodulatory characteristics may permit the use of allogeneic cells as universal donor cells in the future. Lastly, studies have consistently shown that cardiac stem cells are better able to express markers of cardiogenesis compared to other cell types, as well improve cardiac function. The ideal source of stem cells depends on multiple factors such as the ease of extraction/isolation, effectiveness of engraftment, ability to differentiate into cardiac lineages and effect on cardiac function. Although multiple studies highlight the benefits and limitations of each cell type and reinforce the successful potential use of these cells to regenerate damaged myocardium, more studies are needed to directly compare cells from various sources. It is interesting to note that research using stem cell therapies is also expanding to treat other cardiovascular diseases including non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Whitney Faiella
- Division of Cardiac Surgery, Health Sciences North, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada
| | - Rony Atoui
- Division of Cardiac Surgery, Health Sciences North, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada.
| |
Collapse
|
14
|
Cross-talk of SFRP4, integrin α1β1, and Notch1 inhibits cardiac differentiation of P19CL6 cells. Cell Signal 2016; 28:1806-15. [PMID: 27542621 DOI: 10.1016/j.cellsig.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022]
Abstract
Signaling pathways play an important role in cardiogenesis. Secreted frizzled-related protein 4 (SFRP4), a member of the Wnt family, contributes to adipogenesis and tumorigenesis. However, how SFRP4 participates in cardiogenesis and the detailed molecular mechanisms involved have not been elucidated. The aim of this work was to determine cross-talk between SFRP4, integrin α1β1, and Notch1 during cardiac differentiation of P19CL6 cells. Using a well-established in vitro P19CL6 cell cardiomyocyte differentiation system, we found that SFRP4 inhibited P19CL6 cell cardiac differentiation via SFRP4 overexpression or knockdown. In addition, the SFRP4 overexpression augmented Notch1 and HES1 production. Further investigation demonstrated that SFRP4 bound to integrin α1β1 to activate the focal adhesion kinase (FAK) pathway and that phosphorylated FAK Y397 (p-FAK Y397) aided Notch intracellular domain 1 (NICD1) nuclear translocation to form a p-FAK Y397-NICD1 complex that activated the Hes1 promoter. Taken together, the cross-talk between SFRP4, integrin α1β1, and Notch1 suppresses the cardiac differentiation of P19CL6 cells.
Collapse
|
15
|
Hou J, Zhou C, Long H, Zheng S, Guo T, Wu Q, Wu H, Zhong T, Wang T. Long noncoding RNAs: Novel molecules in cardiovascular biology, disease and regeneration. Exp Mol Pathol 2016; 100:493-501. [PMID: 27180105 DOI: 10.1016/j.yexmp.2016.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022]
Abstract
Remarkable breakthroughs made in genomic technologies have facilitated the discovery of thousands of novel transcripts that do not template protein synthesis. Numerous RNAs termed as long noncoding RNAs (lncRNAs) generated from this pervasive transcription function vividly in gene regulatory networks and a variety of biological and cellular processes. Here, we make a brief description of the known and putative functions of lncRNAs in cardiovascular biology and disease. The association between lncRNAs and stem cells mediated cardiomyocytes differentiation and neovascularization is discussed then. It will provide a new clue for further studies on these novel molecules in cardiovascular disease and bring bright prospects for their future applications in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Kadari A, Mekala S, Wagner N, Malan D, Köth J, Doll K, Stappert L, Eckert D, Peitz M, Matthes J, Sasse P, Herzig S, Brüstle O, Ergün S, Edenhofer F. Robust Generation of Cardiomyocytes from Human iPS Cells Requires Precise Modulation of BMP and WNT Signaling. Stem Cell Rev Rep 2016; 11:560-9. [PMID: 25392050 PMCID: PMC4493626 DOI: 10.1007/s12015-014-9564-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Various strategies have been published enabling cardiomyocyte differentiation of human induced pluripotent stem (iPS) cells. However the complex nature of signaling pathways involved as well as line-to-line variability compromises the application of a particular protocol to robustly obtain cardiomyocytes from multiple iPS lines. Hence it is necessary to identify optimized protocols with alternative combinations of specific growth factors and small molecules to enhance the robustness of cardiac differentiation. Here we focus on systematic modulation of BMP and WNT signaling to enhance cardiac differentiation. Moreover, we improve the efficacy of cardiac differentiation by enrichment via lactate. Using our protocol we show efficient derivation of cardiomyocytes from multiple human iPS lines. In particular we demonstrate cardiomyocyte differentiation within 15 days with an efficiency of up to 95 % as judged by flow cytometry staining against cardiac troponin T. Cardiomyocytes derived were functionally validated by alpha-actinin staining, transmission electron microscopy as well as electrophysiological analysis. We expect our protocol to provide a robust basis for scale-up production of functional iPS cell-derived cardiomyocytes that can be used for cell replacement therapy and disease modeling.
Collapse
Affiliation(s)
- Asifiqbal Kadari
- Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, University of Würzburg, 97070, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
YU SEONMI, KIM SONGJA. Salinomycin causes migration and invasion of human fibrosarcoma cells by inducing MMP-2 expression via PI3-kinase, ERK-1/2 and p38 kinase pathways. Int J Oncol 2016; 48:2686-92. [DOI: 10.3892/ijo.2016.3448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/08/2016] [Indexed: 11/06/2022] Open
|
18
|
Hou J, Yan P, Guo T, Xing Y, Zheng S, Zhou C, Huang H, Long H, Zhong T, Wu Q, Wang J, Wang T. Cardiac stem cells transplantation enhances the expression of connexin 43 via the ANG II/AT1R/TGF-beta1 signaling pathway in a rat model of myocardial infarction. Exp Mol Pathol 2015; 99:693-701. [PMID: 26554848 DOI: 10.1016/j.yexmp.2015.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND In this study, we hypothesized that CSCs mediated the expression of Cx43 after transplantation post MI via the ANG II/AT1R/TGF-beta1 signaling pathway. METHODS Myocardial infarction (MI) was induced in twenty male Sprague-Dawley rats. The rats were randomized into two groups and were then received the injection of 5 × 10(6) CSCs labeled with PKH26 in phosphate buffer solution (PBS) or equal PBS alone into the infarct anterior ventricular free wall two weeks after MI. Six weeks later, relevant signaling molecules involved were all examined. RESULTS In the CSCs group, an increased expression of Cx43 could be observed in different zones of the left ventricle (P<0.01). There was a significant reduction of the angiotensin II (ANG II) level in plasma and different regions of the left ventricular cardiac tissues (P<0.05; P<0.01). The angiotensin II type I receptor (AT1R) was decreased accompanied with an enhanced expression of angiotensin II type II receptor (AT2R) (P<0.01). Transforming growth factor beta-1(TGF-beta1) was downregulated (P<0.01). The expression of mothers against decapentaplegic homolog (SMAD) proteins including SMAD2 and SMAD3 was attenuated whereas SMAD7 was elevated (P<0.01, P<0.01, P<0.05). In addition, the expression of mitogen-activated protein kinases (MAPKs) including extracellular kinases 1/2 (ERK1/2) and p38 was also found to be reduced (P<0.01). CONCLUSION CSCs transplantation could enhance the level of Cx43 after MI. They might function through intervening the ANGII/AT1R/TGF-beta1 signaling pathway to regulate the expression of Cx43.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Ping Yan
- The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China; Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Lindberg J, Rickardsson E, Andersen M, Lund L. Formation of a vesicovaginal fistula in a pig model. Res Rep Urol 2015; 7:113-6. [PMID: 26317081 PMCID: PMC4544625 DOI: 10.2147/rru.s72119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective To establish an animal model of a vesicovaginal fistula that can later be used in the development of new treatment modalities. Materials and methods Six female pigs of Landrace/Yorkshire breed were used. Vesicotomy was performed through open surgery. An standardized incision between the bladder and the vagina was made, and the mucosa between them was sutured together with absorbable sutures. A durometer ureteral stent was introduced into the fistula, secured with sutures to the bladder wall, allowing for the formation of a persistent fistula tract. Six weeks postoperatively cystoscopy was performed to examine the fistula in vivo. Thereafter, the pigs were euthanized with intravenous pentobarbital. Results Two out of four (50%) pigs developed persistent fistulas. No per- or postoperative complications occurred. Conclusion This study indicates that this pig model of vesicovaginal fistula can be an effective and cheap way to create a fistula between the bladder and vagina.
Collapse
Affiliation(s)
| | | | | | - Lars Lund
- Clinical Institute, University of Southern Denmark, Odense, Denmark ; Department of Urology, Odense University Hospital, Odense C, Denmark
| |
Collapse
|
20
|
Rusu MC, Vrapciu AD, Hostiuc S, Hariga CS. Brown adipocytes, cardiac protection and a common adipo- and myogenic stem precursor in aged human hearts. Med Hypotheses 2015; 85:212-4. [PMID: 25956736 DOI: 10.1016/j.mehy.2015.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/18/2015] [Accepted: 04/25/2015] [Indexed: 12/25/2022]
Abstract
New data on adult stem cells (ASCs) are continuously added by research for use in regenerative medicine. However organ-specific ASC markers are incompletely explored. It was demonstrated that in non-cardiac brown adipose tissue (BAT) CD133+ cells differentiate in cardiomyocytes, and such BAT-derived cells induce bone marrow-derived cells into cardiomyocytes, thus being a promising source for cardiac stem cell therapy. During embryogenesis the subepicardial fat derives from BAT. Although it was not specifically investigated in human adult or aged hearts, it is actually known that metabolically active BAT can be found in many adult humans, is related to antiobesity effects, and it may derive from stem/progenitor cells. Stro-1 can safely identify in situ cardiac stem cells (CSCs) with myogenic and adipogenic potential. It was therefore raised the hypothesis of subepicardial differentiation of CSCs in BAT in adult/aged hearts, which could be viewed, such as in infants, as a mechanism of protection. This could be determined by the reactivation of an embryologic differentiation pattern in which brown adipocytes and muscle cells derive from a common stem ancestor. Such quiescent common stem ancestors could be suggested in adult, or aged, human hearts, when subepicardial BAT is found, and if a Stro-1+/CD133+/Isl-1+ phenotype of CSCs is determined.
Collapse
Affiliation(s)
- M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; MEDCENTER, Center of Excellence in Laboratory Medicine and Pathology, Bucharest, Romania; International Society of Regenerative Medicine and Surgery (ISRMS), Romania.
| | - A D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - S Hostiuc
- Division of Legal Medicine and Bioethics, Department 2 Morphological Sciences, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; National Institute of Legal Medicine, Bucharest, Romania
| | - C S Hariga
- Department 11 Surgery, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
21
|
Science and Art of Cell-Based Ocular Surface Regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:45-106. [DOI: 10.1016/bs.ircmb.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Xing Y, Hou J, Guo T, Zheng S, Zhou C, Huang H, Chen Y, Sun K, Zhong T, Wang J, Li H, Wang T. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther 2014; 5:130. [PMID: 25418617 PMCID: PMC4446090 DOI: 10.1186/scrt520] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/12/2014] [Indexed: 12/18/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) transplantation has been demonstrated to be an effective strategy for the treatment of cardiovascular disease. However, the low survival rate of MSCs at local diseased tissue reduces the therapeutic efficacy. We therefore investigated the influence of MicroRNA-378 (miR-378) transfection on MSCs survival and vascularization under hypoxic-ischemic condition in vitro. Methods MSCs were isolated from bone marrow of Sprague–Dawley rats and cultured in vitro. The third passage of MSCs were divided into the miR-378 group and control group. For the miR-378 group, cells were transfected with miR-378 mimic. Both groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24 hours, using normoxia (20% O2) as a negative control during the process. After 24 hours of reoxygenation (20% O2), cell proliferation and apoptosis were evaluated. Expressions of apoptosis and angiogenesis related genes were detected. Both groups were further co-cultured with human umbilical vein endothelial cells to promote vascular differentiation for another 6 hours. Vascular density was assessed thereafter. Results Compared with the control group, MSCs transfected with miR-378 showed more rapid growth. Their proliferation rates were much higher at 72 h and 96 h under hypoxic condition (257.33% versus 246.67%, P <0.01; 406.84% versus 365.39%, P <0.05). Cell apoptosis percentage in the miR-378 group was significantly declined under normoxic and hypoxic condition (0.30 ± 0.10% versus 0.50 ± 0.10%, P <0.05; 0.60 ± 0.40% versus 1.70 ± 0.20%, P <0.01). The miR-378 group formed a larger number of vascular branches on matrigel. BCL2 level was decreased accompanied with an upregulated expression of BAX in the two experimental groups under the hypoxic environment. BAX expression was reduced in the miR-378 group under the hypoxic environment. In the miR-378 group, there was a decreased expression of tumor necrosis factor-α on protein level and a reduction of TUSC-2 under normoxic environment. Their expressions were both downregulated under hypoxic environment. For the angiogenesis related genes, enhanced expressions of vascular endothelial growth factorα, platelet derived growth factor-β and transforming growth factor-β1 could be detected both in normoxic and hypoxic-ischemic conditions. Conclusion MiR-378 transfection could effectively promote MSCs survival and vascularization under hypoxic-ischemic condition in vitro.
Collapse
|
23
|
Guo J, Jie W, Shen Z, Li M, Lan Y, Kong Y, Guo S, Li T, Zheng S. SCF increases cardiac stem cell migration through PI3K/AKT and MMP‑2/‑9 signaling. Int J Mol Med 2014; 34:112-8. [PMID: 24804928 PMCID: PMC4072340 DOI: 10.3892/ijmm.2014.1773] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/29/2014] [Indexed: 12/15/2022] Open
Abstract
The transplantation of cardiac stem cells (CSCs) is thought to be responsible for improving the performance of injured heart induced by myocardial infarction (MI). However, the mechanisms involved in the migration of activated CSCs post-MI remain to be clarified. In this study, CSCs were isolated from rat hearts and a cellular migration assay was performed using a 24-well Transwell system. Stem cell factor (SCF) induced CSC migration in a concentration-dependent manner, which could be blocked with an SCF antibody as well as a PI3K/AKT inhibitor, LY294002. Moreover, SCF induced the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9 in a concentration- and time-dependent manner, as measured by quantitative RT-PCR, western blot analysis and gelatin zymography. Results of western blot analysis revealed phosphorylated AKT was markedly increased in SCF-treated CSCs and that inhibition of SCF/c-Kit signaling or phospho-AKT activity significantly attenuated the SCF-induced expression of MMP-2 and MMP-9. Thus, our results showed that SCF partially mediated CSC migration via the activation of PI3K/AKT/MMP-2/-9 signaling.
Collapse
Affiliation(s)
- Junli Guo
- Cardiovascular Institute of Affiliated Hospital, Hainan Medical College, Haikou 571199, P.R. China
| | - Wei Jie
- Department of Pathology, School of Basic Medicine Science, Guangdong Medical College, Zhanjiang 524023, P.R. China
| | - Zhihua Shen
- Department of Pathology, School of Basic Medicine Science, Guangdong Medical College, Zhanjiang 524023, P.R. China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, P.R. China
| | - Youling Lan
- Cardiovascular Institute of Affiliated Hospital, Hainan Medical College, Haikou 571199, P.R. China
| | - Yueqiong Kong
- Cardiovascular Institute of Affiliated Hospital, Hainan Medical College, Haikou 571199, P.R. China
| | - Shaoli Guo
- Cardiovascular Institute of Affiliated Hospital, Hainan Medical College, Haikou 571199, P.R. China
| | - Tianfa Li
- Cardiovascular Institute of Affiliated Hospital, Hainan Medical College, Haikou 571199, P.R. China
| | - Shaojiang Zheng
- Cardiovascular Institute of Affiliated Hospital, Hainan Medical College, Haikou 571199, P.R. China
| |
Collapse
|
24
|
Kaschina E, Lauer D, Schmerler P, Unger T, Steckelings UM. AT2 Receptors Targeting Cardiac Protection Post-Myocardial Infarction. Curr Hypertens Rep 2014; 16:441. [DOI: 10.1007/s11906-014-0441-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Li N, Wang C, Jia L, Du J. Heart regeneration, stem cells, and cytokines. Regen Med Res 2014; 2:6. [PMID: 25984334 PMCID: PMC4390097 DOI: 10.1186/2050-490x-2-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/24/2014] [Indexed: 12/23/2022] Open
Abstract
The human heart has limited regenerative capacity, which makes the reparative response after the cardiac infarction quite challenging. During the last decade, stem cells have become promising candidates for heart repair, owing to their potent differentiation capacity and paracrine cytokine secretion. Among the different types of stem cells, mesenchymal stem cells have high proliferative potential and secrete numerous cytokines, growth factors, and microRNAs. The paracrine cytokines play important roles in cardiac regeneration, neovascularization, anti-apoptosis, and anti-remodeling mechanisms, among others. This review summarizes the cytokines secreted by stem cells and their relative signaling pathways, which represent key mechanisms for heart regeneration and may serve as a promising future therapeutic strategy for myocardial infarction patients.
Collapse
Affiliation(s)
- Na Li
- Capital Medical University Affiliated Beijing Anzhen Hospital, Anzhenli, Chaoyang District, Beijing, 100029 China ; Lung and Vessel Diseases, Beijing Research Institute of Heart, Beijing, 100029 China
| | - Chuan Wang
- Capital Medical University Affiliated Beijing Anzhen Hospital, Anzhenli, Chaoyang District, Beijing, 100029 China
| | - LiXin Jia
- Capital Medical University Affiliated Beijing Anzhen Hospital, Anzhenli, Chaoyang District, Beijing, 100029 China ; Lung and Vessel Diseases, Beijing Research Institute of Heart, Beijing, 100029 China ; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China
| | - Jie Du
- Capital Medical University Affiliated Beijing Anzhen Hospital, Anzhenli, Chaoyang District, Beijing, 100029 China ; Lung and Vessel Diseases, Beijing Research Institute of Heart, Beijing, 100029 China ; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China
| |
Collapse
|
26
|
García AJ. PEG-maleimide hydrogels for protein and cell delivery in regenerative medicine. Ann Biomed Eng 2014; 42:312-22. [PMID: 23881112 PMCID: PMC3875614 DOI: 10.1007/s10439-013-0870-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/15/2013] [Indexed: 01/05/2023]
Abstract
Protein- and cell-based therapies represent highly promising strategies for regenerative medicine, immunotherapy, and oncology. However, these therapies are significantly limited by delivery considerations, particularly in terms of protein stability and dosing kinetics as well as cell survival, engraftment, and function. Hydrogels represent versatile and robust delivery vehicles for proteins and cells due to their high water content that retains protein biological activity, high cytocompatibility and minimal adverse host reactions, flexibility and tunability in terms of chemistry, structure, and polymerization format, ability to incorporate various biomolecules to convey biofunctionality, and opportunity for minimally invasive delivery as injectable carriers. This review highlights recent progress in the engineering of poly(ethylene glycol) hydrogels cross-linked using maleimide reactive groups for protein and cell delivery.
Collapse
Affiliation(s)
- Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA,
| |
Collapse
|
27
|
Liehn EA, Radu E, Schuh A. Chemokine contribution in stem cell engraftment into the infarcted myocardium. Curr Stem Cell Res Ther 2014; 8:278-83. [PMID: 23547962 PMCID: PMC3782704 DOI: 10.2174/1574888x11308040003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/23/2012] [Accepted: 03/31/2013] [Indexed: 02/06/2023]
Abstract
Modern life styles have made cardiovascular disease the leading cause of morbidity and mortality worldwide. Although current treatments substantially ameliorate patients’ prognosis after MI, they cannot restore the affected tissue or entirely re-establish organ function. Therefore, the main goal of modern cardiology should be to design strategies to reduce myocardial necrosis and optimize cardiac repair following MI. Cell-based therapy was considered a novel and potentially new strategy in regenerative medicine; however, its clinical implementation has not yielded the expected results. Chemokines seem to increase the efficiency of cell-therapy and may represent a reliable method to be exploited in the future. This review surveys current knowledge of cell therapy and highlights key insights into the role of chemokines in stem cell engraftment in infarcted myocardium and their possible clinical implications.
Collapse
Affiliation(s)
- Elisa A Liehn
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Germany.
| | | | | |
Collapse
|
28
|
McGregor M, Hariharan N, Joyo AY, Margolis RL, Sussman MA. CENP-A is essential for cardiac progenitor cell proliferation. Cell Cycle 2013; 13:739-48. [PMID: 24362315 PMCID: PMC3979910 DOI: 10.4161/cc.27549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Centromere protein A (CENP-A) is a homolog of histone H3 that epigenetically marks the heterochromatin of chromosomes. CENP-A is a critical component of the cell cycle machinery that is necessary for proper assembly of the mitotic spindle. However, the role of CENP-A in the heart and cardiac progenitor cells (CPCs) has not been previously studied. This study shows that CENP-A is expressed in CPCs and declines with age. Silencing CENP-A results in a decreased CPC growth rate, reduced cell number in phase G2/M of the cell cycle, and increased senescence associated β-galactosidase activity. Lineage commitment is not affected by CENP-A silencing, suggesting that cell cycle arrest induced by loss of CENP-A is a consequence of senescence and not differentiation. CENP-A knockdown does not exacerbate cell death in undifferentiated CPCs, but increases apoptosis upon lineage commitment. Taken together, these results indicate that CPCs maintain relatively high levels of CENP-A early in life, which is necessary for sustaining proliferation, inhibiting senescence, and promoting survival following differentiation of CPCs.
Collapse
Affiliation(s)
- Michael McGregor
- San Diego Heart Research Institute and the Department of Biology; San Diego State University; San Diego, CA USA
| | - Nirmala Hariharan
- San Diego Heart Research Institute and the Department of Biology; San Diego State University; San Diego, CA USA
| | - Anya Y Joyo
- San Diego Heart Research Institute and the Department of Biology; San Diego State University; San Diego, CA USA
| | | | - Mark A Sussman
- San Diego Heart Research Institute and the Department of Biology; San Diego State University; San Diego, CA USA
| |
Collapse
|
29
|
Feng X, Reini SA, Richards E, Wood CE, Keller-Wood M. Cortisol stimulates proliferation and apoptosis in the late gestation fetal heart: differential effects of mineralocorticoid and glucocorticoid receptors. Am J Physiol Regul Integr Comp Physiol 2013; 305:R343-50. [PMID: 23785077 DOI: 10.1152/ajpregu.00112.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously found that modest chronic increases in maternal cortisol result in an enlarged fetal heart. To explore the mechanisms of this effect, we used intrapericardial infusions of a mineralocorticoid receptor (MR) antagonist (canrenoate) or of a glucocorticoid receptor (GR) antagonist (mifepristone) in the fetus during maternal infusion of cortisol (1 mg·kg⁻¹·day⁻¹). We have shown that the MR antagonist blocked the increase in fetal heart weight and in wall thickness resulting from maternal cortisol infusion. In the current study we extended those studies and found that cortisol increased Ki67 staining in both ventricles, indicating cell proliferation, but also increased active caspase-3 staining in cells of the conduction pathway in the septum and subendocardial layers of the left ventricle, suggesting increased apoptosis in Purkinje fibers. The MR antagonist blocked the increase in cell proliferation, whereas the GR antagonist blocked the increased apoptosis in Purkinje fibers. We also found evidence of activation of caspase-3 in c-kit-positive cells, suggesting apoptosis in stem cell populations in the ventricle. These studies suggest a potentially important role of corticosteroids in the terminal remodeling of the late gestation fetal heart and suggest a mechanism for the cardiac enlargement with excess corticosteroid exposure.
Collapse
Affiliation(s)
- Xiaodi Feng
- Departments of Pharmacodynamics, and Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | | | | | | | | |
Collapse
|