1
|
Gao Q, Dai Z, Yang X, Liu C, Liu G. Experimental study on small molecule combinations inducing reprogramming of rat fibroblasts into functional neurons. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:498-508. [PMID: 39183062 PMCID: PMC11375488 DOI: 10.3724/zdxbyxb-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
OBJECTIVES To establish a methodological system for reprogramming rat embryonic fibroblasts (REF) into chemically induced neurons (ciNCs) via small molecule compounds to provide safe and effective donor cells for treatment of neurodegenerative diseases. METHODS Based on the method established by PEI Gang's research group to directly reprogram human fibroblasts into neurons, the induction medium and maturation medium was optimized by replacing the coating solution, mitigating oxidative stress injury, adding neurogenic protective factors, adjusting the concentration of trichothecenes, performing small-molecule removal experiments, and carrying out immunofluorescence and Western blotting on cells at different stages of induction to validate the effect of induction. RESULTS When the original protocol was used for induction, the cell survival rate was (34.24±2.77)%. After replacing the coating solution gelatin with matrigel, the cell survival rate increased to (45.41±4.27)%; after adding melatonin, the cell survival rate increased to (67.95±5.61)% and (23.43±1.42)% were transformed into neural-like cells; after adding the small molecule P7C3-A20, the cell survival rate was further increased to (76.27±1.41)%, and (39.72±4.75)% of the cells were transformed into neural-like cells. When the concentration of trichothecene was increased to 30 μmol/L, the proportion of neural-like cells reached (55.79±1.90)%; after the removal of SP600125, (86.96±2.15)% of the cells survived, and the rate of neural-like cell production increased to (63.43±1.60)%. With the optimized protocol, REF could be successfully induced into ciNC through the neural precursor cell stage, in which the neural precursor cells were able to highly express the neural precursor cell markers SRY-related HMG-box gene 2 (Sox2) and paired box 6 (Pax6) as well as neuron-specific marker tubulin 1 (Tuj1), while the expression of fiber-associated protein vimentin was reduced. After two weeks of induction of neural precursor cells in a maturation medium, most cells displayed neuronal-like cell morphology. The induced ciNCs were able to highly express the mature neuronal surface markers Tuj1 and microtubule-associated protein 2 (MAP2), while the expression of vimentin was reduced. CONCLUSIONS The small molecule combinations optimized in this study can reprogram REF to ciNCs under normoxic conditions.
Collapse
Affiliation(s)
- Qunwei Gao
- School of Life Sciences, Bengbu Medical University, Bengbu 233030, Anhui Province, China.
| | - Zhenjia Dai
- School of Life Sciences, Bengbu Medical University, Bengbu 233030, Anhui Province, China
| | - Xinkang Yang
- School of Life Sciences, Bengbu Medical University, Bengbu 233030, Anhui Province, China
| | - Changqing Liu
- School of Life Sciences, Bengbu Medical University, Bengbu 233030, Anhui Province, China
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233030, Anhui Province, China
| | - Gaofeng Liu
- School of Life Sciences, Bengbu Medical University, Bengbu 233030, Anhui Province, China. ,
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233030, Anhui Province, China. ,
| |
Collapse
|
2
|
Arcuri S, Pennarossa G, Ledda S, Gandolfi F, Brevini TAL. Use of Epigenetic Cues and Mechanical Stimuli to Generate Blastocyst-Like Structures from Mammalian Skin Dermal Fibroblasts. Methods Mol Biol 2024; 2767:161-173. [PMID: 37199907 DOI: 10.1007/7651_2023_486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mammalian embryogenesis is characterized by complex interactions between embryonic and extra-embryonic tissues that coordinate morphogenesis, coupling bio-mechanical and bio-chemical cues, to regulate gene expression and influence cell fate. Deciphering such mechanisms is essential to understand early embryogenesis, as well as to harness differentiation disorders. Currently, several early developmental events remain unclear, mainly due to ethical and technical limitations related to the use of natural embryos.Here, we describe a three-step approach to generate 3D spherical structures, arbitrarily defined "epiBlastoids," whose phenotype is remarkably similar to natural embryos. In the first step, adult dermal fibroblasts are converted into trophoblast-like cells, combining the use of 5-azacytidine, to erase the original cell phenotype, with an ad hoc induction protocol, to drive erased cells into the trophoblast lineage. In the second step, once again epigenetic erasing is applied, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like spheroids. More specifically, erased cells are encapsulated in micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, chemically induced trophoblast-like cells and ICM-like spheroids are co-cultured in the same micro-bioreactors. The newly generated embryoids are then transferred to microwells, to encourage further differentiation and favor epiBlastoid formation. The procedure here described is a novel strategy for in vitro generation of 3D spherical structures, phenotypically similar to natural embryos. The use of easily accessible dermal fibroblasts and the lack of retroviral gene transfection make this protocol a promising strategy to study early embryogenesis as well as embryo disorders.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
3
|
Synergistic Effect of miR-200 and Young Extracellular Matrix-based Bio-scaffolds to Reduce Signs of Aging in Senescent Fibroblasts. Stem Cell Rev Rep 2023; 19:417-429. [PMID: 36029367 PMCID: PMC9418657 DOI: 10.1007/s12015-022-10438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
Aging is defined as a complex, multifaceted degenerative process that causes a gradual decline of physiological functions and a rising mortality risk with time. Stopping senescence or even rejuvenating the body represent one of the long-standing human dreams. Somatic cell nuclear transfer as well as cell reprogramming have suggested the possibility to slow or even reverse signs of aging. We exploited miR-200 family ability to induce a transient high plasticity state in human skin fibroblasts isolated from old individuals and we investigated whether this ameliorates cellular and physiological hallmarks of senescence. In addition, based on the assumption that extracellular matrix (ECM) provides biomechanical stimuli directly influencing cell behavior, we examine whether ECM-based bio-scaffolds, obtained from decellularized ovaries of young swine, stably maintain the rejuvenated phenotype acquired by cells after miR-200 exposure. The results show the existence of multiple factors that cooperate to control a unique program, driving the cell clock. In particular, miR-200 family directly regulates the molecular mechanisms erasing cell senescence. However, this effect is transient, reversible, and quickly lost. On the other hand, the use of an adequate young microenvironment stabilizes the miR-200-mediated rejuvenating effects, suggesting that synergistic interactions occur among molecular effectors and ECM-derived biomechanical stimuli. The model here described is a useful tool to better characterize these complex regulations and to finely dissect the multiple and concurring biochemical and biomechanical cues driving the cell biological clock.
Collapse
|
4
|
Reprogramming—Evolving Path to Functional Surrogate β-Cells. Cells 2022; 11:cells11182813. [PMID: 36139388 PMCID: PMC9496933 DOI: 10.3390/cells11182813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Numerous cell sources are being explored to replenish functional β-cell mass since the proof-of -concept for cell therapy of diabetes was laid down by transplantation of islets. Many of these cell sources have been shown to possess a degree of plasticity permitting differentiation along new lineages into insulin-secreting β-cells. In this review, we explore emerging reprograming pathways that aim to generate bone fide insulin producing cells. We focus on small molecules and key transcriptional regulators that orchestrate phenotypic conversion and maintenance of engineered cells.
Collapse
|
5
|
Ovarian Decellularized Bioscaffolds Provide an Optimal Microenvironment for Cell Growth and Differentiation In Vitro. Cells 2021; 10:cells10082126. [PMID: 34440895 PMCID: PMC8393799 DOI: 10.3390/cells10082126] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian failure is the most common cause of infertility. Although numerous strategies have been proposed, a definitive solution for recovering ovarian functions and restoring fertility is currently unavailable. One innovative alternative may be represented by the development of an “artificial ovary” that could be transplanted in patients for re-establishing reproductive activities. Here, we describe a novel approach for successful repopulation of decellularized ovarian bioscaffolds in vitro. Porcine whole ovaries were subjected to a decellularization protocol that removed the cell compartment, while maintaining the macrostructure and microstructure of the original tissue. The obtained bioscaffolds were then repopulated with porcine ovarian cells or with epigenetically erased porcine and human dermal fibroblasts. The results obtained demonstrated that the decellularized extracellular matrix (ECM)-based scaffold may constitute a suitable niche for ex vivo culture of ovarian cells. Furthermore, it was able to properly drive epigenetically erased cell differentiation, fate, and viability. Overall, the method described represents a powerful tool for the in vitro creation of a bioengineered ovary that may constitute a promising solution for hormone and fertility restoration. In addition, it allows for the creation of a suitable 3D platform with useful applications both in toxicological and transplantation studies.
Collapse
|
6
|
Arcuri S, Pennarossa G, Gandolfi F, Brevini TAL. Generation of Trophoblast-Like Cells From Hypomethylated Porcine Adult Dermal Fibroblasts. Front Vet Sci 2021; 8:706106. [PMID: 34350230 PMCID: PMC8326560 DOI: 10.3389/fvets.2021.706106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
The first differentiation event in mammalian embryos is the formation of the trophectoderm, which is the progenitor of the outer epithelial components of the placenta, and which supports the fetus during the intrauterine life. However, the epigenetic and paracrine controls at work in trophectoderm differentiation are still to be fully elucidated and the creation of dedicated in vitro models is desirable to increase our understanding. Here we propose a novel approach based on the epigenetic conversion of adult dermal fibroblasts into trophoblast-like cells. The method combines the use of epigenetic erasing with an ad hoc differentiation protocol. Dermal fibroblasts are erased with 5-azacytidine (5-aza-CR) that confers cells a transient high plasticity state. They are then readdressed toward the trophoblast (TR) phenotype, using MEF conditioned medium, supplemented with bone morphogenetic protein 4 (BMP4) and inhibitors of the Activin/Nodal and FGF2 signaling pathways in low O2 conditions. The method here described allows the generation of TR-like cells from easily accessible material, such as dermal fibroblasts, that are very simply propagated in vitro. Furthermore, the strategy proposed is free of genetic modifications that make cells prone to instability and transformation. The TR model obtained may also find useful application in order to better characterize embryo implantation mechanisms and developmental disorders based on TR defects.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Yoshida K, Uehara O, Kurashige Y, Paudel D, Onishi A, Neopane P, Hiraki D, Morikawa T, Harada F, Takai R, Sato J, Saitoh M, Abiko Y. Direct reprogramming of epithelial cell rests of malassez into mesenchymal-like cells by epigenetic agents. Sci Rep 2021; 11:1852. [PMID: 33473142 PMCID: PMC7817677 DOI: 10.1038/s41598-020-79426-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
The DNA demethylating agent, 5-Azacytidine (5Aza), and histone deacetylase inhibitor, valproic acid (Vpa), can improve the reprogramming efficiencies of pluripotent cells. This study aimed to examine the roles of 5Aza and Vpa in the dedifferentiation of epithelial cell rests of Malassez (ERM) into stem-like cells. Additionally, the ability of stem-like cells to differentiate into mesenchymal cells was evaluated. ERM was cultured in embryonic stem cell medium (ESCM) with 1 µM of 5Aza, or 2 mM of Vpa, or a combination of 5Aza and Vpa. The cells stimulated with both 5Aza and Vpa were named as progenitor-dedifferentiated into stem-like cells (Pro-DSLCs). The Pro-DSLCs cultured in ESCM alone for another week were named as DSLCs. The stem cell markers were significantly higher in the DSLCs than the controls (no additions). The mRNA and protein levels of the endothelial, mesenchymal stem, and osteogenic cell markers were significantly higher in the Pro-DSLCs and DSLCs than the controls. The combination of a demethylating agent and a deacetylated inhibitor induced the dedifferentiation of ERM into DSLCs. The Pro-DSLCs derived from ERM can be directly reprogrammed into mesenchymal-like cells without dedifferentiation into stem-like cells. Isolated ERM treated with epigenetic agents may be used for periodontal regeneration.
Collapse
Affiliation(s)
- Koki Yoshida
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Yoshihito Kurashige
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Durga Paudel
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Aya Onishi
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Puja Neopane
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Daichi Hiraki
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Fumiya Harada
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Rie Takai
- Research Institute of Health Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Jun Sato
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Masato Saitoh
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
8
|
Pennarossa G, Manzoni EFM, Ledda S, deEguileor M, Gandolfi F, Brevini TAL. Use of a PTFE Micro-Bioreactor to Promote 3D Cell Rearrangement and Maintain High Plasticity in Epigenetically Erased Fibroblasts. Stem Cell Rev Rep 2020; 15:82-92. [PMID: 30397853 DOI: 10.1007/s12015-018-9862-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenotype definition is driven by epigenetic mechanisms as well as directly influenced by the cell microenvironment and by biophysical signals deriving from the extracellular matrix. The possibility to interact with the epigenetic signature of an adult mature cell, reversing its differentiated state and inducing a short transient high plasticity window, was previously demonstrated. In parallel, in vitro studies have shown that 3D culture systems, mimicking cell native tissue, exert significant effects on cell behavior and functions. Here we report the production of "PTFE micro-bioreactors" for long-term culture of epigenetically derived high plasticity cells. The system promotes 3D cell rearrangement, global DNA demethylation and elevated transcription of pluripotency markers, that is dependent on WW domain containing transcription regulator 1 (TAZ) nuclear accumulation and SMAD family member 2 (SMAD2) co-shuttling. Our findings demonstrate that the use of 3D culture strategies greatly improves the induction and maintenance of a high plasticity state.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena F M Manzoni
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, 20133, Milan, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | - Magda deEguileor
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, 21100, Varese, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, 20133, Milan, Italy.,Unistem, Centre for Stem Cell Research, Universita' degli Studi di Milano, 20133, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, 20133, Milan, Italy. .,Unistem, Centre for Stem Cell Research, Universita' degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
9
|
Abstract
Cell fate specification, gene expression and spatial restriction are process finely tuned by epigenetic regulatory mechanisms. At the same time, mechanical forces have been shown to be crucial to drive cell plasticity and boost differentiation. Indeed, several studies have demonstrated that transitions along different specification states are strongly influenced by 3D rearrangement and mechanical properties of the surrounding microenvironment, that can modulate both cell potency and differentiation, through the activation of specific mechanosensing-related pathways. An overview of small molecule ability to modulate cell plasticity and define cell fate is here presented and results, showing the possibility to erase the epigenetic signature of adult dermal fibroblasts and convert them into insulin-producing cells (EpiCC) are described. The beneficial effects exerted on such processes, when cells are homed on an adequate substrate, that shows “in vivo” tissue-like stiffness are also discussed and the contribution of the Hippo signalling mechano-transduction pathway as one of the mechanisms involved is examined. In addition, results obtained using a genetically modified fibroblast cell line, expressing the enhanced green fluorescent protein (eGFP) under the control of the porcine insulin gene (INS) promoter (INS-eGFP transgenic pigs), are reported. This model offers the advantage to monitor the progression of cell conversion in real time mode. All these observations have a main role in order to allow a swift scale-up culture procedure, essential for cell therapy and tissue engineering applied to human regenerative medicine, and fundamental to ensure an efficient translation process from the results obtained at the laboratory bench to the patient bedside. Moreover, the creation of reliable in vitro model represents a key point to ensure the development of more physiological models that, in turn, may reduce the number of animals used, implementing non-invasive investigations and animal welfare and protection.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano 20122, Italy
| | - Elena F M Manzoni
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano 20122, Italy
| | - Sharon Arcuri
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano 20122, Italy
| | - Fulvio Gandolfi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano 20122, Italy
| |
Collapse
|
10
|
All roads lead to Rome: the many ways to pluripotency. J Assist Reprod Genet 2020; 37:1029-1036. [PMID: 32198717 DOI: 10.1007/s10815-020-01744-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Cell pluripotency, spatial restriction, and development are spatially and temporally controlled by epigenetic regulatory mechanisms that occur without any permanent loss or alteration of genetic material, but rather through modifications "on top of it." These changes modulate the accessibility to transcription factors, either allowing or repressing their activity, thus shaping cell phenotype. Several studies have demonstrated the possibility to interact with these processes, reactivating silenced genes and inducing a high plasticity state, via an active demethylating effect, driven by ten-eleven translocation (TET) enzymes and an overall decrease of global methylation. In agreement with this, TET activities have been shown to be indispensable for mesenchymal to epithelial transition of somatic cells into iPSCs and for small molecule-driven epigenetic erasure. Beside the epigenetic mechanisms, growing evidences highlight the importance of mechanical forces in supporting cell pluripotency, which is strongly influenced by 3D rearrangement and mechanical properties of the surrounding microenvironment, through the activation of specific mechanosensing-related pathways. In this review, we discuss and provide an overview of small molecule ability to modulate cell plasticity and define cell fate through the activation of direct demethylating effects. In addition, we describe the contribution of the Hippo signaling mechanotransduction pathway as one of the mechanisms involved in the maintenance of pluripotency during embryo development and its induction in somatic cells.
Collapse
|
11
|
Liu D, Rychkov G, Al-Hawwas M, Manaph NPA, Zhou F, Bobrovskaya L, Liao H, Zhou XF. Conversion of human urine-derived cells into neuron-like cells by small molecules. Mol Biol Rep 2020; 47:2713-2722. [PMID: 32185687 DOI: 10.1007/s11033-020-05370-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 01/04/2023]
Abstract
Neural cell transplantation is an effective way for treatment of neurological diseases. However, the absence of transplantable human neurons remains a barrier for clinical therapies. Human urine-derived cells, namely renal cells and urine stem cells, have become a good source of cells for reprogramming or trans-differentiation research. Here, we show that human urine-derived cells can be partially converted into neuron-like cells by applying a cocktail of small molecules. Gene expression analysis has shown that these induced cells expressed some neuron-specific genes, and a proportion of the cells are GABAergic neurons. Moreover, whole-cell patch clamping recording has shown that some induced cells have neuron-specific voltage gated Na+ and K+ currents but have failed to generate Ca2+ currents and action potentials. Taken together, these results suggest that induced neuronal cells from human urine-derived cells may be useful for neurological disease modelling, drug screening and cell therapies.
Collapse
Affiliation(s)
- Donghui Liu
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Grigori Rychkov
- Discipline of Medicine, School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Fiona Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Discipline of Medicine, School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Hong Liao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
12
|
Shinohara M, Choi H, Ibuki M, Yabe SG, Okochi H, Miyajima A, Sakai Y. Endodermal differentiation of human induced pluripotent stem cells using simple dialysis culture system in suspension culture. Regen Ther 2019; 12:14-19. [PMID: 31890762 PMCID: PMC6933453 DOI: 10.1016/j.reth.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 01/07/2023] Open
Abstract
A differentiation of human induced pluripotent stem cells (hiPSCs) into definitive endoderm linage is required for a preparation of metabolic organ derived cells. The differentiation consumed high-priced cytokines and small molecules, which have hampered the manufacturability of differentiated cells. Although the cytokines and small molecules are remained or cells produce the autocrine factors, daily culture medium change should be proceeded to remove toxic metabolites generated from cells. In this study, we developed a simple dialysis culture system to refine the medium during definitive endodermal differentiation. We demonstrated that dialysis culture prevented cell damage to remove lactate. The hiPSCs cultured with dialysis also differentiated similarly as usual differentiation without dialysis even if they were not supplied Activin A for latter culture days in the differentiation. With this dialysis culture system, hiPSCs were differentiated into endodermal lineage with medium refinement and recycling and autocrine factors as well as cytokines, which may lead to reduce differentiation cost.
Collapse
Affiliation(s)
- Marie Shinohara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hyunjin Choi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Masato Ibuki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe MI R&D Center 3F, 6-7-3, Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shigeharu G. Yabe
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Atsushi Miyajima
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yasuyuki Sakai
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Chemical System Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Gandolfi F, Arcuri S, Pennarossa G, Brevini TAL. New tools for cell reprogramming and conversion: Possible applications to livestock. Anim Reprod 2019; 16:475-484. [PMID: 32435291 PMCID: PMC7234139 DOI: 10.21451/1984-3143-ar2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Somatic cell nuclear transfer and iPS are both forms of radical cell reprogramming able to transform a fully differentiated cell type into a totipotent or pluripotent cell. Both processes, however, are hampered by low efficiency and, in the case of iPS, the application to livestock species is uncertain. Epigenetic manipulation has recently emerged as an efficient and robust alternative method for cell reprogramming. It is based upon the use of small molecules that are able to modify the levels of DNA methylation with 5-azacitidyne as one of the most widely used. Among a number of advantages, it includes the fact that it can be applied to domestic species including pig, dog and cat. Treated cells undergo a widespread demethylation which is followed by a renewed methylation pattern induced by specific chemical stimuli that lead to the desired phenotype. A detailed study of the mechanisms of epigenetic manipulation revealed that cell plasticity is achieved through the combined action of a reduced DNA methyl transferase activity with an active demethylation driven by the TET protein family. Surprisingly the same combination of molecular processes leads to the transformation of fibroblasts into iPS and regulate the epigenetic changes that take place during early development and, hence, during reprogramming following SCNT. Finally, it has recently emerged that mechanic stimuli in the form of a 3D cell rearrangement can significantly enhance the efficiency of epigenetic reprogramming as well as of maintenance of pluripotency. Interestingly these mechanic stimuli act on the same mechanisms both in epigenetic cell conversion with 5-Aza-CR and in iPS. We suggest that the balanced combination of epigenetic erasing, 3D cell rearrangement and chemical induction can go a long way to obtain ad hoc cell types that can fully exploit the current exiting development brought by gene editing and animal cloning in livestock production.
Collapse
Affiliation(s)
- Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Italy
| | - Sharon Arcuri
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Georgia Pennarossa
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Tiziana A L Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| |
Collapse
|
14
|
Safety and Efficacy of Epigenetically Converted Human Fibroblasts Into Insulin-Secreting Cells: A Preclinical Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1079:151-162. [PMID: 29500792 DOI: 10.1007/5584_2018_172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type 1 Diabetes Mellitus (T1DM) is a chronic disease that leads to loss of insulin secreting β-cells, causing high levels of blood glucose. Exogenous insulin administration is not sufficient to mimic the normal function of β-cells and, consequently, diabetes mellitus often progresses and can lead to major chronic complications and morbidity. The physiological control of glucose levels can only be restored by replacing the β-cell mass.We recently developed a new strategy that allows for epigenetic conversion of dermal fibroblasts into insulin-secreting cells (EpiCC), using a brief exposure to the demethylating agent 5-aza-cytidine (5-aza-CR), followed by a pancreatic induction protocol. This method has notable advantages compared to the alternative available procedures and may represent a promising tool for clinical translation as a therapy for T1DM. However, a thought evaluation of its therapeutic safety and efficacy is mandatory to support preclinical studies based on EpiCC treatment.We here report the data obtained using human fibroblasts isolated from diabetic and healthy individuals, belonging the two genders. EpiCC were injected into 650 diabetic severe combined immunodeficiency (SCID) mice and demonstrated to be able to restore and maintain glycemic levels within the physiological range. Cells had the ability to self-regulate and not to cause hypoglycemia, when transplanted in healthy animals. Efficacy tests showed that EpiCC successfully re-established normoglycemia in diabetic mice, using a dose range that appeared clinically relevant to the concentration 0.6 × 106 EpiCC. Necropsy and histopathological investigations demonstrated the absence of malignant transformation and cell migration to organs and lymph nodes.The present preclinical study demonstrates safety and efficacy of human EpiCC in diabetic mice and supports the use of epigenetic converted cells for regenerative medicine of diabetes mellitus.
Collapse
|
15
|
Epigenetic Erasing and Pancreatic Differentiation of Dermal Fibroblasts into Insulin-Producing Cells are Boosted by the Use of Low-Stiffness Substrate. Stem Cell Rev Rep 2018; 14:398-411. [PMID: 29285667 DOI: 10.1007/s12015-017-9799-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several studies have demonstrated the possibility to revert differentiation process, reactivating hypermethylated genes and facilitating cell transition to a different lineage. Beside the epigenetic mechanisms driving cell conversion processes, growing evidences highlight the importance of mechanical forces in supporting cell plasticity and boosting differentiation. Here, we describe epigenetic erasing and conversion of dermal fibroblasts into insulin-producing cells (EpiCC), and demonstrate that the use of a low-stiffness substrate positively influences these processes. Our results show a higher expression of pluripotency genes and a significant bigger decrease of DNA methylation levels in 5-azacytidine (5-aza-CR) treated cells plated on soft matrix, compared to those cultured on plastic dishes. Furthermore, the use of low-stiffness also induces a significant increased up-regulation of ten-eleven translocation 2 (Tet2) and histone acetyltransferase 1 (Hat1) genes, and more decreased histone deacetylase enzyme1 (Hdac1) transcription levels. The soft substrate also encourages morphological changes, actin cytoskeleton re-organization, and the activation of the Hippo signaling pathway, leading to yes-associated protein (YAP) phosphorylation and its cytoplasmic translocation. Altogether, this results in increased epigenetic conversion efficiency and in EpiCC acquisition of a mono-hormonal phenotype. Our findings indicate that mechano-transduction related responsed influence cell plasticity induced by 5-aza-CR and improve fibroblast differentiation toward the pancreatic lineage.
Collapse
|
16
|
Rajput IR, Xiao Z, Yajing S, Yaqoob S, Sanganyado E, Ying H, Fei Y, Liu W. Establishment of pantropic spotted dolphin (Stenella attenuata) fibroblast cell line and potential influence of polybrominated diphenyl ethers (PBDEs) on cytokines response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:1-9. [PMID: 30064049 DOI: 10.1016/j.aquatox.2018.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The presence of polybrominated diphenyl ethers (PBDEs) in the aquatic environment is an issue of major concern which may be a cause of increasing prevalence and severity of diseases in marine mammals. Although, cell culture model development and in vitro investigation approach is a prime need of time to progress immunotoxic research on aquatic mammals. In this study, we stablished fibroblast cell line (pantropic spotted dolphin) to assess the potential effects of PBDEs on cytokines response. Cells were grown in 6 well cell culture plate and complete media (DMEM and Ham's F12 nutrient mixture, fetal bovine serum, antibiotic and essential amino acids) was provided. The primary culture of (PSP-LWH) cells identification was achieved by vimentin (gene and protein) expressions. Karyotyping revealed pantropic spotted dolphin chromosomes 20 pairs with XX. Transfection was achieved by SV40 LT antigen and transfected cells were expended for passages. Stability of cell line was confirmed at various passages intervals using RT-PCR, western blotting and immunofluorescence methods. After confirmation, cell line was exposed to BDE-47 (250 ng/ml), BDE-100 (250 ng/ml) and BDE-209 (1000 ng/ml), with control group (PBS), positive control DMSO (0.1%) and negative control LPS (500 ng/ml) for 24 h. The ELISA results showed significant increase in IL-6 in BDE- 100 and BDE-209 while IL-1β and IL-8 were found higher in BDE-47 and BDE-100. TNFα and IL-10 secretion was noted higher in control and positive control groups. Altogether, these results emphasize importance of transfected (PSP-LWHT) cell line in aquatic research and potential effects of PBDEs on fibroblast provides evident to understand immune modulating effects of PBDEs in marine mammals. The impact of PBDEs on dolphin's fibroblast cells immune response and altered cytokine response have been presented for the first time.
Collapse
Affiliation(s)
- Imran Rashid Rajput
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, PR China; Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan.
| | - Ziyang Xiao
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, PR China
| | - Sun Yajing
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, PR China
| | - Summra Yaqoob
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, PR China
| | - Edmond Sanganyado
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, PR China
| | - Huang Ying
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, PR China
| | - Yu Fei
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, PR China
| | - Wenhua Liu
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, PR China.
| |
Collapse
|
17
|
Yajing S, Rajput IR, Ying H, Fei Y, Sanganyado E, Ping L, Jingzhen W, Wenhua L. Establishment and characterization of pygmy killer whale (Feresa attenuata) dermal fibroblast cell line. PLoS One 2018; 13:e0195128. [PMID: 29596530 PMCID: PMC5875847 DOI: 10.1371/journal.pone.0195128] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/16/2018] [Indexed: 01/10/2023] Open
Abstract
The pygmy killer whale (Feresa attenuata) (PKW) is a tropical and subtropical marine mammal commonly found in the Atlantic, Indian and Pacific oceans. Since the PKWs live in offshore protected territories, they are rarely seen onshore. Hence, PKW are one of the most poorly understood oceanic species of odontocetes. The dermal tissue comes primarily from stranding events that occur along the coast of the Shantou, Guangdong, China. The sampled tissues were immediately processed and attached on collagen-coated 6-well tissue culture plate. The complete medium (DMEM and Ham’s F12, fetal bovine serum, antibiotic and essential amino acids) was added to the culture plates. The primary culture (PKW-LWH) cells were verified as fibroblast by vimentin and karyotype analyses, which revealed 42 autosomes and two sex chromosomes X and Y. Following transfection of PKW-LWH cells with a plasmid encoding, the SV40 large T-antigens and the transfected cells were isolated and expanded. Using RT-PCR, western blot, immunofluorescence analysis and SV40 large T-antigen stability was confirmed. The cell proliferation rate of the fibroblast cells, PKW-LWHT was faster than the primary cells PKW-LWH with the doubling time 68.9h and 14.4h, respectively. In this study, we established PKW dermal fibroblast cell line for the first time, providing a unique opportunity for in vitro studies on the effects of environmental pollutants and pathogens that could be determined in PKW and/or Cetaceans.
Collapse
Affiliation(s)
- Sun Yajing
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, P.R. China
| | - Imran Rashid Rajput
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, P.R. China
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
- * E-mail: (LW); (IRR)
| | - Huang Ying
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, P.R. China
| | - Yu Fei
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, P.R. China
| | - Edmond Sanganyado
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, P.R. China
| | - Li Ping
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, P.R. China
| | - Wang Jingzhen
- Ocean College, Qinzhou University, Qinzhou, Guangxi, P.R. China
| | - Liu Wenhua
- Marine Biology Institute, College of Science Shantou University, Shantou, Guangdong, P.R. China
- * E-mail: (LW); (IRR)
| |
Collapse
|
18
|
Chang Y, Li C, Jia Y, Chen P, Guo Y, Li A, Guo Z. CD90 + cardiac fibroblasts reduce fibrosis of acute myocardial injury in rats. Int J Biochem Cell Biol 2018; 96:20-28. [DOI: 10.1016/j.biocel.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 01/14/2023]
|
19
|
Liu D, Pavathuparambil Abdul Manaph N, Al-Hawwas M, Zhou XF, Liao H. Small Molecules for Neural Stem Cell Induction. Stem Cells Dev 2018; 27:297-312. [PMID: 29343174 DOI: 10.1089/scd.2017.0282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) from other somatic cells has provided great hopes for transplantation therapies. However, these cells still cannot be used for clinical application due to the low reprogramming and differentiation efficiency beside the risk of mutagenesis and tumor formation. Compared to iPSCs, induced neural stem cells (iNSCs) are easier to terminally differentiate into neural cells and safe; thus, iNSCs hold more opportunities than iPSCs to treat neural diseases. On the other hand, recent studies have showed that small molecules (SMs) can dramatically improve the efficiency of reprogramming and SMs alone can even convert one kind of somatic cells into another, which is much safer and more effective than transcription factor-based methods. In this study, we provide a review of SMs that are generally used in recent neural stem cell induction studies, and discuss the main mechanisms and pathways of each SM.
Collapse
Affiliation(s)
- Donghui Liu
- 1 Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing, China .,2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Nimshitha Pavathuparambil Abdul Manaph
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia .,3 Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital , Adelaide, South Australia
| | - Mohammed Al-Hawwas
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Xin-Fu Zhou
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Hong Liao
- 1 Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing, China
| |
Collapse
|
20
|
Qin H, Zhao A, Fu X. Small molecules for reprogramming and transdifferentiation. Cell Mol Life Sci 2017; 74:3553-3575. [PMID: 28698932 PMCID: PMC11107793 DOI: 10.1007/s00018-017-2586-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 01/15/2023]
Abstract
Pluripotency reprogramming and transdifferentiation induced by transcription factors can generate induced pluripotent stem cells, adult stem cells or specialized cells. However, the induction efficiency and the reintroduction of exogenous genes limit their translation into clinical applications. Small molecules that target signaling pathways, epigenetic modifications, or metabolic processes can regulate cell development, cell fate, and function. In the recent decade, small molecules have been widely used in reprogramming and transdifferentiation fields, which can promote the induction efficiency, replace exogenous genes, or even induce cell fate conversion alone. Small molecules are expected as novel approaches to generate new cells from somatic cells in vitro and in vivo. Here, we will discuss the recent progress, new insights, and future challenges about the use of small molecules in cell fate conversion.
Collapse
Affiliation(s)
- Hua Qin
- Tianjin Medical University, Tianjin, 300070, China
| | - Andong Zhao
- Tianjin Medical University, Tianjin, 300070, China
| | - Xiaobing Fu
- Key Laboratory of Wound Repair and Regeneration of PLA, The First Hospital Affiliated to the PLA General Hospital, 51 Fu Cheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
21
|
Expression of markers for germ cells and oocytes in cow dermal fibroblast treated with 5-azacytidine and cultured in differentiation medium containing BMP2, BMP4 or follicular fluid. ZYGOTE 2017; 25:341-357. [DOI: 10.1017/s0967199417000211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SummaryThis study aims to investigate the effect 5-azacytidine (5-Aza) during induction of pluripotency in bovine fibroblasts and to evaluate the effects of BMP2, BMP4 or follicular fluid in the differentiation of reprogrammed fibroblasts in primordial germ cells and oocytes. It also analysis the mRNA levels for OCT4, NANOG, REX, SOX2, VASA, DAZL, cKIT, SCP3, ZPA and GDF9 after culturing 5-Aza treated fibroblasts in the different tested medium. Dermal fibroblasts were cultured and exposed to 0.5, 1.0 or 2.0 μM of 5-Aza for 18 h, 36 h or 72 h. Then, the cells were cultured in DMEM/F12 supplemented with 10 ng/ml BMP2, 10 ng/ml BMP4 or 5% follicular fluid. After culture, morphological characteristics, viability and gene expression were evaluated by qPCR. Treatment of skin fibroblasts with 2.0 μM 5-Aza for 72 h significantly increased expression of mRNAs for SOX2, OCT4, NANOG and REX. The culture in medium supplemented with BMP2, BMP4 or follicular fluid for 7 or 14 days induced formation of oocyte-like cells, as well as the expression of markers for germ cells and oocyte. In conclusion, treatment of bovine skin-derived fibroblasts with 2.0 μM 5-Aza for 72 h induces the expression of pluripotency factors. Culturing these cells in differentiation medium supplemented with BMP2, BMP4 or follicular fluid induces morphological changes and promotes expression of markers for germ cells, meiosis and oocyte.
Collapse
|
22
|
Brevini TAL, Pennarossa G, Maffei S, Gandolfi F. Phenotype switching through epigenetic conversion. Reprod Fertil Dev 2017; 27:776-83. [PMID: 25739562 DOI: 10.1071/rd14246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/21/2015] [Indexed: 12/17/2022] Open
Abstract
Different cell types have been suggested as candidates for use in regenerative medicine. Embryonic pluripotent stem cells can give rise to all cells of the body and possess unlimited self-renewal potential. However, they are unstable, difficult to control and have a risk of neoplastic transformation. Adult stem cells are safe but have limited proliferation and differentiation abilities and are usually not within easy access. In recent years, induced pluripotent stem (iPS) cells have become a new promising tool in regenerative medicine. However, the use of transgene vectors, commonly required for the induction of iPS cells, seriously limits their use in therapy. The same problem arising from the use of retroviruses is associated with the use of cells obtained through transdifferentiation. Developing knowledge of the mechanisms controlling epigenetic regulation of cell fate has boosted the use of epigenetic modifiers that drive cells into a 'highly permissive' state. We recently set up a new strategy for the conversion of an adult mature cell into another cell type. We increased cell plasticity using 5-aza-cytidine and took advantage of a brief window of epigenetic instability to redirect cells to a different lineage. This approach is termed 'epigenetic conversion'. It is a simple, direct and safe way to obtain both cells for therapy avoiding gene transfection and a stable pluripotent state.
Collapse
Affiliation(s)
- T A L Brevini
- Department of Health, Animal Science and Food Safety, UniStem, Laboratory of Biomedical Embryology, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - G Pennarossa
- Department of Health, Animal Science and Food Safety, UniStem, Laboratory of Biomedical Embryology, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - S Maffei
- Department of Health, Animal Science and Food Safety, UniStem, Laboratory of Biomedical Embryology, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - F Gandolfi
- Department of Health, Animal Science and Food Safety, UniStem, Laboratory of Biomedical Embryology, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| |
Collapse
|
23
|
Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts. Theriogenology 2017; 92:75-82. [PMID: 28237347 DOI: 10.1016/j.theriogenology.2017.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 11/18/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Abstract
Takahashi and Yamanaka established the first technique in which transcription factors related to pluripotency are incorporated into the genome of somatic cells to enable reprogramming of these cells. The expression of these transcription factors enables a differentiated somatic cell to reverse its phenotype to an embryonic state, generating induced pluripotent stem cells (iPSCs). iPSCs from canine fetal fibroblasts were produced through lentiviral polycistronic human and mouse vectors (hOSKM/mOSKM), aiming to obtain pluripotent stem cells with similar features to embryonic stem cells (ESC) in this animal model. The cell lines obtained in this study were independent of LIF or any other supplemental inhibitors, resistant to enzymatic procedure (TrypLE Express Enzyme), and dependent on bFGF. Clonal lines were obtained from slightly different protocols with maximum reprogramming efficiency of 0.001%. All colonies were positive for alkaline phosphatase, embryoid body formation, and spontaneous differentiation and expressed high levels of endogenous OCT4 and SOX2. Canine iPSCs developed tumors at 120 days post-injection in vivo. Preliminary chromosomal evaluations were performed by FISH hybridization, revealing no chromosomal abnormality. To the best of our knowledge, this report is the first to describe the ability to reprogram canine somatic cells via lentiviral vectors without supplementation and with resistance to enzymatic action, thereby demonstrating the pluripotency of these cell lines.
Collapse
|
24
|
Brevini TAL, Pennarossa G, Manzoni EFM, Gandolfi CE, Zenobi A, Gandolfi F. The quest for an effective and safe personalized cell therapy using epigenetic tools. Clin Epigenetics 2016; 8:119. [PMID: 27891192 PMCID: PMC5112765 DOI: 10.1186/s13148-016-0283-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/02/2016] [Indexed: 11/10/2022] Open
Abstract
In the presence of different environmental cues that are able to trigger specific responses, a given genotype has the ability to originate a variety of different phenotypes. This property is defined as plasticity and allows cell fate definition and tissue specialization. Fundamental epigenetic mechanisms drive these modifications in gene expression and include DNA methylation, histone modifications, chromatin remodeling, and microRNAs. Understanding these mechanisms can provide powerful tools to switch cell phenotype and implement cell therapy. Environmentally influenced epigenetic changes have also been associated to many diseases such as cancer and neurodegenerative disorders, with patients that do not respond, or only poorly respond, to conventional therapy. It is clear that disorders based on an individual's personal genomic/epigenomic profile can rarely be successfully treated with standard therapies due to genetic heterogeneity and epigenetic alterations and a personalized medicine approach is far more appropriate to manage these patients. We here discuss the recent advances in small molecule approaches for personalized medicine, drug targeting, and generation of new cells for medical application. We also provide prospective views of the possibility to directly convert one cell type into another, in a safe and robust way, for cell-based clinical trials and regenerative medicine.
Collapse
Affiliation(s)
- T A L Brevini
- Laboratory of Biomedical Embryology, Unistem, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - G Pennarossa
- Laboratory of Biomedical Embryology, Unistem, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - E F M Manzoni
- Laboratory of Biomedical Embryology, Unistem, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - C E Gandolfi
- Laboratory of Biomedical Embryology, Unistem, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - A Zenobi
- Laboratory of Biomedical Embryology, Unistem, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - F Gandolfi
- Laboratory of Biomedical Embryology, Unistem, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| |
Collapse
|
25
|
5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Sci Rep 2016; 6:37017. [PMID: 27841324 PMCID: PMC5107985 DOI: 10.1038/srep37017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022] Open
Abstract
Phenotype definition is controlled by epigenetic regulations that allow cells to acquire their differentiated state. The process is reversible and attractive for therapeutic intervention and for the reactivation of hypermethylated pluripotency genes that facilitate transition to a higher plasticity state. We report the results obtained in human fibroblasts exposed to the epigenetic modifier 5-azacytidine (5-aza-CR), which increases adult cell plasticity and facilitates phenotype change. Although many aspects controlling its demethylating action have been widely investigated, the mechanisms underlying 5-aza-CR effects on cell plasticity are still poorly understood. Our experiments confirm decreased global methylation, but also demonstrate an increase of both Formylcytosine (5fC) and 5-Carboxylcytosine (5caC), indicating 5-aza-CR ability to activate a direct and active demethylating effect, possibly mediated via TET2 protein increased transcription. This was accompanied by transient upregulation of pluripotency markers and incremented histone expression, paralleled by changes in histone acetylating enzymes. Furthermore, adult fibroblasts reshaped into undifferentiated progenitor-like phenotype, with a sparse and open chromatin structure. Our findings indicate that 5-aza-CR induced somatic cell transition to a higher plasticity state is activated by multiple regulations that accompany the demethylating effect exerted by the modifier.
Collapse
|
26
|
Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts. Stem Cells Int 2016; 2016:7654321. [PMID: 27403168 PMCID: PMC4925994 DOI: 10.1155/2016/7654321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/22/2016] [Accepted: 05/08/2016] [Indexed: 01/15/2023] Open
Abstract
Reprogramming can occur by the introduction of key transcription factors (TFs) as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) combined with a chromatin remodeling medium (CRM) induced expression of a number of definitive endoderm and early and late pancreatic marker genes. When CRM was omitted, endoderm/pancreatic marker genes were not induced. Furthermore, treatment with DNA methyltransferase inhibitor (DNMTi) 5-azacytidine (5AZA) CRM did not affect gene expression changes, and when 5AZA was combined with TSA, no further increase in gene expression of endoderm, pancreatic endoderm, and endocrine markers was seen over levels induced with TSA alone. Interestingly, TSA-CRM did not affect expression of pluripotency and hepatocyte genes but induced some mesoderm transcripts. Upon removal of TSA-CRM, the endoderm/pancreatic gene expression profile returned to baseline. Our findings underscore the role epigenetic modification in transdifferentiation of one somatic cell into another. However, full reprogramming of fibroblasts to β-cells will require combination of this approach with TF overexpression and/or culture of the partially reprogrammed cells under β-cell specific conditions.
Collapse
|
27
|
Brevini T, Pennarossa G, Acocella F, Brizzola S, Zenobi A, Gandolfi F. Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. Vet J 2016; 211:52-6. [DOI: 10.1016/j.tvjl.2016.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 01/29/2016] [Accepted: 02/27/2016] [Indexed: 12/15/2022]
|
28
|
Brevini TAL, Pennarossa G, Maffei S, Zenobi A, Gandolfi F. Epigenetic Conversion as a Safe and Simple Method to Obtain Insulin-secreting Cells from Adult Skin Fibroblasts. J Vis Exp 2016. [PMID: 27023000 DOI: 10.3791/53880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Regenerative medicine requires new, fully functional cells that are delivered to patients in order to repair degenerated or damaged tissues. When such cells are not readily available, they can be obtained using different approaches that include, among the many, reprogramming and trans-differentiation, with advantages and limitations that are specific of the different techniques. Here a new strategy for the conversion of an adult mature fibroblast into an insulin-secreting cell, arbitrarily designated as epigenetic converted cells (EpiCC), is described. The method has been developed, based on the increasing understanding of the mechanisms controlling epigenetic regulation of cell fate and differentiation. In particular, the first step uses an epigenetic modifier, namely 5-aza-cytidine, to drive adult cells into a "highly permissive" state. It then takes advantage of this brief and reversible window of epigenetic plasticity, to re-address cells toward a different lineage. The approach is designated "epigenetic cell conversion". It is a simple and robust way to obtain an efficient, controlled and stable cellular inter-lineage switch. Since the protocol does not involve the use of any gene transfection, it is free of viral vectors and does not involve a stable pluripotent state, it is highly promising for translational medicine applications.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Unistem, Centre for Stem Cell Research, Università degli Studi di Milano;
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Unistem, Centre for Stem Cell Research, Università degli Studi di Milano
| | - Sara Maffei
- Laboratory of Biomedical Embryology, Unistem, Centre for Stem Cell Research, Università degli Studi di Milano
| | - Alessandro Zenobi
- Laboratory of Biomedical Embryology, Unistem, Centre for Stem Cell Research, Università degli Studi di Milano
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Unistem, Centre for Stem Cell Research, Università degli Studi di Milano
| |
Collapse
|
29
|
|
30
|
Muscle tissue engineering and regeneration through epigenetic reprogramming and scaffold manipulation. Sci Rep 2015; 5:16333. [PMID: 26548559 PMCID: PMC4637833 DOI: 10.1038/srep16333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/13/2015] [Indexed: 11/24/2022] Open
Abstract
Efficiency of cell-based tissue engineering and regenerative medicine has been limited by inadequate cellular responses to injury because of aging and poor controllability of cellular interactions. Since cell progression is under a tight epigenetic regulation, epigenetic modulators such as 5-azacytidine (5-Aza-CR) have been utilized to facilitate reprogramming and development of somatic cells in 2-dimensional (2-D) settings. Nonetheless, progression of a specific tissue lineage toward the terminal phenotype is dependent not only on the genomic potential, but also on the microenvironment cues that are beyond the capability of 2-D approaches. In this study, we investigated the combined effects of matrices of variable rigidities and the treatment with the epigenetic modulator 5-Aza-CR on reprogramming adipose-derived stromal cells (ADSCs) into myoblast-like cells by utilizing tunable transglutaminase cross-linked gelatin (Col-Tgel) in vitro and in vivo. Our experiments demonstrated that cellular plasticity and trans-differentiation were significantly enhanced when ADSCs were treated with an effective dose of 5-Aza-CR (1.25 to 12.5 ng) in the optimal myogenic matrix (15 ± 5 kPa Col-Tgel). Our findings suggest that both physical signals and chemical milieu are critical for the regulation of cellular responses.
Collapse
|
31
|
The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells. J Genet Genomics 2015; 42:661-70. [PMID: 26743984 DOI: 10.1016/j.jgg.2015.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprogramming, pluripotency, and differentiation capacity. Here, we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations.
Collapse
|
32
|
Brevini TAL, Pennarossa G, Rahman MM, Paffoni A, Antonini S, Ragni G, deEguileor M, Tettamanti G, Gandolfi F. Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev Rep 2015; 10:633-42. [PMID: 24858410 DOI: 10.1007/s12015-014-9521-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Converting adult cells from one cell type to another is a particularly interesting idea for regenerative medicine. Terminally differentiated cells can be induced to de-differentiate in vitro to become multipotent progenitors. In mammals these changes do not occur naturally, however exposing differentiated adult cells to synthetic molecules capable of selectively reverting cells from their lineage commitment to a more plastic state makes it possible to re-address their fate. Only scattered information are available on the morphological changes and ultrastructural remodeling taking place when cells convert into a different and specific type. To better clarify these aspects, we derived human granulosa cell (GC) primary cultures and analyzed the morphological changes taking place in response to the exposure to the epigenetic modifier 5-azacytidine (5-aza-CR) and to the treatment with VEGF, as a stimulus for inducing differentiation into muscle cells. Ultrastructural modifications and molecular marker expression were analyzed at different intervals during the treatments. Our results indicate that the temporary up regulation of pluripotency markers is accompanied by the loss of GC-specific ultrastructural features, mainly through autophagocitosis, and is associated with a temporary chromatin decondensation. After exposure to VEGF the induction of muscle specific genes was combined with the appearance of multinucleated cells with a considerable quantity of non-spatially organized filaments. The detailed analysis of the morphological changes occurring in cells undergoing lineage re-addressing allows a better understanding of these process and may prove useful for refining the use of somatic cells in regenerative medicine and tissue replacement therapies.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, University of Milan, via Celoria 10, 20133, Milan, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
He Y, Cui J, He T, Bi Y. 5-azacytidine promotes terminal differentiation of hepatic progenitor cells. Mol Med Rep 2015; 12:2872-8. [PMID: 25975647 DOI: 10.3892/mmr.2015.3772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
5-azacytidine (5-azaC) is known to induce cardiomyocyte differentiation. However, its function in hepatocyte differentiation is unclear. The present study investigated the in vitro capability of 5-azaC to promote maturation and differentiation of mouse embryonic hepatic progenitor cells, with the aim of developing an approach for improving hepatic differentiation. Mouse embryonic hepatic progenitor cells (HP14.5 cells) were treated with 5-azaC at concentrations from 0 to 20 μmol/l, in addition to hepatocyte induction culture medium. Hepatocyte induction medium induces HP14.5 cell differentiation. 5-azaC may enhance the albumin promotor-driven Gaussia luciferase (ALB-GLuc) activity in induced HP14.5 cells. In the present study 2 μmol/l was found to be the optimum concentration with which to achieve this. The expression of hepatocyte-associated factors was not significantly different between the group treated with 5-azaC alone and the control group. The mRNA levels of ALB; cytokeratin 18 (CK18); tyrosine aminotransferase (TAT); and cytochrome p450, family 1, member A1 (CYP1A1); in addition to the protein levels of ALB, CK18 and uridine diphosphate glucuronyltransferase 1A (UGT1A) in the induced group with 5-azaC, were higher than those in the induced group without 5-azaC, although no significant differences were detected in expression of the hepatic stem cell markers, DLK and α-fetoprotein, between the two groups. Treatment with 5-azaC alone did not affect glycogen synthesis or indocyanine green (ICG) metabolic function in HP14.5 cells, although it significantly increased ICG uptake and periodic acid-Schiff-positive cell numbers amongst HP14.5 cells. Therefore, the present study demonstrated that treatment with 5-azaC alone exerted no effects on the maturation and differentiation of HP14.5 cells. However, 5-azaC exhibited a synergistic effect on the terminal differentiation of induced hepatic progenitor cells in association with a hepatic induction medium.
Collapse
Affiliation(s)
- Yun He
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jiejie Cui
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Tongchuan He
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yang Bi
- Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|