1
|
Cossu D. Special Issue "Advances in Molecular Research on Autoimmune Diseases". Int J Mol Sci 2024; 25:11487. [PMID: 39519041 PMCID: PMC11546243 DOI: 10.3390/ijms252111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Autoimmune diseases represent a diverse array of disorders in which the immune system mistakenly attacks the body's own cells and tissues [...].
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan;
- Biomedical Research Core Facilities, Juntendo University, Tokyo 1138431, Japan
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy
| |
Collapse
|
2
|
Huang KT, Wagner LE, Takano T, Lin XX, Bagavant H, Deshmukh U, Yule DI. Dysregulated Ca 2+ signaling, fluid secretion, and mitochondrial function in a mouse model of early Sjögren's disease. eLife 2024; 13:RP97069. [PMID: 39259200 PMCID: PMC11390111 DOI: 10.7554/elife.97069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
The molecular mechanisms leading to saliva secretion are largely established, but factors that underlie secretory hypofunction, specifically related to the autoimmune disease Sjögren's syndrome (SS) are not fully understood. A major conundrum is the lack of association between the severity of salivary gland immune cell infiltration and glandular hypofunction. SS-like disease was induced by treatment with DMXAA, a small molecule agonist of murine STING. We have previously shown that the extent of salivary secretion is correlated with the magnitude of intracellular Ca2+ signals (Takano et al., 2021). Contrary to our expectations, despite a significant reduction in fluid secretion, neural stimulation resulted in enhanced Ca2+ signals with altered spatiotemporal characteristics in vivo. Muscarinic stimulation resulted in reduced activation of the Ca2+-activated Cl- channel, TMEM16a, although there were no changes in channel abundance or absolute sensitivity to Ca2+. Super-resolution microscopy revealed a disruption in the colocalization of Inositol 1,4,5-trisphosphate receptor Ca2+ release channels with TMEM16a, and channel activation was reduced when intracellular Ca2+ buffering was increased. These data indicate altered local peripheral coupling between the channels. Appropriate Ca2+ signaling is also pivotal for mitochondrial morphology and bioenergetics. Disrupted mitochondrial morphology and reduced oxygen consumption rate were observed in DMXAA-treated animals. In summary, early in SS disease, dysregulated Ca2+ signals lead to decreased fluid secretion and disrupted mitochondrial function contributing to salivary gland hypofunction.
Collapse
Affiliation(s)
- Kai-Ting Huang
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Larry E Wagner
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Xiao-Xuan Lin
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Harini Bagavant
- Arthritis and Clinical Immunology, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - Umesh Deshmukh
- Arthritis and Clinical Immunology, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - David I Yule
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| |
Collapse
|
3
|
Debreceni IL, Barr JY, Upton EM, Chen YG, Lieberman SM. IL-27 promotes pathogenic T cells in a mouse model of Sjögren's disease. Clin Immunol 2024; 264:110260. [PMID: 38788885 PMCID: PMC11203157 DOI: 10.1016/j.clim.2024.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Sjögren's disease (SjD) is a chronic autoimmune disease characterized by focal lymphocytic inflammation in lacrimal and salivary glands. We recently identified IL-27 as a requisite signal for the spontaneous SjD-like manifestations in nonobese diabetic (NOD) mice. Here, we define T cell-intrinsic effects of IL-27 in lacrimal gland disease in NOD mice. IL-27 receptor was required by both CD4 T effector (Te) cells and CD8 T cells to mediate focal inflammation. Intrinsic IL-27 signaling was associated with PD-1 and ICOS expressing T follicular helper (Tfh)-like CD4 Te cells within lacrimal glands, including subsets defined by CD73 or CD39 expression. CD8 T cells capable of IL-27 signaling also expressed PD-1 with subsets expressing ICOS and CD73 demonstrating a T follicular cytotoxic (Tfc)-like cell phenotype and others expressing a CD39hi exhausted-like phenotype. These findings suggest IL-27 is a key early signal driving a follicular-type response in lacrimal gland inflammation in NOD mice.
Collapse
Affiliation(s)
- Ivy L Debreceni
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, 500 Newton Road, 2191 Medical Laboratories, Iowa City, IA 52242, USA; Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, 500 Newton Road, 2191 Medical Laboratories, Iowa City, IA 52242, USA.
| | - Jennifer Y Barr
- Scientific Editing and Research Communication Core, Carver College of Medicine, University of Iowa, 451 Newton Road, 130 Medicine Administration Building, Iowa City, IA 52242, USA.
| | - Ellen M Upton
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, 500 Newton Road, 2191 Medical Laboratories, Iowa City, IA 52242, USA; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 451 Newton Road, 200 Medicine Administration Building, Iowa City, IA 52242, USA.
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Scott M Lieberman
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, 500 Newton Road, 2191 Medical Laboratories, Iowa City, IA 52242, USA; Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, 500 Newton Road, 2191 Medical Laboratories, Iowa City, IA 52242, USA.
| |
Collapse
|
4
|
Huang KT, Wagner LE, Takano T, Lin XX, Bagavant H, Deshmukh U, Yule DI. Dysregulated Ca 2+ signaling, fluid secretion, and mitochondrial function in a mouse model of early Sjögren's syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585719. [PMID: 38562738 PMCID: PMC10983907 DOI: 10.1101/2024.03.19.585719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Saliva is essential for oral health. The molecular mechanisms leading to physiological fluid secretion are largely established, but factors that underlie secretory hypofunction, specifically related to the autoimmune disease Sjögren's syndrome (SS) are not fully understood. A major conundrum is the lack of association between the severity of inflammatory immune cell infiltration within the salivary glands and glandular hypofunction. In this study, we investigated in a mouse model system, mechanisms of glandular hypofunction caused by the activation of the stimulator of interferon genes (STING) pathway. Glandular hypofunction and SS-like disease were induced by treatment with 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA), a small molecule agonist of murine STING. Contrary to our expectations, despite a significant reduction in fluid secretion in DMXAA-treated mice, in vivo imaging demonstrated that neural stimulation resulted in greatly enhanced spatially averaged cytosolic Ca2+ levels. Notably, however, the spatiotemporal characteristics of the Ca2+ signals were altered to signals that propagated throughout the entire cytoplasm as opposed to largely apically confined Ca2+ rises observed without treatment. Despite the augmented Ca2+ signals, muscarinic stimulation resulted in reduced activation of TMEM16a, although there were no changes in channel abundance or absolute sensitivity to Ca2+. However, super-resolution microscopy revealed a disruption in the intimate colocalization of Inositol 1,4,5-trisphosphate receptor Ca2+ release channels in relation to TMEM16a. TMEM16a channel activation was also reduced when intracellular Ca2+ buffering was increased. These data are consistent with altered local coupling between the channels contributing to the reduced activation of TMEM16a. Appropriate Ca2+ signaling is also pivotal for mitochondrial morphology and bioenergetics and secretion is an energetically expensive process. Disrupted mitochondrial morphology, a depolarized mitochondrial membrane potential, and reduced oxygen consumption rate were observed in DMXAA-treated animals compared to control animals. We report that early in SS disease, dysregulated Ca2+ signals lead to decreased fluid secretion and disrupted mitochondrial function contributing to salivary gland hypofunction and likely the progression of SS disease.
Collapse
Affiliation(s)
- Kai-Ting Huang
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Xiao-Xuan Lin
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Harini Bagavant
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104
| | - Umesh Deshmukh
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| |
Collapse
|
5
|
Gál S, Gajdócsi E, Khanfar E, Olasz K, Simon D, Balogh P, Berki T, Németh P, Boldizsár F. Natural and Pathological Autoantibodies Show Age-Related Changes in a Spontaneous Autoimmune Mouse (NZB) Model. Int J Mol Sci 2023; 24:9809. [PMID: 37372957 DOI: 10.3390/ijms24129809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The natural autoantibody (natAAb) network is thought to play a role in immune regulation. These IgM antibodies react with evolutionary conserved antigens; however, they do not lead to pathological tissue destruction as opposed to pathological autoantibodies (pathAAb). The exact relation between the natAAbs and pathAAbs is still not completely understood; therefore, in the present study, we set out to measure nat- and pathAAb levels against three conserved antigens in a spontaneous autoimmune disease model: the NZB mouse strain which develops autoimmune hemolytic anemia (AIHA) from six months of age. There was an age dependent increase in the natAAb levels in the serum against Hsp60, Hsp70, and the mitochondrial citrate synthase until 6-9 months of age, followed by a gradual decrease. The pathological autoantibodies appeared after six months of age, which corresponded with the appearance of the autoimmune disease. The changes in nat/pathAAb levels were coupled with decreasing B1- and increasing plasma cell and memory B cell percentages. Based on this, we propose that there is a switch from natAAbs towards pathAAbs in aged NZB mice.
Collapse
Affiliation(s)
- Szonja Gál
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Erzsébet Gajdócsi
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Esam Khanfar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Diána Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentagothai Research Center, University of Pecs, H-7624 Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| |
Collapse
|
6
|
ElMosbah DE, Khattab MS, AbuBakr HO, El Miniawy HMF. Histopathological, biochemical and molecular studies on a model of systemic autoimmune disease induced by sodium silicate in non-genetically prone rats. Chem Biol Interact 2023; 379:110510. [PMID: 37100362 DOI: 10.1016/j.cbi.2023.110510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 04/28/2023]
Abstract
Sodium silicate (Na2SiO3) is an inorganic silica salt used in many products. Few studies reported autoimmune diseases (AIDs) due to Na2SiO3 exposure. This study investigates the role of Na2SiO3 exposure by different routes and doses in AID development in rats. We assigned 40 female rats to four groups: G1 control group, G2 rats were subcutaneously injected with 5 mg Na2SiO3 suspension, and G3 and G4 rats were orally administered 5 mg and 7 mg Na2SiO3 suspension, respectively. Na2SiO3 was administered weekly for 20 weeks. Serum anti-nuclear antibodies (ANA) detection, histopathology of kidney, brain, lung, liver, and heart, oxidative stress biomarkers (MDA and GSH) in tissues, Matrix metalloproteinase activity in serum, TNF-α, and Bcl-2 expression in tissues were performed. ANA was significantly increased in silicate groups, especially G2. Creatinine was significantly increased in silicate groups. Histopathology revealed vasculitis and fibrinoid degeneration of blood vessels, a picture of immune-mediated glomerulonephritis in the kidneys, and chronic interstitial pneumonia with medial hypertrophy of pulmonary blood vessels. The activity of gelatinases (MMP-2 and MMP-9) and collagenase (MMP-13), which play role in inflammation, remodeling, and immune complex degradation, were significantly increased in the silicate-exposed groups. Bcl-2 was significantly decreased, indicating apoptosis. Therefore, oral administration and subcutaneous injection of Na2SiO3 induced immune-mediated glomerulonephritis with elevated ANA levels and overexpression of TNF-α in rats.
Collapse
Affiliation(s)
- Dina E ElMosbah
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hala M F El Miniawy
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Cabral-Marques O, Moll G, Catar R, Preuß B, Bankamp L, Pecher AC, Henes J, Klein R, Kamalanathan AS, Akbarzadeh R, van Oostveen W, Hohberger B, Endres M, Koolmoes B, Levarht N, Postma R, van Duinen V, van Zonneveld AJ, de Vries-Bouwstra J, Fehres C, Tran F, do Vale FYN, da Silva Souza KB, Filgueiras IS, Schimke LF, Baiocchi GC, de Miranda GC, da Fonseca DLM, Freire PP, Hackel AM, Grasshoff H, Stähle A, Müller A, Dechend R, Yu X, Petersen F, Sotzny F, Sakmar TP, Ochs HD, Schulze-Forster K, Heidecke H, Scheibenbogen C, Shoenfeld Y, Riemekasten G. Autoantibodies targeting G protein-coupled receptors: An evolving history in autoimmunity. Report of the 4th international symposium. Autoimmun Rev 2023; 22:103310. [PMID: 36906052 DOI: 10.1016/j.autrev.2023.103310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
G protein-coupled receptors (GPCR) are involved in various physiological and pathophysiological processes. Functional autoantibodies targeting GPCRs have been associated with multiple disease manifestations in this context. Here we summarize and discuss the relevant findings and concepts presented in the biennial International Meeting on autoantibodies targeting GPCRs (the 4th Symposium), held in Lübeck, Germany, 15-16 September 2022. The symposium focused on the current knowledge of these autoantibodies' role in various diseases, such as cardiovascular, renal, infectious (COVID-19), and autoimmune diseases (e.g., systemic sclerosis and systemic lupus erythematosus). Beyond their association with disease phenotypes, intense research related to the mechanistic action of these autoantibodies on immune regulation and pathogenesis has been developed, underscoring the role of autoantibodies targeting GPCRs on disease outcomes and etiopathogenesis. The observation repeatedly highlighted that autoantibodies targeting GPCRs could also be present in healthy individuals, suggesting that anti-GPCR autoantibodies play a physiologic role in modeling the course of diseases. Since numerous therapies targeting GPCRs have been developed, including small molecules and monoclonal antibodies designed for treating cancer, infections, metabolic disorders, or inflammatory conditions, anti-GPCR autoantibodies themselves can serve as therapeutic targets to reduce patients' morbidity and mortality, representing a new area for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Otávio Cabral-Marques
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil; Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil.
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany; BIH Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), all Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Beate Preuß
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Lukas Bankamp
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Ann-Christin Pecher
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Joerg Henes
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - A S Kamalanathan
- Centre for BioSeparation Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Wieke van Oostveen
- Leiden University Medical Center (LUMC), Department of Rheumatology, Leiden, the Netherlands
| | - Bettina Hohberger
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Endres
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology with Experimental Neurology, Berlin, Germany.; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Stroke Research Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Bryan Koolmoes
- Leiden University Medical Center (LUMC), Department of Rheumatology, Leiden, the Netherlands
| | - Nivine Levarht
- Leiden University Medical Center (LUMC), Department of Rheumatology, Leiden, the Netherlands
| | - Rudmer Postma
- LUMC, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - Vincent van Duinen
- LUMC, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - Anton Jan van Zonneveld
- LUMC, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - Jeska de Vries-Bouwstra
- Leiden University Medical Center (LUMC), Department of Rheumatology, Leiden, the Netherlands
| | - Cynthia Fehres
- Leiden University Medical Center (LUMC), Department of Rheumatology, Leiden, the Netherlands
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Fernando Yuri Nery do Vale
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Crispim Baiocchi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gustavo Cabral de Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro Mathias da Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexander M Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Anja Stähle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Antje Müller
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, A collaboration of Max Delbruck Center for Molecular Medicine and Charité Universitätsmedizin, and HELIOS Clinic, Department of Cardiology and Nephrology, Berlin 13125, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel (RCB), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel (RCB), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Franziska Sotzny
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
| | - Hans D Ochs
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
8
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Li Y, Jiang W, Mellins ED. TCR-like antibodies targeting autoantigen-mhc complexes: a mini-review. Front Immunol 2022; 13:968432. [PMID: 35967436 PMCID: PMC9363607 DOI: 10.3389/fimmu.2022.968432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
T cell receptors (TCRs) recognize peptide antigens bound to major histocompatibility complex (MHC) molecules (p/MHC) that are expressed on cell surfaces; while B cell-derived antibodies (Abs) recognize soluble or cell surface native antigens of various types (proteins, carbohydrates, etc.). Immune surveillance by T and B cells thus inspects almost all formats of antigens to mount adaptive immune responses against cancer cells, infectious organisms and other foreign insults, while maintaining tolerance to self-tissues. With contributions from environmental triggers, the development of autoimmune disease is thought to be due to the expression of MHC risk alleles by antigen-presenting cells (APCs) presenting self-antigen (autoantigen), breaking through self-tolerance and activating autoreactive T cells, which orchestrate downstream pathologic events. Investigating and treating autoimmune diseases have been challenging, both because of the intrinsic complexity of these diseases and the need for tools targeting T cell epitopes (autoantigen-MHC). Naturally occurring TCRs with relatively low (micromolar) affinities to p/MHC are suboptimal for autoantigen-MHC targeting, whereas the use of engineered TCRs and their derivatives (e.g., TCR multimers and TCR-engineered T cells) are limited by unpredictable cross-reactivity. As Abs generally have nanomolar affinity, recent advances in engineering TCR-like (TCRL) Abs promise advantages over their TCR counterparts for autoantigen-MHC targeting. Here, we compare the p/MHC binding by TCRs and TCRL Abs, review the strategies for generation of TCRL Abs, highlight their application for identification of autoantigen-presenting APCs, and discuss future directions and limitations of TCRL Abs as immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Wei Jiang
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Wei Jiang, ; Elizabeth D. Mellins,
| | - Elizabeth D. Mellins
- Department of Pediatrics, Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Wei Jiang, ; Elizabeth D. Mellins,
| |
Collapse
|
10
|
Peck AB, Nguyen CQ, Ambrus JL. A MZB Cell Activation Profile Present in the Lacrimal Glands of Sjögren's Syndrome-Susceptible C57BL/6.NOD- Aec1Aec2 Mice Defined by Global RNA Transcriptomic Analyses. Int J Mol Sci 2022; 23:6106. [PMID: 35682784 PMCID: PMC9181468 DOI: 10.3390/ijms23116106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
The C57BL/6.NOD-Aec1Aec2 mouse has been extensively studied to define the underlying cellular and molecular basis for the onset and development of Sjögren's syndrome (SS), a human systemic autoimmune disease characterized clinically as the loss of normal lacrimal and salivary gland functions leading respectively to dry eye and dry mouth pathologies. While an overwhelming majority of SS studies in both humans and rodent models have long focused primarily on pathophysiological events and the potential role of T lymphocytes in these events, recent studies in our murine models have indicated that marginal zone B (MZB) lymphocytes are critical for both development and onset of SS disease. Although migration and function of MZB cells are difficult to study in vivo and in vitro, we have carried out ex vivo investigations that use temporal global RNA transcriptomic analyses to track early cellular and molecular events in these exocrine glands of C57BL/6.NOD-Aec1Aec2 mice. In the present report, genome-wide transcriptome analyses of lacrimal glands indicate that genes and gene-sets temporally upregulated during early onset of disease define the Notch2/NF-kβ14 and Type1 interferon signal transduction pathways, as well as identify chemokines, especially Cxcl13, and Rho-GTPases, including DOCK molecules, in the cellular migration of immune cells to the lacrimal glands. We discuss how the current results compare with our recently published salivary gland data obtained from similar studies carried out in our C57BL/6.NOD-Aec1Aec2 mice, pointing out both similarities and differences in the etiopathogeneses underlying the autoimmune response within the two glands. Overall, this study uses the power of transcriptomic analyses to identify temporal molecular bioprocesses activated during the preclinical covert pathogenic stage(s) of SS disease and how these findings may impact future intervention therapies as the disease within the two exocrine glands may not be identical.
Collapse
Affiliation(s)
- Ammon B. Peck
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
| | - Julian L. Ambrus
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA; (C.Q.N.); (J.L.A.J.)
- Division of Allergy, Immunology and Rheumatology, SUNY Buffalo School of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
11
|
Kakan SS, Edman MC, Yao A, Okamoto CT, Nguyen A, Hjelm BE, Hamm-Alvarez SF. Tear miRNAs Identified in a Murine Model of Sjögren's Syndrome as Potential Diagnostic Biomarkers and Indicators of Disease Mechanism. Front Immunol 2022; 13:833254. [PMID: 35309364 PMCID: PMC8931289 DOI: 10.3389/fimmu.2022.833254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The tear miRNAome of the male NOD mouse, a model of ocular symptoms of Sjögren's syndrome (SS), was analyzed to identify unique miRNAs. Methods Male NOD mice, aged 12-14 weeks, were used to identify tear miRNAs associated with development of autoimmune dacryoadenitis. Age- and sex-matched male BALB/c mice served as healthy controls while age-matched female NOD mice that do not develop the autoimmune dacryoadenitis characteristic of SS were used as additional controls. Total RNA was isolated from stimulated tears pooled from 5 mice per sample and tear miRNAs were sequenced and analyzed. Putative miRNA hits were validated in additional mouse cohorts as well as in tears of SS patients versus patients with another form of dry eye disease, meibomian gland disease (MGD) using qRT-PCR. The pathways influenced by the validated hits were identified using Ingenuity Pathway Analysis. Results In comparison to tears from both healthy (male BALB/c) and additional control (female NOD) mice, initial analy1sis identified 7 upregulated and 7 downregulated miRNAs in male NOD mouse tears. Of these, 8 were validated by RT-qPCR in tears from additional mouse cohorts. miRNAs previously implicated in SS pathology included mmu-miR-146a/b-5p, which were significantly downregulated, as well as mmu-miR-150-5p and mmu-miR-181a-5p, which were upregulated in male NOD mouse tears. All other validated hits including the upregulated miR-181b-5p and mmu-miR-203-3p, as well as the downregulated mmu-miR-322-5p and mmu-miR-503-5p, represent novel putative indicators of autoimmune dacryoadenitis in SS. When compared to tears from patients with MGD, miRNAs hsa-miR-203a-3p, hsa-miR-181a-5p and hsa-miR-181b-5p were also significantly increased in tears of SS patients. Conclusions A panel of differentially expressed miRNAs were identified in tears of male NOD mice, with some preliminary validation in SS patients, including some never previously linked to SS. These may have potential utility as indicators of ocular symptoms of SS; evaluation of the pathways influenced by these dysregulated miRNAs may also provide further insights into SS pathogenesis.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Alexander Yao
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Annie Nguyen
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brooke E. Hjelm
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Therapeutic Antibodies Targeting Potassium Ion Channels. Handb Exp Pharmacol 2021; 267:507-545. [PMID: 33963460 DOI: 10.1007/164_2021_464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Monoclonal antibodies combine specificity and high affinity binding with excellent pharmacokinetic properties and are rapidly being developed for a wide range of drug targets including clinically important potassium ion channels. Nonetheless, while therapeutic antibodies come with great promise, K+ channels represent particularly difficult targets for biologics development for a variety of reasons that include their dynamic structures and relatively small extracellular loops, their high degree of sequence conservation (leading to immune tolerance), and their generally low-level expression in vivo. The process is made all the more difficult when large numbers of antibody candidates must be screened for a given target, or when lead candidates fail to cross-react with orthologous channels in animal disease models due to their highly selective binding properties. While the number of antibodies targeting potassium channels in preclinical or clinical development is still modest, significant advances in the areas of protein expression and antibody screening are converging to open the field to an avalanche of new drugs. Here, the opportunities and constraints associated with the discovery of antibodies against K+ channels are discussed, with an emphasis on novel technologies that are opening the field to exciting new possibilities for biologics development.
Collapse
|
13
|
Hejrati A, Hasani B, Esmaili M, Bashash D, Tavakolinia N, Zafari P. Role of exosome in autoimmunity, with a particular emphasis on rheumatoid arthritis. Int J Rheum Dis 2020; 24:159-169. [PMID: 33159418 DOI: 10.1111/1756-185x.14021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Cell-derived exosomes are identified as carriers of lipids, proteins, and genetic materials that participate in cell-cell signal communication, biological process, and cell signaling. Also, their involvement has been reported in a vast array of disorders and inflammatory conditions such as autoimmune diseases. Rheumatoid arthritis (RA), a common cause of joint disorder, is an inflammation-based disease in which the precise understanding of its pathogenesis needs to be further investigated. Also, there is only a palliative care approach for the alleviation of RA symptoms. This paper discusses the recent advances in the biology of exosomes in autoimmune disorders especially in RA, and also provides a new line of research for arthritis therapy using exosomes.
Collapse
Affiliation(s)
- Alireza Hejrati
- Department of Internal Medicine, Hazrate-Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahare Hasani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Esmaili
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naeimeh Tavakolinia
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Petitprez F, Levy S, Sun CM, Meylan M, Linhard C, Becht E, Elarouci N, Tavel D, Roumenina LT, Ayadi M, Sautès-Fridman C, Fridman WH, de Reyniès A. The murine Microenvironment Cell Population counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations in murine samples using gene expression. Genome Med 2020; 12:86. [PMID: 33023656 PMCID: PMC7541325 DOI: 10.1186/s13073-020-00783-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
Quantifying tissue-infiltrating immune and stromal cells provides clinically relevant information for various diseases. While numerous methods can quantify immune or stromal cells in human tissue samples from transcriptomic data, few are available for mouse studies. We introduce murine Microenvironment Cell Population counter (mMCP-counter), a method based on highly specific transcriptomic markers that accurately quantify 16 immune and stromal murine cell populations. We validated mMCP-counter with flow cytometry data and showed that mMCP-counter outperforms existing methods. We showed that mMCP-counter scores are predictive of response to immune checkpoint blockade in cancer mouse models and identify early immune impacts of Alzheimer's disease.
Collapse
Affiliation(s)
- Florent Petitprez
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006 Paris, France
- Programme Cartes d’Identité des Tumeurs, Ligue Nationale contre le Cancer, F-75013 Paris, France
- Present address: MRC Centre for Reproductive Health, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | - Sacha Levy
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006 Paris, France
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006 Paris, France
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006 Paris, France
- Programme Cartes d’Identité des Tumeurs, Ligue Nationale contre le Cancer, F-75013 Paris, France
| | - Christophe Linhard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006 Paris, France
| | - Etienne Becht
- Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Nabila Elarouci
- Programme Cartes d’Identité des Tumeurs, Ligue Nationale contre le Cancer, F-75013 Paris, France
| | - David Tavel
- Programme Cartes d’Identité des Tumeurs, Ligue Nationale contre le Cancer, F-75013 Paris, France
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006 Paris, France
| | - Mira Ayadi
- Programme Cartes d’Identité des Tumeurs, Ligue Nationale contre le Cancer, F-75013 Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006 Paris, France
| | - Wolf H. Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Inflammation, Complement and Cancer, F-75006 Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d’Identité des Tumeurs, Ligue Nationale contre le Cancer, F-75013 Paris, France
| |
Collapse
|
15
|
Gao Y, Chen Y, Zhang Z, Yu X, Zheng J. Recent Advances in Mouse Models of Sjögren's Syndrome. Front Immunol 2020; 11:1158. [PMID: 32695097 PMCID: PMC7338666 DOI: 10.3389/fimmu.2020.01158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Sjögren's syndrome (SS) is a complex rheumatoid disease that mainly affects exocrine glands, resulting in xerostomia (dry mouth) and xerophthalmia (dry eye). SS is characterized by autoantibodies, infiltration into exocrine glands, and ectopic expression of MHC II molecules on glandular epithelial cells. In contrast to the well-characterized clinical and immunological features, the etiology and pathogenesis of SS remain largely unknown. Animal models are powerful research tools for elucidating the pathogenesis of human diseases. To date, many mouse models of SS, including induced models, in which disease is induced in mice, and genetic models, in which mice spontaneously develop SS-like disease, have been established. These mouse models have provided new insight into the pathogenesis of SS. In this review, we aim to provide a comprehensive overview of recent advances in the field of experimental SS.
Collapse
Affiliation(s)
- Yunzhen Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Yan Chen
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Junfeng Zheng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
Bjordal O, Norheim KB, Rødahl E, Jonsson R, Omdal R. Primary Sjögren's syndrome and the eye. Surv Ophthalmol 2019; 65:119-132. [PMID: 31634487 DOI: 10.1016/j.survophthal.2019.10.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Primary Sjögren syndrome is an autoimmune disease that mainly affects exocrine glands such as the salivary and lacrimal glands. In addition, systemic involvement is common. Primary Sjögren syndrome is of particular interest to ophthalmologists as it constitutes an important differential diagnosis in conditions with dry eye disease. In addition, ocular tests for more precisely diagnosing and monitoring primary Sjögren syndrome have become increasingly important, and new therapeutics for local and systemic treatment evolve as a result of increased understanding of immunological mechanisms and molecular pathways in the pathogenesis of primary Sjögren syndrome. We provide an update of interest to ophthalmologists regarding pathogenesis, diagnosis, investigative procedures, and treatment options.
Collapse
Affiliation(s)
| | - Katrine Brække Norheim
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Eyvind Rødahl
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway; Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
17
|
Altamirano-Lagos MJ, Díaz FE, Mansilla MA, Rivera-Pérez D, Soto D, McGill JL, Vasquez AE, Kalergis AM. Current Animal Models for Understanding the Pathology Caused by the Respiratory Syncytial Virus. Front Microbiol 2019; 10:873. [PMID: 31130923 PMCID: PMC6510261 DOI: 10.3389/fmicb.2019.00873] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the main etiologic agent of severe lower respiratory tract infections that affect young children throughout the world, associated with significant morbidity and mortality, becoming a serious public health problem globally. Up to date, no licensed vaccines are available to prevent severe hRSV-induced disease, and the generation of safe-effective vaccines has been a challenging task, requiring constant biomedical research aimed to overcome this ailment. Among the difficulties presented by the study of this pathogen, it arises the fact that there is no single animal model that resembles all aspects of the human pathology, which is due to the specificity that this pathogen has for the human host. Thus, for the study of hRSV, different animal models might be employed, depending on the goal of the study. Of all the existing models, the murine model has been the most frequent model of choice for biomedical studies worldwide and has been of great importance at contributing to the development and understanding of vaccines and therapies against hRSV. The most notable use of the murine model is that it is very useful as a first approach in the development of vaccines or therapies such as monoclonal antibodies, suggesting in this way the direction that research could have in other preclinical models that have higher maintenance costs and more complex requirements in its management. However, several additional different models for studying hRSV, such as other rodents, mustelids, ruminants, and non-human primates, have been explored, offering advantages over the murine model. In this review, we discuss the various applications of animal models to the study of hRSV-induced disease and the advantages and disadvantages of each model, highlighting the potential of each model to elucidate different features of the pathology caused by the hRSV infection.
Collapse
Affiliation(s)
- María José Altamirano-Lagos
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E. Díaz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Andrés Mansilla
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rivera-Pérez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Soto
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Abel E. Vasquez
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Vivino FB, Bunya VY, Massaro-Giordano G, Johr CR, Giattino SL, Schorpion A, Shafer B, Peck A, Sivils K, Rasmussen A, Chiorini JA, He J, Ambrus JL. Sjogren's syndrome: An update on disease pathogenesis, clinical manifestations and treatment. Clin Immunol 2019; 203:81-121. [PMID: 31022578 DOI: 10.1016/j.clim.2019.04.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Frederick B Vivino
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Vatinee Y Bunya
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, 51 N. 39(th) Street, Philadelphia, PA 19104, USA.
| | - Giacomina Massaro-Giordano
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, 51 N. 39(th) Street, Philadelphia, PA 19104, USA.
| | - Chadwick R Johr
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Stephanie L Giattino
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Annemarie Schorpion
- Penn Sjögren's Center, Penn Presbyterian Medical Center, University of Pennsylvania Perelman School of Medicine, 3737 Market Street, Philadelphia, PA 19104, USA.
| | - Brian Shafer
- Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, 51 N. 39(th) Street, Philadelphia, PA 19104, USA.
| | - Ammon Peck
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, PO Box 100125, Gainesville, FL 32610, USA.
| | - Kathy Sivils
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, 825 NE 13th Street, OK 73104, USA.
| | - Astrid Rasmussen
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, 825 NE 13th Street, OK 73104, USA.
| | - John A Chiorini
- NIH, Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, Building 10, Room 1n113, 10 Center DR Msc 1190, Bethesda, MD 20892-1190, USA.
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Julian L Ambrus
- Division of Allergy, Immunology and Rheumatology, SUNY at Buffalo School of Medicine, 100 High Street, Buffalo, NY 14203, USA.
| |
Collapse
|
19
|
Reyes M, Vickers D, Billman K, Eisenhaure T, Hoover P, Browne EP, Rao DA, Hacohen N, Blainey PC. Multiplexed enrichment and genomic profiling of peripheral blood cells reveal subset-specific immune signatures. SCIENCE ADVANCES 2019; 5:eaau9223. [PMID: 30746468 PMCID: PMC6357748 DOI: 10.1126/sciadv.aau9223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/07/2018] [Indexed: 05/12/2023]
Abstract
Specialized immune cell subsets are involved in autoimmune disease, cancer immunity, and infectious disease through a diverse range of functions mediated by overlapping pathways and signals. However, subset-specific responses may not be detectable in analyses of whole blood samples, and no efficient approach for profiling cell subsets at high throughput from small samples is available. We present a low-input microfluidic system for sorting immune cells into subsets and profiling their gene expression. We validate the system's technical performance against standard subset isolation and library construction protocols and demonstrate the importance of subset-specific profiling through in vitro stimulation experiments. We show the ability of this integrated platform to identify subset-specific disease signatures by profiling four immune cell subsets in blood from patients with systemic lupus erythematosus (SLE) and matched control subjects. The platform has the potential to make multiplexed subset-specific analysis routine in many research laboratories and clinical settings.
Collapse
Affiliation(s)
- Miguel Reyes
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dwayne Vickers
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Paul Hoover
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Deepak A. Rao
- Division of Rheumatology, Immunology, Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Corresponding author. (N.H.); (P.C.B.)
| | - Paul C. Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Corresponding author. (N.H.); (P.C.B.)
| |
Collapse
|
20
|
Abstract
Childhood exposure to traumatic events, termed early life stress (ELS), is now widely recognized for causing long-term negative health effects that may not manifest until adulthood. Allostatic load (AL) describes the cumulative "wear-and-tear" effects of chronic stress on the body that may adversely affect human health by accelerating other disease processes. Recent epidemiological studies have reported higher stress levels in industrialized countries and trends of increasing prevalence in autoimmune diseases during recent decades. To elucidate mechanisms of stress-related immune dysregulation, most animal studies up to now have focused on AL and stress-triggered events occurring in adults but have not explored ELS in the context of autoimmune disorders. We have identified a current gap in understanding the impact of ELS on immune system ontogeny and its potential for priming genetically susceptible individuals who are at increased risk for autoimmune diseases later in life, through mechanisms involving neuroendocrine-immune cross talk. In this review, we highlight the intersection between stress and immune function, with a focus on ELS as consequential for increased autoimmune disorder risks later in life.
Collapse
Affiliation(s)
- Jamie Y. Choe
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Maya Nair
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Riyaz Basha
- Department of Pediatrics and Women’s Health, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Byung-Jin Kim
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Harlan P. Jones
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
21
|
Suzuki A, Iwata J. Molecular Regulatory Mechanism of Exocytosis in the Salivary Glands. Int J Mol Sci 2018; 19:E3208. [PMID: 30336591 PMCID: PMC6214078 DOI: 10.3390/ijms19103208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Every day, salivary glands produce about 0.5 to 1.5 L of saliva, which contains salivary proteins that are essential for oral health. The contents of saliva, 0.3% proteins (1.5 to 4.5 g) in fluid, help prevent oral infections, provide lubrication, aid digestion, and maintain oral health. Acinar cells in the lobular salivary glands secrete prepackaged secretory granules that contain salivary components such as amylase, mucins, and immunoglobulins. Despite the important physiological functions of salivary proteins, we know very little about the regulatory mechanisms of their secretion via exocytosis, which is a process essential for the secretion of functional proteins, not only in salivary glands, but also in other secretory organs, including lacrimal and mammary glands, the pancreas, and prostate. In this review, we discuss recent findings that elucidate exocytosis by exocrine glands, especially focusing on the salivary glands, in physiological and pathological conditions.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Program of Biochemistry and Cell Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Sin SH, Eason AB, Bigi R, Kim Y, Kang S, Tan K, Seltzer TA, Venkataramanan R, An H, Dittmer DP. Kaposi's Sarcoma-Associated Herpesvirus Latency Locus Renders B Cells Hyperresponsive to Secondary Infections. J Virol 2018; 92:e01138-18. [PMID: 30021906 PMCID: PMC6146794 DOI: 10.1128/jvi.01138-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/28/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) induces B cell hyperplasia and neoplasia, such as multicentric Castleman's disease (MCD) and primary effusion lymphoma (PEL). To explore KSHV-induced B cell reprogramming in vivo, we expressed the KSHV latency locus, inclusive of all viral microRNAs (miRNAs), in B cells of transgenic mice in the absence of the inhibitory FcγRIIB receptor. The BALB/c strain was chosen as this is the preferred model to study B cell differentiation. The mice developed hyperglobulinemia, plasmacytosis, and B lymphoid hyperplasia. This phenotype was ameliorated by everolimus, which is a rapamycin derivative used for the treatment of mantle cell lymphoma. KSHV latency mice exhibited hyperresponsiveness to the T-dependent (TD) antigen mimic anti-CD40 and increased incidence of pristane-induced inflammation. Lastly, the adaptive immunity against a secondary infection with Zika virus (ZIKV) was markedly enhanced. These phenotypes are consistent with KSHV lowering the activation threshold of latently infected B cells, which may be beneficial in areas of endemicity, where KSHV is acquired in childhood and infections are common.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) establishes latency in B cells and is stringently linked to primary effusion lymphoma (PEL) and the premalignant B cell hyperplasia multicentric Castleman's disease (MCD). To investigate potential genetic background effects, we expressed the KSHV miRNAs in BALB/c transgenic mice. BALB/c mice are the preferred strain for B cell hybridoma development because of their propensity to develop predictable B cell responses to antigen. The BALB/c latency mice exhibited a higher incidence of B cell hyperplasia as well as sustained hyperglobulinemia. The development of neutralizing antibodies against ZIKV was augmented in BALB/c latency mice. Hyperglobulinemia was dampened by everolimus, a derivative of rapamycin, suggesting a role for mTOR inhibitors in managing immune activation, which is hallmark of KSHV infection as well as HIV infection.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/virology
- Cell Differentiation/drug effects
- Coinfection
- Disease Resistance/genetics
- Everolimus/pharmacology
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/immunology
- Humans
- Hypergammaglobulinemia/genetics
- Hypergammaglobulinemia/immunology
- Hypergammaglobulinemia/virology
- Immunosuppressive Agents/pharmacology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/immunology
- Plasmacytoma/genetics
- Plasmacytoma/immunology
- Plasmacytoma/virology
- RNA, Viral/genetics
- RNA, Viral/immunology
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/virology
- Terpenes/pharmacology
- Virus Latency
- Zika Virus/drug effects
- Zika Virus/genetics
- Zika Virus/immunology
- Zika Virus Infection/genetics
- Zika Virus Infection/immunology
- Zika Virus Infection/virology
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony B Eason
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachele Bigi
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - SunAh Kang
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kelly Tan
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tischan A Seltzer
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hyowon An
- Department of Statistics & Operations Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, Programs in Global Oncology and Virology, Lineberger Comprehensive Cancer Center and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Ambudkar I. Calcium signaling defects underlying salivary gland dysfunction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1771-1777. [PMID: 30006140 DOI: 10.1016/j.bbamcr.2018.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023]
Abstract
Salivary glands secrete saliva, a mixture of proteins and fluids, which plays an extremely important role in the maintenance of oral health. Loss of salivary secretion causes a dry mouth condition, xerostomia, which has numerous deleterious consequences including opportunistic infections within the oral cavity, difficulties in eating and swallowing food, and problems with speech. Saliva secretion is regulated by stimulation of specific signaling mechanisms within the acinar cells of the gland. Neurotransmitter-stimulated increase in cytosolic [Ca2+] ([Ca2+]i) in acinar cells is the primary trigger for salivary fluid secretion from salivary glands, the loss of which is a critical factor underlying dry mouth conditions in patients. The increase in [Ca2+]i regulates multiple ion channel and transport activities that together generate the osmotic gradient which drives fluid secretion across the apical membrane. Ca2+ entry mediated by the Store-Operated Ca2+ Entry (SOCE) mechanism provides the essential [Ca2+]i signals to trigger salivary gland fluid secretion. Under physiological conditions depletion of ER-Ca2+ stores is caused by activation of IP3R by IP3 and this provides the stimulus for SOCE. Core components of SOCE in salivary gland acinar cells are the plasma membrane Ca2+ channels, Orai1 and TRPC1, and STIM1, a Ca2+-sensor protein in the ER, which regulates both channels. In addition, STIM2 likely enhances the sensitivity of cells to ER-Ca2+ depletion thereby tuning the cellular response to agonist stimulation. Two major, clinically relevant, conditions which cause irreversible salivary gland dysfunction are radiation treatment for head-and-neck cancers and the autoimmune exocrinopathy, Sjögren's syndrome (pSS). However, the exact mechanism(s) that causes the loss of fluid secretion, in either condition, is not clearly understood. A number of recent studies have identified that defects in critical Ca2+ signaling mechanisms underlie salivary gland dysfunction caused by radiation treatment or Sjögren's syndrome (pSS). This chapter will discuss these very interesting and important studies.
Collapse
Affiliation(s)
- Indu Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Barr JY, Wang X, Kreiger PA, Lieberman SM. Salivary-gland-protective regulatory T-cell dysfunction underlies female-specific sialadenitis in the non-obese diabetic mouse model of Sjögren syndrome. Immunology 2018; 155:225-237. [PMID: 29750331 DOI: 10.1111/imm.12948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
Immune cell-mediated destruction of salivary glands is a hallmark feature of Sjögren syndrome. Similar to the female predominance in humans, female non-obese diabetic (NOD) mice develop spontaneous salivary gland autoimmunity. However, in both humans and mice it is unclear what factors contribute to the initial immune infiltration of the salivary glands. Here, we used an adoptive transfer model of Sjögren syndrome to determine if female mice harbor a sex-specific defect in salivary-gland-protective regulatory T (Treg) cells. Transfer of cervical lymph node (LN) cells from female NOD mice into sex-matched NOD-severe combined immunodeficient (SCID) recipients resulted in sialadenitis, regardless of the presence or absence of Treg cells. In contrast, transfer of cervical LN cells from male NOD mice into sex-matched NOD-SCID recipients only resulted in sialadenitis when Treg cells were depleted before transfer, suggesting that male NOD mice have functional salivary-gland-protective Treg cells. Notably, the host environment affected the ability of Treg cells to prevent sialadenitis with testosterone promoting salivary gland protection. Treg cells from male mice did not protect against sialadenitis in female recipients. Testosterone treatment of female recipients of bulk cervical LN cells decreased sialadenitis, and Treg cells from female mice were capable of protecting against development of sialadenitis in male recipients. Hence, our data demonstrate that female NOD mice develop sialadenitis through a defect in salivary-gland-protective Treg cells that can be reversed in the presence of testosterone.
Collapse
Affiliation(s)
- Jennifer Y Barr
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiaofang Wang
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Portia A Kreiger
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Anatomic Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott M Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
25
|
Li B, Wang F, Schall N, Muller S. Rescue of autophagy and lysosome defects in salivary glands of MRL/lpr mice by a therapeutic phosphopeptide. J Autoimmun 2018; 90:132-145. [PMID: 29486915 DOI: 10.1016/j.jaut.2018.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 12/29/2022]
Abstract
Sjögren's syndrome is a multifactorial systemic autoimmune disorder characterized by lymphocytic infiltrates in exocrine organs. Patients present with sicca symptoms, such as extensive dry eyes and dry mouth, and parotid enlargement. Other serious complications include profound fatigue, chronic pain, major organ involvement, neuropathies and lymphomas. Current treatments only focus on relieving symptoms and do not target the origin of the disease, which is largely unknown. The question we addressed here was whether some defects exist in autophagy processes in Sjögren's syndrome and if they can be corrected or minimized using an appropriate mechanism-driven treatment targeting this central survival pathway. Using a recognized murine model of secondary Sjögren's syndrome, we identified molecular alterations of autophagy occurring in the salivary glands of MRL/lpr mice, and discovered that opposite (up- or down-regulated) autophagy events can arise in distinct organs of the same mouse strain, here in lymphoid organs and salivary glands. We showed further that the therapeutic P140 peptide, known to directly act on chaperone-mediated autophagy, rescued MRL/lpr mice from cellular infiltration and autophagy defects occurring in salivary glands. Our findings provide a proof-of-concept that targeting autophagy might represent a promising therapeutic strategy for treating patients with Sjögren's syndrome.
Collapse
Affiliation(s)
- Baihui Li
- CNRS, Biotechnology and Cell Signaling, University of Strasbourg, France; Laboratory of Excellence Medalis, France
| | - Fengjuan Wang
- CNRS, Biotechnology and Cell Signaling, University of Strasbourg, France; Laboratory of Excellence Medalis, France
| | - Nicolas Schall
- CNRS, Biotechnology and Cell Signaling, University of Strasbourg, France; Laboratory of Excellence Medalis, France
| | - Sylviane Muller
- CNRS, Biotechnology and Cell Signaling, University of Strasbourg, France; Laboratory of Excellence Medalis, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
26
|
Barr JY, Wang X, Meyerholz DK, Lieberman SM. CD8 T cells contribute to lacrimal gland pathology in the nonobese diabetic mouse model of Sjögren syndrome. Immunol Cell Biol 2017; 95:684-694. [PMID: 28465508 PMCID: PMC5595634 DOI: 10.1038/icb.2017.38] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/01/2023]
Abstract
Sjögren syndrome is an autoimmune disease characterized by targeted destruction of the lacrimal and salivary glands resulting in symptoms of severe ocular and oral dryness. Despite its prevalence, the mechanisms driving autoimmune manifestations are unclear. In patients and in the nonobese diabetic (NOD) mouse model of Sjögren syndrome, lymphocytic infiltrates consist of CD4 and CD8 T cells, although the role of CD8 T cells in disease pathogenesis has been largely unexplored. Here, we evaluated the contribution of CD8 T cells to lacrimal and salivary gland autoimmunity. Within the lacrimal and salivary glands of NOD mice, CD8 T cells were proliferating, expressed an activated phenotype, and produced inflammatory cytokines. Transfer of purified CD8 T cells isolated from the cervical lymph nodes (LNs) of NOD mice into NOD-severe combined immunodeficiency recipients resulted in inflammation of the lacrimal glands, but was not sufficient to cause inflammation of the salivary glands. Lacrimal gland-infiltrating CD8 T cells displayed a cytotoxic phenotype, and epithelial cell damage in the lacrimal glands was observed in recipients of CD8 T cells regardless of the presence of CD4 T cells. Collectively, our results demonstrate that CD8 T cells have a pathogenic role in lacrimal gland autoimmunity. The gland-specific pathogenicity of CD8 T cells makes them a valuable resource to further understand the mechanisms that discriminate lacrimal versus salivary gland autoimmunity and for the development of new therapeutics that target the early stages of disease.
Collapse
Affiliation(s)
- Jennifer Y Barr
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiaofang Wang
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Scott M Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
27
|
Dry eye disease and uveitis: A closer look at immune mechanisms in animal models of two ocular autoimmune diseases. Autoimmun Rev 2016; 15:1181-1192. [DOI: 10.1016/j.autrev.2016.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022]
|
28
|
Park YS, Gauna AE, Cha S. Mouse Models of Primary Sjogren's Syndrome. Curr Pharm Des 2016; 21:2350-64. [PMID: 25777752 DOI: 10.2174/1381612821666150316120024] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/13/2015] [Indexed: 01/03/2023]
Abstract
Sjogren's syndrome (SjS) is a chronic autoimmune disorder characterized by immune cell infiltration and progressive injury to the salivary and lacrimal glands. As a consequence, patients with SjS develop xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). SjS is the third most common rheumatic autoimmune disorder, affecting 4 million Americans with over 90% of patients being female. Current diagnostic criteria for SjS frequently utilize histological examinations of minor salivary glands for immune cell foci, serology for autoantibodies, and dry eye evaluation by corneal or conjunctival staining. SjS can be classified as primary or secondary SjS, depending on whether it occurs alone or in association with other systemic rheumatic conditions, respectively. Clinical manifestations typically become apparent when the disease is relatively advanced in SjS patients, which poses a challenge for early diagnosis and treatment of SjS. Therefore, SjS mouse models, because of their close resemblance to the human SjS, have been extremely valuable to identify early disease markers and to investigate underlying biological and immunological dysregulations. However, it is important to bear in mind that no single mouse model has duplicated all aspects of SjS pathogenesis and clinical features, mainly due to the multifactorial etiology of SjS that includes numerous susceptibility genes and environmental factors. As such, various mouse models have been developed in the field to try to recapitulate SjS. In this review, we focus on recent mouse models of primary SjS xerostomia and describe them under three categories of spontaneous, genetically engineered, and experimentally induced models. In addition, we discuss future perspectives highlighting pros and cons of utilizing mouse models and current demands for improved models.
Collapse
Affiliation(s)
| | | | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL32610, USA.
| |
Collapse
|
29
|
Umazume T, Thomas WM, Campbell S, Aluri H, Thotakura S, Zoukhri D, Makarenkova HP. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci 2016; 56:8392-402. [PMID: 26747770 DOI: 10.1167/iovs.15-17477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The adult lacrimal gland (LG) is highly regenerative and is able to repair itself even after substantial damage; however, this ability to regenerate is lost with the development of dry eye conditions in chronically inflamed LGs.This study compares changes in the cell adhesion and cell matrix molecules and stem cell transcription factors in the LGs of healthy mice and of two mouse models of Sjögren's syndrome: nonobese diabetic (NOD) and MRL-lpr/lpr (MRL/lpr) mice during the early stage of inflammation. METHODS The LGs from 12- to 13-week-old female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for quantitative (q) RT-PCR and qRT-PCR Arrays, histology, immunohistochemistry, and Western blotting. RESULTS The extracellular matrix (ECM) and adhesion molecules RT2-PCR array combined with protein expression data revealed changes in the expression of integrins, matrix metalloproteinases, and other molecules, which are associated largely with invasion, attachment, and expansion of the lymphocytic cells, whereas changes in the stem cell transcription factors revealed substantial decrease in expression of transcription factors associated with epithelial stem/progenitor cell lineage. CONCLUSIONS We concluded that the expression of several important ECM components is significantly deregulated in the LG of two murine models of Sjögren's syndrome, suggesting an alteration of the epithelial stem/progenitor cell niche. This may result in profound effects on localization, activation, proliferation, and differentiation of the LG stem/progenitor cells and, therefore, LG regeneration.
Collapse
Affiliation(s)
- Takeshi Umazume
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - William M Thomas
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sabrina Campbell
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Hema Aluri
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Suharika Thotakura
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Driss Zoukhri
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Helen P Makarenkova
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
30
|
Kondo M, Tanaka Y, Kuwabara T, Naito T, Kohwi-Shigematsu T, Watanabe A. SATB1 Plays a Critical Role in Establishment of Immune Tolerance. THE JOURNAL OF IMMUNOLOGY 2015; 196:563-72. [DOI: 10.4049/jimmunol.1501429] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/13/2015] [Indexed: 01/21/2023]
|
31
|
IP3R deficit underlies loss of salivary fluid secretion in Sjögren's Syndrome. Sci Rep 2015; 5:13953. [PMID: 26365984 PMCID: PMC4568516 DOI: 10.1038/srep13953] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022] Open
Abstract
The autoimmune exocrinopathy, Sjögren’s syndrome (SS), is associated with secretory defects in patients, including individuals with mild lymphocytic infiltration and minimal glandular damage. The mechanism(s) underlying the secretory dysfunction is not known. We have used minor salivary gland biopsies from SS patients and healthy individuals to assess acinar cell function in morphologically intact glandular areas. We report that agonist-regulated intracellular Ca2+ release, critically required for Ca2+ entry and fluid secretion, is defective in acini from SS patients. Importantly, these acini displayed reduction in IP3R2 and IP3R3, but not AQP5 or STIM1. Similar decreases in IP3R and carbachol (CCh)-stimulated [Ca2+]i elevation were detected in acinar cells from lymphotoxin-alpha (LTα) transgenic (TG) mice, a model for (SS). Treatment of salivary glands from healthy individuals with LT α, a cytokine linked to disease progression in SS and IL14α mice, reduced Ca2+ signaling. Together, our findings reveal novel IP3R deficits in acinar cells that underlie secretory dysfunction in SS patients.
Collapse
|
32
|
Abstract
Uncommon or orphan diseases are less frequently addressed in mainstream medical journals and, as a consequence, their understanding and clinical recognition may rely on case series or anecdotal data with limited guidelines and management directions. The study of selected underrepresented autoimmune and allergy conditions is the subject of the present issue of Clinical Reviews in Allergy and Immunology to provide peculiar perspectives on common and rare themes. First, allergy remains a major concern for physicians worldwide despite the limited developments over the past years, particularly for antigens such as mite or Alternaria alternata, and due to the increasing incidence of drug hypersensitivity. Second, the female predominance of autoimmune diseases such as systemic sclerosis is well recognized but enigmatic, and a unifying hypothesis remains elusive. Third, the management of conditions triggered by infectious agents as in Guillain-Barre syndrome or mixed cryoglobulinemia is challenging, and clinical guidelines are needed in the setting of infections and autoimmunity. Fourth, gamma-delta T cells represent major players in innate immunity and are the subject of extensive studies in autoimmune diseases to provide new therapeutic targets for disease prevention or modulation in the near future. Ultimately, we acknowledge the major developments in the broad fields of rheumatology and immunology and expect that microbiota definition, epigenetics studies, and microRNA analysis will provide new exciting avenues toward the understanding and treatment of chronic and acute inflammation.
Collapse
Affiliation(s)
- Carlos Dias
- Department of Internal Medicine, Centro Hospitalar São João, 4200-319, Porto, Portugal,
| | | |
Collapse
|
33
|
van der Laan JW, Gould S, Tanir JY. Safety of vaccine adjuvants: focus on autoimmunity. Vaccine 2015; 33:1507-14. [PMID: 25659277 DOI: 10.1016/j.vaccine.2015.01.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/26/2015] [Indexed: 01/22/2023]
Abstract
Questions have been recently raised regarding the safety of vaccine adjuvants, particularly in relation to autoimmunity or autoimmune disease(s)/disorder(s) (AID). The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) formed a scientific committee and convened a 2-day workshop, consisting of technical experts from around the world representing academia, government regulatory agencies, and industry, to investigate and openly discuss the issues around adjuvant safety in vaccines. The types of adjuvants considered included oil-in-water emulsions and toll-like receptor (TLR) agonists. The state of science around the use of animal models and biomarkers for the evaluation and prediction of AID were also discussed. Following extensive literature reviews by the HESI committee, and presentations by experts at the workshop, several key points were identified, including the value of animal models used to study autoimmunity and AID toward studying novel vaccine adjuvants; whether there is scientific evidence indicating an intrinsic risk of autoimmunity and AID with adjuvants, or a higher risk resulting from the mechanism of action; and if there is compelling clinical data linking adjuvants and AID. The tripartite group of experts concluded that there is no compelling evidence supporting the association of vaccine adjuvants with autoimmunity signals. Additionally, it is recommended that future research on the potential effects of vaccine adjuvants on AID should consider carefully the experimental design in animal models particularly if they are to be used in any risk assessment, as an improper design and model could result in misleading information. Finally, studies on the mechanistic aspects and potential biomarkers related to adjuvants and autoimmunity phenomena could be developed.
Collapse
Affiliation(s)
| | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute, 1156 Fifteenth St, NW, Suite 200, Washington, DC 20005, USA.
| | | |
Collapse
|
34
|
May AJ, Chatzeli L, Proctor GB, Tucker AS. Salivary Gland Dysplasia in Fgf10 Heterozygous Mice: A New Mouse Model of Xerostomia. Curr Mol Med 2015; 15:674-82. [PMID: 26321752 PMCID: PMC5405808 DOI: 10.2174/1566524015666150831141307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/20/2015] [Accepted: 08/24/2015] [Indexed: 12/23/2022]
Abstract
Xerostomia, or chronic dry mouth, is a common syndrome caused by a lack of saliva that can lead to severe eating difficulties, dental caries and oral candida infections. The prevalence of xerostomia increases with age and affects approximately 30% of people aged 65 or older. Given the large numbers of sufferers, and the potential increase in incidence given our aging population, it is important to understand the complex mechanisms that drive hyposalivation and the consequences for the dentition and oral mucosa. From this study we propose the Fgf10 +/- mouse as a model to investigate xerostomia. By following embryonic salivary gland development, in vivo and in vitro, we show that a reduction in Fgf10 causes a delay in branching of salivary glands. This leads to hypoplasia of the glands, a phenotype that is not rescued postnatally or by adulthood in both male and female Fgf10 +/- mice. Histological analysis of the glands showed no obvious defect in cellular differentiation or acini/ductal arrangements, however there was a significant reduction in their size and weight. Analysis of saliva secretion showed that hypoplasia of the glands led to a significant reduction in saliva production in Fgf10 +/- adults, giving rise to a reduced saliva pellicle in the oral cavity of these mice. Mature mice were shown to drink more and in many cases had severe tooth wear. The Fgf10 +/- mouse is therefore a useful model to explore the causes and effects of xerostomia.
Collapse
Affiliation(s)
| | | | | | - A S Tucker
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King´s College London, Floor 27 Guy´s Tower, London Bridge, SE1 9RT London, UK.
| |
Collapse
|
35
|
Arakaki R, Eguchi H, Yamada A, Kudo Y, Iwasa A, Enkhmaa T, Hotta F, Mitamura-Aizawa S, Mitamura Y, Hayashi Y, Ishimaru N. Anti-inflammatory effects of rebamipide eyedrop administration on ocular lesions in a murine model of primary Sjögren's syndrome. PLoS One 2014; 9:e98390. [PMID: 24866156 PMCID: PMC4035282 DOI: 10.1371/journal.pone.0098390] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 05/01/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Topical therapy is effective for dry eye, and its prolonged effects should help in maintaining the quality of life of patients with dry eye. We previously reported that the oral administration of rebamipide (Reb), a mucosal protective agent, had a potent therapeutic effect on autoimmune lesions in a murine model of Sjögren's syndrome (SS). However, the effects of topical treatment with Reb eyedrops on the ocular lesions in the murine model of SS are unknown. METHODS AND FINDING Reb eyedrops were administered to the murine model of SS aged 4-8 weeks four times daily. Inflammatory lesions of the extraorbital and intraorbital lacrimal glands and Harderian gland tissues were histologically evaluated. The direct effects of Reb on the lacrimal glands were analyzed using cultured lacrimal gland cells. Tear secretions of Reb-treated mice were significantly increased compared with those of untreated mice. In addition to the therapeutic effect of Reb treatment on keratoconjunctivitis, severe inflammatory lesions of intraorbital lacrimal gland tissues in this model of SS were resolved. The mRNA expression levels of IL-10 and mucin 5Ac in conjunctival tissues from Reb-treated mice was significantly increased compared with those of control mice. Moreover, lactoferrin production from lacrimal gland cells was restored by Reb treatment. CONCLUSION Topical Reb administration had an anti-inflammatory effect on the ocular autoimmune lesions in the murine model of SS and a protective effect on the ocular surfaces.
Collapse
Affiliation(s)
- Rieko Arakaki
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hiroshi Eguchi
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Akiko Yamada
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Akihiko Iwasa
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Tserennadmid Enkhmaa
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Fumika Hotta
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Sayaka Mitamura-Aizawa
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yoshio Hayashi
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
36
|
Donate A, Voigt A, Nguyen CQ. The value of animal models to study immunopathology of primary human Sjögren's syndrome symptoms. Expert Rev Clin Immunol 2014; 10:469-81. [PMID: 24506531 PMCID: PMC5769146 DOI: 10.1586/1744666x.2014.883920] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sjögren's syndrome (SjS) is a complex chronic autoimmune disease of multifactorial etiology that results in eventual loss of secretory function in the exocrine glands. The challenges towards finding a therapeutic prevention or treatment for SjS are due primarily to a lack of understanding in the pathophysiological and clinical progression of the disease. In order to circumnavigate this problem, there is a need for appropriate animal models that resemble the major phenotypes of human SjS and deliver a clear underlying biological or molecular mechanism capable of defining various aspects for the disease. Here, we present an overview of SjS mouse models that are providing insight into the autoimmune process of SjS and advance our focus on potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Amy Donate
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16 Ave, Gainesville, Florida 32611, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16 Ave, Gainesville, Florida 32611, USA
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, 2015 SW 16 Ave, Gainesville, Florida 32611, USA
- Center for Orphan Autoimmune Disorders, University of Florida College of Dentistry, 1600 SW Archer Rd, Gainesville, Florida 32610, USA
- Department of Oral Biology, University of Florida College of Dentistry, 1600 SW Archer Rd, Gainesville, Florida 32610, USA
| |
Collapse
|
37
|
Burbelo PD, Ambatipudi K, Alevizos I. Genome-wide association studies in Sjögren's syndrome: What do the genes tell us about disease pathogenesis? Autoimmun Rev 2014; 13:756-61. [PMID: 24657515 DOI: 10.1016/j.autrev.2014.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
The pathogenesis of Sjögren's syndrome (SS) likely involves complex interactions between genes and the environment. While the candidate gene approach has been previously used to identify several genes associated with SS, two recent large-scale genome-wide association studies (GWAS) have implicated many more loci as genetic risk factors. Of particular relevance, was the significant association of SS with additional immune-related genes including IL12A, BLK, and CXCR5. GWAS has also uncovered other loci and suggestive gene associations in SS, but none are related to genes encoding salivary or lacrimal components, secretion machinery and neuronal proteins involved in innervations of the glands, respectively. In this review, we discuss these genetic findings with particular attention paid to the genes identified, the strength of associations, and how the SS-associated genes compare to what has been discovered previously in systemic lupus erythematosus (SLE). We also summarize the potential impact of these associated gene products on NFκB and immune pathways and describe how this new information might be integrated further for identifying clinical subsets and understanding the pathogenesis of SS.
Collapse
Affiliation(s)
- Peter D Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Kiran Ambatipudi
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ilias Alevizos
- Sjögren Syndrome Clinic, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Rusakiewicz S, Nocturne G, Lazure T, Semeraro M, Flament C, Caillat-Zucman S, Sène D, Delahaye N, Vivier E, Chaba K, Poirier-Colame V, Nordmark G, Eloranta ML, Eriksson P, Theander E, Forsblad-d'Elia H, Omdal R, Wahren-Herlenius M, Jonsson R, Rönnblom L, Nititham J, Taylor KE, Lessard CJ, Sivils KLM, Gottenberg JE, Criswell LA, Miceli-Richard C, Zitvogel L, Mariette X. NCR3/NKp30 contributes to pathogenesis in primary Sjogren's syndrome. Sci Transl Med 2014; 5:195ra96. [PMID: 23884468 DOI: 10.1126/scitranslmed.3005727] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease characterized by a lymphocytic exocrinopathy. However, patients often have evidence of systemic autoimmunity, and they are at markedly increased risk for the development of non- Hodgkin's lymphoma. Similar to other autoimmune disorders, a strong interferon (IFN) signature is present among subsets of pSS patients, although the precise etiology remains uncertain. NCR3/NKp30 is a natural killer (NK)-specific activating receptor regulating the cross talk between NK and dendritic cells and type II IFN secretion. We performed a case-control study of genetic polymorphisms of the NCR3/NKp30 gene and found that rs11575837 (G>A) residing in the promoter was associated with reduced gene transcription and function as well as protection to pSS. We also demonstrated that circulating levels of NCR3/NKp30 were significantly increased among pSS patients compared with controls and correlated with higher NCR3/NKp30 but not CD16-dependent IFN-γ secretion by NK cells. Excess accumulation of NK cells in minor salivary glands correlated with the severity of the exocrinopathy. B7H6, the ligand of NKp30, was expressed by salivary epithelial cells. These findings suggest that NK cells may promote an NKp30-dependent inflammatory state in salivary glands and that blockade of the B7H6/NKp30 axis could be clinically relevant in pSS.
Collapse
|
39
|
Abstract
As members of the basic helix-loop-helix (bHLH) family of transcription factors, E proteins function in the immune system by directing and maintaining a vast transcriptional network that regulates cell survival, proliferation, differentiation, and function. Proper activity of this network is essential to the functionality of the immune system. Aberrations in E protein expression or function can cause numerous defects, ranging from impaired lymphocyte development and immunodeficiency to aberrant function, cancer, and autoimmunity. Additionally, disruption of inhibitor of DNA-binding (Id) proteins, natural inhibitors of E proteins, can induce additional defects in development and function. Although E proteins have been investigated for several decades, their study continues to yield novel and exciting insights into the workings of the immune system. The goal of this chapter is to discuss the various classical roles of E proteins in lymphocyte development and highlight new and ongoing research into how these roles, if compromised, can lead to disease.
Collapse
Affiliation(s)
- Ian Belle
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA.
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA
| |
Collapse
|
40
|
Shen L, Suresh L, Malyavantham K, Kowal P, Xuan J, Lindemann MJ, Ambrus JL. Different Stages of Primary Sjögren’s Syndrome Involving Lymphotoxin and Type 1 IFN. THE JOURNAL OF IMMUNOLOGY 2013; 191:608-13. [DOI: 10.4049/jimmunol.1203440] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Barrera M, Bahamondes V, Sepúlveda D, Quest A, Castro I, Cortés J, Aguilera S, Urzúa U, Molina C, Pérez P, Ewert P, Alliende C, Hermoso M, González S, Leyton C, González M. Sjögren's syndrome and the epithelial target: A comprehensive review. J Autoimmun 2013; 42:7-18. [DOI: 10.1016/j.jaut.2013.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/11/2013] [Indexed: 12/12/2022]
|