1
|
Beerweiler CC, Salvermoser M, Theodorou J, Böck A, Sattler F, Kulig P, Tosevski V, Schaub B. Farm-dust mediated protection of childhood asthma: Mass cytometry reveals novel cellular regulation. Allergy 2024; 79:3022-3035. [PMID: 39400913 DOI: 10.1111/all.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Farm-dust mediated asthma protection in childhood was replicated in numerous epidemiological studies. Central immune mechanisms are not fully understood. This exploratory study aimed to disentangle underlying immunological regulation of farm-dust mediated protection in peripheral blood on a single-cell level. METHODS Single-cell protein expression of in vitro farm-dust stimulated and unstimulated cells from allergic asthmatics and healthy controls were measured using mass cytometry. Analysis of innate and adaptive cellular proportions (linear regression) and T-cell proliferation was performed. Functional marker intensity was investigated using Earth Mover's Distance and the Monte Carlo permutation test. RESULTS Farm-dust stimulation induced cell type-specific regulation: Key-features of farm-dust stimulation comprised opposing regulation of immune-cell frequencies (downregulated innate cell populations (monocytes/DCs (p < .001), NK-cells (p < .05)) and upregulated adaptive populations (B-cells, CD4+ T-cells (both p < .05)), reduced CD4+ CD25- T-cell proliferation, and differential cell type-specific functional marker expression. Following stimulation, functional marker analysis revealed induced activation (CD25) in T-cells and NK-T-cells in both phenotypes even after correction for multiple testing. Cytotoxicity (GZMB) and inflammation (pERK1/2, pp38) related markers were reduced in T-cells exclusively in asthmatic children. Asthma-associated markers (Gata3, RORγ, and HLA-DR) were reduced in T- and innate- cell populations of asthmatics following stimulation. B-cells displayed a phenotypically independent increase of diverse functional markers upon farm-dust stimulation. CONCLUSIONS This study mimicking in vivo environmental exposure identified a novel profile of immune-regulatory markers using mass cytometry demonstrating decreased asthma-associated markers following farm-dust stimulation. These findings may be key for further studies on asthma prevention in childhood.
Collapse
Affiliation(s)
- Claudia Carina Beerweiler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Lung Research - DZL, LMU Munich, Munich, Germany
| | - Michael Salvermoser
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johanna Theodorou
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Lung Research - DZL, LMU Munich, Munich, Germany
| | - Andreas Böck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Child and Adolescent Health-DZKJ, LMU, Munich, Germany
| | - Franziska Sattler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
| | - Paulina Kulig
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Vinko Tosevski
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Bianca Schaub
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Center for Lung Research - DZL, LMU Munich, Munich, Germany
- Member of German Center for Child and Adolescent Health-DZKJ, LMU, Munich, Germany
| |
Collapse
|
2
|
Gong R, Wang J, Xing Y, Wang J, Chen X, Lei K, Yu Q, Zhao C, Li S, Zhang Y, Wang H, Ren H. Expression landscape of cancer-FOXP3 and its prognostic value in pancreatic adenocarcinoma. Cancer Lett 2024; 590:216838. [PMID: 38561039 DOI: 10.1016/j.canlet.2024.216838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
FOXP3, a key identifier of Treg, has also been identified in tumor cells, which is referred to as cancer-FOXP3 (c-FOXP3). Human c-FOXP3 undergoes multiple alternative splicing events, generating several isoforms, like c-FOXP3FL and c-FOXP3Δ3. Previous research on c-FOXP3 often ignore its cellular source (immune or tumor cells) and isoform expression patterns, which may obscure our understanding of its clinical significance. Our immunohistochemistry investigations which conducted across 18 tumors using validated c-FOXP3 antibodies revealed distinct expression landscapes for c-FOXP3 and its variants, with the majority of tumors exhibited a predominantly expression of c-FOXP3Δ3. In pancreatic ductal adenocarcinoma (PDAC), we further discovered a potential link between nuclear c-FOXP3Δ3 in tumor cells and poor prognosis. Overexpression of c-FOXP3Δ3 in tumor cells was associated with metastasis. This work elucidates the expression pattern of c-FOXP3 in pan-cancer and indicates its potential as a prognostic biomarker in clinical settings, offering new perspectives for its clinical application.
Collapse
Affiliation(s)
- Ruining Gong
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jia Wang
- Qingdao Medical College, Qingdao University, Qingdao, 266000, China
| | - Yihai Xing
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Xianghan Chen
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ke Lei
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Qian Yu
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chenyang Zhao
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Sainan Li
- Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yuxing Zhang
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hongxia Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - He Ren
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
3
|
Ram S, Mojtahedzadeh S, Aguilar JK, Coskran T, Powell EL, O'Neil SP. Quantitative performance assessment of Ultivue multiplex panels in formalin-fixed, paraffin-embedded human and murine tumor specimens. Sci Rep 2024; 14:8496. [PMID: 38605049 PMCID: PMC11009312 DOI: 10.1038/s41598-024-58372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
We present a rigorous validation strategy to evaluate the performance of Ultivue multiplex immunofluorescence panels. We have quantified the accuracy and precision of four different multiplex panels (three human and one mouse) in tumor specimens with varying levels of T cell density. Our results show that Ultivue panels are typically accurate wherein the relative difference in cell proportion between a multiplex image and a 1-plex image is less than 20% for a given biomarker. Ultivue panels exhibited relatively high intra-run precision (CV ≤ 25%) and relatively low inter-run precision (CV >> 25%) which can be remedied by using local intensity thresholding to gate biomarker positivity. We also evaluated the reproducibility of cell-cell distance estimates measured from multiplex images which show high intra- and inter-run precision. We introduce a new metric, multiplex labeling efficiency, which can be used to benchmark the overall fidelity of the multiplex data across multiple batch runs. Taken together our results provide a comprehensive characterization of Ultivue panels and offer practical guidelines for analyzing multiplex images.
Collapse
Affiliation(s)
- Sripad Ram
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA.
| | | | | | - Timothy Coskran
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Eric L Powell
- Oncology Research and Development, Pfizer Inc., San Diego, CA, USA
| | - Shawn P O'Neil
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
4
|
Huang H, Liang X, Wu W, Yuan T, Chen Z, Wang L, Wu Z, Zhang T, Yang K, Wen K. FOXP3-regulated lncRNA NONHSAT136151 promotes colorectal cancer progression by disrupting QKI interaction with target mRNAs. J Cell Mol Med 2024; 28:e18068. [PMID: 38041531 PMCID: PMC10826441 DOI: 10.1111/jcmm.18068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
The role of lncRNAs in the pathogenesis of cancer, including colorectal cancer (CRC), has repeatedly been demonstrated. However, very few lncRNAs have been well annotated functionally. Our study identified a novel lncRNA upregulated in CRC, NONHSAT136151, which was correlated with clinical progression. In functional assays, NONHSAT136151 significantly enhanced CRC cell proliferation, migration and invasion. Mechanistically, NONHSAT136151 interacted with RNA-binding protein (RBP) QKI (Quaking) to interfere with QKI binding to target mRNAs and regulate their expression. As well, FOXP3 may be causally related to the dysregulation of NONHSAT136151 in CRC cells through its transcriptional activity. In conclusion, our findings identified a novel lncRNA regulated by FOXP3 participates in CRC progression through interacting with QKI, indicating a novel lncRNA-RBP interaction mechanism is involved in CRC pathogenesis.
Collapse
Affiliation(s)
- Handong Huang
- Soochow University Medical CollegeSuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xiaoxiang Liang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Weizheng Wu
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Tao Yuan
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhengquan Chen
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lin Wang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhenyu Wu
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Tao Zhang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Kai Yang
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Kunming Wen
- Soochow University Medical CollegeSuzhouJiangsuChina
- Department of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
5
|
Nicola Candia AJ, Garcia Fallit M, Peña Agudelo JA, Pérez Küper M, Gonzalez N, Moreno Ayala MA, De Simone E, Giampaoli C, Casares N, Seilicovich A, Lasarte JJ, Zanetti FA, Candolfi M. Targeting FOXP3 Tumor-Intrinsic Effects Using Adenoviral Vectors in Experimental Breast Cancer. Viruses 2023; 15:1813. [PMID: 37766222 PMCID: PMC10537292 DOI: 10.3390/v15091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The regulatory T cell master transcription factor, Forkhead box P3 (Foxp3), has been detected in cancer cells; however, its role in breast tumor pathogenesis remains controversial. Here we assessed Foxp3 tumor intrinsic effects in experimental breast cancer using a Foxp3 binder peptide (P60) that impairs Foxp3 nuclear translocation. Cisplatin upregulated Foxp3 expression in HER2+ and triple-negative breast cancer (TNBC) cells. Foxp3 inhibition with P60 enhanced chemosensitivity and reduced cell survival and migration in human and murine breast tumor cells. We also developed an adenoviral vector encoding P60 (Ad.P60) that efficiently transduced breast tumor cells, reduced cell viability and migration, and improved the cytotoxic response to cisplatin. Conditioned medium from transduced breast tumor cells contained lower levels of IL-10 and improved the activation of splenic lymphocytes. Intratumoral administration of Ad.P60 in breast-tumor-bearing mice significantly reduced tumor infiltration of Tregs, delayed tumor growth, and inhibited the development of spontaneous lung metastases. Our results suggest that Foxp3 exerts protumoral intrinsic effects in breast cancer cells and that gene-therapy-mediated blockade of Foxp3 could constitute a therapeutic strategy to improve the response of these tumors to standard treatment.
Collapse
Affiliation(s)
- Alejandro J. Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Matías Garcia Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina
| | - Jorge A. Peña Agudelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Melanie Pérez Küper
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Mariela A. Moreno Ayala
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Emilio De Simone
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina
| | - Carla Giampaoli
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1428BFA, Argentina
| | - Noelia Casares
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA, CUN), 31008 Pamplona, Spain; (N.C.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| | - Juan José Lasarte
- Program Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA, CUN), 31008 Pamplona, Spain; (N.C.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Flavia A. Zanetti
- Instituto de Ciencia y Tecnología “Dr. Cesar Milstein”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo C1440FFX, Buenos Aires, Argentina;
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina; (A.J.N.C.); (A.S.)
| |
Collapse
|
6
|
Malla R, Adem M, Chakraborty A. Complexity and diversity of FOXP3 isoforms: Novel insights into the regulation of the immune response in metastatic breast cancer. Int Immunopharmacol 2023; 118:110015. [PMID: 36931171 DOI: 10.1016/j.intimp.2023.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
FOXP3 is a key transcription factor in the regulation of immune responses, and recent studies have uncovered the complexity and diversity of FOXP3 isoforms in various cancers, including metastatic breast cancers (mBCs). It has dual role in the tumor microenvironment of mBCs. This review aims to provide novel insights into the complexity and diversity of FOXP3 isoforms in the regulation of the immune response in breast cancer. We discuss the molecular mechanisms underlying the function of FOXP3 isoforms, including their interaction with other proteins, regulation of gene expression, and impact on the immune system. We also highlight the importance of understanding the role of FOXP3 isoforms in breast cancer and the potential for using them as therapeutic targets. This review highlights the crucial role of FOXP3 isoforms in the regulation of the immune response in breast cancer and underscores the need for further research to fully comprehend their complex and diverse functions.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Meghapriya Adem
- Department of Biotechnology, Sri Padmavathi Mahila Visvavidhyalayam, Tirupati 517502, Andhra Pradesh, India
| | - Anindita Chakraborty
- Radiation Biology Laboratory, UGC-DAE-CSR, Kolkata Centere, Kolkata 700098, West Bengal, India
| |
Collapse
|
7
|
Shao S, Scholtz LU, Gendreizig S, Martínez-Ruiz L, Florido J, Escames G, Schürmann M, Hain C, Hose L, Mentz A, Schmidt P, Wang M, Goon P, Wehmeier M, Brasch F, Kalinowski J, Oppel F, Sudhoff H. Primary head and neck cancer cell cultures are susceptible to proliferation of Epstein-Barr virus infected lymphocytes. BMC Cancer 2023; 23:47. [PMID: 36639629 PMCID: PMC9840248 DOI: 10.1186/s12885-022-10481-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND New concepts for a more effective anti-cancer therapy are urgently needed. Experimental flaws represent a major counter player of this development and lead to inaccurate and unreproducible data as well as unsuccessful translation of research approaches into clinics. In a previous study we have created epithelial cell cultures from head and neck squamous cell carcinoma (HNSCC) tissue. METHODS We characterize primary cell populations isolated from human papillomavirus positive HNSCC tissue for their marker expression by RT-qPCR, flow cytometry, and immunofluorescence staining. Their sensitivity to MDM2-inhibition was measured using cell viability assays. RESULTS Primary HNSCC cell cultures showed the delayed formation of spheroids at higher passages. These spheroids mimicked the morphology and growth characteristics of other established HNSCC spheroid models. However, expression of epithelial and mesenchymal markers could not be detected in these cells despite the presence of the HNSCC stem cell marker aldehyde dehydrogenase 1 family member A1. Instead, strong expression of B- and T-lymphocytes markers was observed. Flow cytometry analysis revealed a heterogeneous mixture of CD3 + /CD25 + T-lymphocytes and CD19 + B-lymphocytes at a ratio of 4:1 at passage 5 and transformed lymphocytes at late passages (≥ passage 12) with CD45 + CD19 + CD20 + , of which around 10 to 20% were CD3 + CD25 + CD56 + . Interestingly, the whole population was FOXP3-positive indicative of regulatory B-cells (Bregs). Expression of transcripts specific for the Epstein-Barr-virus (EBV) was detected to increase in these spheroid cells along late passages, and this population was vulnerable to MDM2 inhibition. HPV + HNSCC cells but not EBV + lymphocytes were detected to engraft into immunodeficient mice. CONCLUSIONS In this study we present a primary cell culture of EBV-infected tumor-infiltrating B-lymphocytes, which could be used to study the role of these cells in tumor biology in future research projects. Moreover, by describing the detailed characteristics of these cells, we aim to caution other researchers in the HNSCC field to test for EBV-infected lymphocyte contaminations in primary cell cultures ahead of further experiments. Especially researchers who are interested in TIL-based adopted immunotherapy should exclude these cells in their primary tumor models, e.g. by MDM2-inhibitor treatment. BI-12-derived xenograft tumors represent a suitable model for in vivo targeting studies.
Collapse
Affiliation(s)
- Senyao Shao
- grid.7491.b0000 0001 0944 9128Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - Lars Uwe Scholtz
- grid.7491.b0000 0001 0944 9128Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - Sarah Gendreizig
- grid.7491.b0000 0001 0944 9128Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - Laura Martínez-Ruiz
- grid.4489.10000000121678994Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain ,grid.4489.10000000121678994Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain ,grid.459499.cCIBERFES, Ibs. Granada, San Cecilio University Hospital, 18016 Granada, Spain
| | - Javier Florido
- grid.4489.10000000121678994Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain ,grid.4489.10000000121678994Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain ,grid.459499.cCIBERFES, Ibs. Granada, San Cecilio University Hospital, 18016 Granada, Spain
| | - Germaine Escames
- grid.4489.10000000121678994Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain ,grid.4489.10000000121678994Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain ,grid.459499.cCIBERFES, Ibs. Granada, San Cecilio University Hospital, 18016 Granada, Spain
| | - Matthias Schürmann
- grid.7491.b0000 0001 0944 9128Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - Carsten Hain
- grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Leonie Hose
- grid.7491.b0000 0001 0944 9128Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany ,Department of Pathology, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - Almut Mentz
- Department of Pathology, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - Pascal Schmidt
- grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Menghang Wang
- grid.7491.b0000 0001 0944 9128Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany ,grid.11135.370000 0001 2256 9319Department of Otolaryngology Head and Neck Surgery, Peking University International Hospital, Peking University, Beijing, 102206 China
| | - Peter Goon
- grid.7491.b0000 0001 0944 9128Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - Michael Wehmeier
- Department of Laboratory Medicine, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - Frank Brasch
- Department of Pathology, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - Jörn Kalinowski
- grid.7491.b0000 0001 0944 9128Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Felix Oppel
- grid.7491.b0000 0001 0944 9128Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany
| | - Holger Sudhoff
- grid.7491.b0000 0001 0944 9128Department of Otolaryngology, Head and Neck Surgery, Campus Klinikum Bielefeld Mitte, University Hospital OWL of Bielefeld University, Klinikum Bielefeld, Teutoburger Str. 50, 33604 Bielefeld, Germany
| |
Collapse
|
8
|
Zangouei AS, Tolue Ghasaban F, Dalili A, Akhlaghipour I, Moghbeli M. MicroRNAs as the pivotal regulators of Forkhead box protein family during gastrointestinal tumor progression and metastasis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Wei H, Qiu X, Lv M, Liu X. Expression analysis of grass carp Foxp3 and its biologic effects on CXCL-8 transcription in non-lymphoid cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 134:104447. [PMID: 35597302 DOI: 10.1016/j.dci.2022.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Teleost Forkhead box protein P3 (Foxp3) expression was discovered not only in regulatory T cells (Tregs) but also in other cells. Compared to the extensive study on its roles in lymphoid cells, the expression pattern and biological roles of Foxp3 in non-lymphoid cells have not been elucidated in both mammals and fish species. In the present study, grass carp Foxp3 (gcFoxp3) mRNA expression was detected in different cell types, showing that it has a moderate expression level in peripheral blood leukocytes (PBLs), head kidney leukocytes (HKLs) and grass carp fibroblast-like kidney cells (CIK cells). Interestingly, gcFoxp3 mRNA and protein expression could be significantly stimulated by polyinosinic-polycytidylic acid (poly I:C) in CIK cells, indicating its participation in poly I:C-induced immune response in non-lymphoid cells. To further investigate the function of gcFoxp3, its overexpression plasmid was constructed and transfected into CIK cells. After 24 h of transfection, grass carp C-X-C chemokine ligand (CXCL) 8 (gcCXCL-8) mRNA expression was elevated, implying the modulatory role of gcFoxp3 in gcCXCL-8 mRNA expression. This notion was further supported by the features of gcCXCL-8 promoter which contained a putative Foxp3 binding site at -2196 to -2190 region. Poly I:C or overexpression of gcFoxp3 obviously stimulated gcCXCL-8 promoter activity and deletion of gcFoxp3 binding region on the promoter abolished this stimulation, revealing that Foxp3 is pivotal for transcription of CXCL-8 induced by poly I:C. In conclusion, our results collectively demonstrate expression pattern of teleost Foxp3, and illuminate novel immune function of fish Foxp3 in regulating chemokine transcription in non-lymphoid cells.
Collapse
Affiliation(s)
- He Wei
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, People's Republic of China; Department of Gastroenterology, The Second Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China.
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xuelian Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
10
|
Zhang L, Wei Y, Wang D, Du J, Wang X, Li B, Jiang M, Zhang M, Chen N, Deng M, Song C, Chen D, Wu L, Xiao J, Liang H, Zhao H, Kong Y. Elevated Foxp3+ double-negative T cells are associated with disease progression during HIV infection. Front Immunol 2022; 13:947647. [PMID: 35967422 PMCID: PMC9365964 DOI: 10.3389/fimmu.2022.947647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
Persistent immune activation, which occurs during the whole course of HIV infection, plays a pivotal role in CD4+ T cells depletion and AIDS progression. Furthermore, immune activation is a key factor that leads to impaired immune reconstitution after long-term effective antiretroviral therapy (ART), and is even responsible for the increased risk of developing non-AIDS co-morbidities. Therefore, it’s imperative to identify an effective intervention targeting HIV-associated immune activation to improve disease management. Double negative T cells (DNT) were reported to provide immunosuppression during HIV infection, but the related mechanisms remained puzzled. Foxp3 endows Tregs with potent suppressive function to maintain immune homeostasis. However, whether DNT cells expressed Foxp3 and the accurate function of these cells urgently needed to be investigated. Here, we found that Foxp3+ DNT cells accumulated in untreated people living with HIV (PLWH) with CD4+ T cell count less than 200 cells/µl. Moreover, the frequency of Foxp3+ DNT cells was negatively correlated with CD4+ T cell count and CD4/CD8 ratio, and positively correlated with immune activation and systemic inflammation in PLWH. Of note, Foxp3+ DNT cells might exert suppressive regulation by increased expression of CD39, CD25, or vigorous proliferation (high levels of GITR and ki67) in ART-naive PLWH. Our study underlined the importance of Foxp3+ DNT cells in the HIV disease progression, and suggest that Foxp3+ DNT may be a potential target for clinical intervention for the control of immune activation during HIV infection.
Collapse
Affiliation(s)
- Leidan Zhang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinyue Wang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bei Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiju Deng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liang Wu
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jiang Xiao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongyuan Liang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| | - Yaxian Kong
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| |
Collapse
|
11
|
Shao Y, Dong Y, Wang W, Chen Z, Hao C, Yang Y, Zhang J. The Function and Mechanism of Dopamine in the Activation of CD4 + T Cell. Immunopharmacol Immunotoxicol 2022; 44:410-420. [PMID: 35285388 DOI: 10.1080/08923973.2022.2052894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu Shao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Yongli Dong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Wenwen Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People’s Republic of China.
| |
Collapse
|
12
|
Johnson EM, Uppalapati CK, Pascual AS, Estrada SI, Averitte RL, Leyva KJ, Hull EE. Complement Factor H in cSCC: Evidence of a Link Between Sun Exposure and Immunosuppression in Skin Cancer Progression. Front Oncol 2022; 12:819580. [PMID: 35223500 PMCID: PMC8869607 DOI: 10.3389/fonc.2022.819580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer with an estimated 750,000 cases diagnosed annually in the United States. Most cases are successfully treated with a simple excision procedure, but ~5% of cases metastasize and have a 5-year survival rate of 25-45%. Thus, identification of biomarkers correlated to cSCC progression may be useful in the early identification of high-risk cSCC and in the development of new therapeutic strategies. This work investigates the role of complement factor H (CFH) in the development of cSCC. CFH is a regulatory component of the complement cascade which affects cell mediated immune responses and increases in complement proteins are associated with poor outcomes in multiple cancer types. We provide evidence that sun exposure may increase levels of CFH, suggesting an immunomodulatory role for CFH early in the development of cSCC. We then document increased levels of CFH in cSCC samples, compared to adjacent normal tissue (ANT) routinely excised in a dermatology clinic which, in paired samples, received the same level of sun exposure. We also provide evidence that levels of CFH are even greater in more advanced cases of cSCC. To provide a potential link between CFH and immune modulation, we assessed immune system function by measuring interferon gamma (IFN-γ) and FOXP3 in patient samples. IFN-γ levels were unchanged in cSCC relative to ANT which is consistent with an ineffective cell-mediated immune response. FOXP3 was used to assess prevalence of regulatory T cells within the tissues, indicating either a derailed or inhibitory immune response. Our data suggest that FOXP3 levels are higher in cSCC than in ANT. Our current working model is that increased CFH downstream of sun exposure is an early event in the development of cSCC as it interferes with proper immune surveillance and decreases the effectiveness of the immune response, and creates a more immunosuppressive environment, thus promoting cSCC progression.
Collapse
Affiliation(s)
- Ellise M Johnson
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Chandana K Uppalapati
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Agnes S Pascual
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Sarah I Estrada
- Affiliated Dermatology & Affiliated Laboratories, Scottsdale, AZ, United States
| | - Richard L Averitte
- Affiliated Dermatology & Affiliated Laboratories, Scottsdale, AZ, United States
| | - Kathryn J Leyva
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Elizabeth E Hull
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| |
Collapse
|
13
|
Mertowska P, Mertowski S, Podgajna M, Grywalska E. The Importance of the Transcription Factor Foxp3 in the Development of Primary Immunodeficiencies. J Clin Med 2022; 11:947. [PMID: 35207219 PMCID: PMC8874698 DOI: 10.3390/jcm11040947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Transcription factors are an extremely important group of proteins that are responsible for the process of selective activation or deactivation of other cellular proteins, usually at the last stage of signal transmission in the cell. An important family of transcription factors that regulate the body's response is the FOX family which plays an important role in regulating the expression of genes involved in cell growth, proliferation, and differentiation. The members of this family include the intracellular protein Foxp3, which regulates the process of differentiation of the T lymphocyte subpopulation, and more precisely, is responsible for the development of regulatory T lymphocytes. This protein influences several cellular processes both directly and indirectly. In the process of cytokine production regulation, the Foxp3 protein interacts with numerous proteins and transcription factors such as NFAT, nuclear factor kappa B, and Runx1/AML1 and is involved in the process of histone acetylation in condensed chromatin. Malfunctioning of transcription factor Foxp3 caused by the mutagenesis process affects the development of disorders of the immune response and autoimmune diseases. This applies to the impairment or inability of the immune system to fight infections due to a disruption of the mechanisms supporting immune homeostasis which in turn leads to the development of a special group of disorders called primary immunodeficiencies (PID). The aim of this review is to provide information on the role of the Foxp3 protein in the human body and its involvement in the development of two types of primary immunodeficiency diseases: IPEX (Immunodysregulation Polyendocrinopathy Enteropathy X-linked syndrome) and CVID (Common Variable Immunodeficiency).
Collapse
Affiliation(s)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (P.M.); (M.P.); (E.G.)
| | | | | |
Collapse
|
14
|
Kök GF, Türsen Ü. The Immunogenetics of Granulomatous Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:349-368. [DOI: 10.1007/978-3-030-92616-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Regulatory B Cells Involvement in Autoimmune Phenomena Occurring in Pediatric Graves' Disease Patients. Int J Mol Sci 2021; 22:ijms222010926. [PMID: 34681587 PMCID: PMC8536076 DOI: 10.3390/ijms222010926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Graves’s disease is the most common type of autoimmune hyperthyroidism. Numerous studies indicate different factors contributing to the onset of the disease. Despite years of research, the exact pathomechanism of Graves’ disease still remains unresolved, especially in the context of immune response. B cells can play a dual role in autoimmune reactions, on the one hand, as a source of autoantibody mainly targeted in the thyroid hormone receptor (TSHR) and, on the other, by suppressing the activity of proinflammatory cells (as regulatory B cells). To date, data on the contribution of Bregs in Graves’ pathomechanism, especially in children, are scarce. Here, we investigated the frequencies of Bregs before and during a methimazole therapy approach. We reported higher Foxp3+ and IL-10+ Breg levels with CD38- phenotype and reduced numbers of CD38 + Foxp3 + IL-10+ in pediatric Graves’ patients. In addition, selected Breg subsets were found to correlate with TSH and TRAb levels significantly. Noteworthy, certain subpopulations of Bregs were demonstrated as prognostic factors for methimazole therapy outcome. Our data demonstrate the crucial role of Bregs and their potential use as a biomarker in Graves’ disease management.
Collapse
|
16
|
Morales-Lange B, Nombela I, Ortega-Villaizán MDM, Imarai M, Schmitt P, Mercado L. Induction of foxp3 during the Crosstalk between Antigen Presenting Like-Cells MHCII +CD83 + and Splenocytes CD4 +IgM - in Rainbow Trout. BIOLOGY 2021; 10:biology10040324. [PMID: 33924548 PMCID: PMC8069158 DOI: 10.3390/biology10040324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary In aquatic biological models, the communication between cells from the immune system remains poorly characterized. In this work, to determine the gene expression of master transcriptional factors that coordinate the polarization of T cells, co-cultures of rainbow trout splenocytes are analyzed after stimulation with Interferon-gamma and/or Piscirickettsia salmonis. The results showed an upregulation of foxp3 compared to the other transcriptional factors, suggesting a potential communication between cells in the spleen, which may induce a Treg phenotype. Abstract In fish, the spleen is one of the major immune organs in the animal, and the splenocytes could play a key role in the activation and modulation of the immune response, both innate and adaptive. However, the crosstalk between different types of immune cells in the spleen has been poorly understood. In this work, an in vitro strategy is carried out to obtain and characterize mononuclear splenocytes from rainbow trout, using biomarkers associated with lymphocytes (CD4 and IgM) and antigen-presenting cells (CD83 and MHC II). Using these splenocytes, co-cultures of 24 and 48 h are used to determine the gene expression of master transcriptional factors that coordinate the polarization of T cells (t-bet, gata3, and foxp3). The results show a proportional upregulation of foxp3 (compared to t-bet and gata3) in co-cultures (at 24 h) of IFNγ-induced splenocytes with and without stimulation of Piscirickettsia salmonis proteins. In addition, foxp3 upregulation was established in co-cultures with IFNγ-induced cells and in cells only stimulated previously with P. salmonis proteins at 48 h of co-culture. These results show a potential communication between antigen-presenting-like cells and lymphocyte in the spleen, which could be induced towards a Treg phenotype.
Collapse
Affiliation(s)
- Byron Morales-Lange
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile; (B.M.-L.); (P.S.)
| | - Ivan Nombela
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (I.N.); (M.D.M.O.-V.)
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000 Flanders, Belgium
| | - María Del Mar Ortega-Villaizán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (I.N.); (M.D.M.O.-V.)
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Departamento de Biología, Universidad de Santiago de Chile, Estación Central, 9160000 Santiago, Chile;
| | - Paulina Schmitt
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile; (B.M.-L.); (P.S.)
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, 2340000 Valparaíso, Chile; (B.M.-L.); (P.S.)
- Correspondence:
| |
Collapse
|
17
|
Difference between mitogen-stimulated B and T cells in nonspecific binding of R-phycoerythrin-conjugated antibodies. J Immunol Methods 2021; 493:113013. [PMID: 33689808 DOI: 10.1016/j.jim.2021.113013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022]
Abstract
Nonspecific binding of conjugated antibodies represents a critical step which could significantly influence the results of immunostaining or flow cytometry. In this respect, various staining procedures and distinct cell types can alter the results obtained with different fluorochromes. In this study, we analysed nonspecific binding of R-phycoerythrin (R-PE)-conjugated antibodies to mouse mitogen-stimulated B and T lymphocytes. The cells were fixed, permeabilized and stained using isotype control antibodies conjugated with different fluorochromes and assessed by flow cytometry. R-PE-conjugated antibodies bound to LPS-stimulated B cells, in contrast to Con A-stimulated T cells, independently of their specificity. The percentage of R-PE positive B cells varied, according to the used antibodies or the fixation/permeabilization kit. Nevertheless, up to 30% of R-PE+ B cells after staining with R-PE-conjugated isotype control antibodies was detected. Furthermore, LPS-stimulated B cells bound nonspecifically, in a dose-dependent manner, unconjugated R-PE molecules. Con A-stimulated T cells slightly bound R-PE only in high concentrations. Similarly, the antibodies conjugated with other fluorochromes showed less than 1% of nonspecific binding independently of the manufacturer of antibodies or fixation/permeabilization kits. The data demonstrated that LPS-stimulated B cells, in contrast to Con A-stimulated T cells, bind R-PE nonspecifically following formaldehyde or paraformaldehyde fixation. Therefore, the results based on the use of R-PE-conjugated antibodies should be taken with a precaution.
Collapse
|
18
|
Sun B, Feng D, Wang G, Yu X, Dong Z, Gao L. DL-propargylglycine administration inhibits TET2 and FOXP3 expression and alleviates symptoms of neonatal Cows' milk allergy in mouse model. Autoimmunity 2020; 53:467-475. [PMID: 33078976 DOI: 10.1080/08916934.2020.1836490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cows' milk allergy (CMA) is a hypersensitivity immune reaction brought on by specific immunologic mechanisms to cow's milk proteins. As one of the most common food allergies in infants, the incidence of CMA during the first year of life is estimated to be nearly 7.5%. Due to the limitation in the knowledge of the pathological mechanism underlying CMA, however, the clinical interventions and therapies remain very unsatisfactory. AIM OF THE STUDY The transcriptional factor FOXP3 possesses crucial roles in CMA, and increased FOXP3 mRNA expression has a predictive function in faster acquisition of tolerance in infants with CMA. But the exact mechanism remains not fully elucidated. METHODS For PAG treatment, PAG (dissolved in saline 30 mg/mL, 0, 5, 10, 20 mg/kg BW) was administered daily intraperitoneally (ip) for one week at the time that 6 weeks after the CMP sensitisation. RESULTS In the present study, we revealed that the expression of FOXP3 is significantly up-regulated in PBMCs from CMA patients and CMA mice on mRNA and protein level. Furthermore, a dramatic reduction in the FOXP3 TSDR methylation and a significant increase in the expression of TET2 are observed in CMA patients and CMA mice. More importantly, we found that propargylglycine (PAG) significantly alleviates symptoms of CMA in mice by suppressing the expression of FOXP3 through restoring TET2 expression. CONCLUSIONS Our work revealed a novel function of PAG on CMA, which may provide a deeper insight into the pathomechanism of CMA and a novel therapy target for CMA clinical interventions.
Collapse
Affiliation(s)
- Beibei Sun
- Department of Gastroenterology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Dongjin Feng
- Department of Gastroenterology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Guangmeng Wang
- Department of Gastroenterology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Xiaohong Yu
- Department of Gastroenterology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Zhongmao Dong
- Department of Gastroenterology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | - Ling Gao
- Department of Gastroenterology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
PD-L1 Expression Level Displays a Positive Correlation with Immune Response in Pancreatic Cancer. DISEASE MARKERS 2020; 2020:8843146. [PMID: 33062072 PMCID: PMC7532998 DOI: 10.1155/2020/8843146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
The expression of PD-L1 could be a novel biomarker which predicts that patients are more likely to respond to immunotherapy. Our study investigated the relationship among clinicopathological characteristics, prognosis, PD-L1 expression levels, and FOXP3+ Treg infiltration. In addition, the relationship among clinicopathological characteristics, prognosis, PD-L1 expression levels, and FOXP3+ Treg infiltration was explored. Furthermore, the relationship between PD-L1 expression and FOXP3+ Treg infiltration was examined. We found that 41.3% of pancreatic cancer patients had PD-L1-positive staining; both PD-L1 expression levels and FOXP3+ Treg infiltration were significantly associated with depth of invasion, lymph node metastasis, distant metastasis, and pTNM. In addition, PD-L1 expression and FOXP3+ Treg infiltration also could be prognostic biomarkers for pancreatic cancer.
Collapse
|
20
|
Mitsialis V, Wall S, Liu P, Ordovas-Montanes J, Parmet T, Vukovic M, Spencer D, Field M, McCourt C, Toothaker J, Bousvaros A, Shalek AK, Kean L, Horwitz B, Goldsmith J, Tseng G, Snapper SB, Konnikova L. Single-Cell Analyses of Colon and Blood Reveal Distinct Immune Cell Signatures of Ulcerative Colitis and Crohn's Disease. Gastroenterology 2020; 159:591-608.e10. [PMID: 32428507 PMCID: PMC8166295 DOI: 10.1053/j.gastro.2020.04.074] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Studies are needed to determine the mechanisms of mucosal dysregulation in patients with inflammatory bowel diseases (IBDs) and differences in inflammatory responses of patients with ulcerative colitis (UC) vs Crohn's disease (CD). We used mass cytometry (CyTOF) to characterize and compare immune cell populations in the mucosa and blood from patients with IBD and without IBD (controls) at single-cell resolution. METHODS We performed CyTOF analysis of colonic mucosa samples (n = 87) and peripheral blood mononuclear cells (n = 85) from patients with active or inactive UC or CD and controls. We also performed single-cell RNA sequencing, flow cytometry, and RNA in situ hybridization analyses to validate key findings. We used random forest modeling to identify differences in signatures across subject groups. RESULTS Compared with controls, colonic mucosa samples from patients with IBD had increased abundances of HLA-DR+CD38+ T cells, including T-regulatory cells that produce inflammatory cytokines; CXCR3+ plasmablasts; and IL1B+ macrophages and monocytes. Colonic mucosa samples from patients with UC were characterized by expansion of IL17A+ CD161+ effector memory T cells and IL17A+ T-regulatory cells; expansion of HLA-DR+CD56+ granulocytes; and reductions in type 3 innate lymphoid cells. Mucosal samples from patients with active CD were characterized by IL1B+HLA-DR+CD38+ T cells, IL1B+TNF+IFNG+ naïve B cells, IL1B+ dendritic cells (DCs), and IL1B+ plasmacytoid DCs. Peripheral blood mononuclear cells from patients with active CD differed from those of active UC in that the peripheral blood mononuclear cells from patients with CD had increased IL1B+ T-regulatory cells, IL1B+ DCs and IL1B+ plasmacytoid DCs, IL1B+ monocytes, and fewer group 1 innate lymphoid cells. Random forest modeling differentiated active UC from active CD in colonic mucosa and blood samples; top discriminating features included many of the cellular populations identified above. CONCLUSIONS We used single-cell technologies to identify immune cell populations specific to mucosa and blood samples from patients with active or inactive CD and UC and controls. This information might be used to develop therapies that target specific cell populations in patients with different types of IBD.
Collapse
Affiliation(s)
- Vanessa Mitsialis
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02115, USA,Division of Gastroenterology, Hepatology and Nutrition, Boston, MA 02115, USA
| | - Sarah Wall
- Division of Gastroenterology, Hepatology and Nutrition, Boston, MA 02115, USA
| | - Peng Liu
- Department of Biostatistics University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology and Nutrition, Boston, MA 02115, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA 02139 USA,Harvard Stem Cell Institute, Cambridge, MA, USA 02138 USA
| | - Tamar Parmet
- Division of Gastroenterology, Hepatology and Nutrition, Boston, MA 02115, USA
| | - Marko Vukovic
- Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, 02139 USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA 02139 USA,Harvard Stem Cell Institute, Cambridge, MA, USA 02138 USA,Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, 02139 USA,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139 USA
| | - Dennis Spencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston, MA 02115, USA
| | - Michael Field
- Division of Gastroenterology, Hepatology and Nutrition, Boston, MA 02115, USA
| | - Collin McCourt
- Broad Institute of MIT and Harvard, Cambridge, MA, USA 02139 USA
| | | | - Athos Bousvaros
- Division of Gastroenterology, Hepatology and Nutrition, Boston, MA 02115, USA
| | - BCH IBD Center
- BCH IBD Center: Sonia Ballal, MD, Silvana Bonilla, MD, MS, Rima Fawaz, MD, Laurie N. Fishman, MD, Alejandro Flores, MD, Victor Fox, MD, Amit S. Grover, MB, BCh BAO, Leslie Higuchi, MD, Susanna Huh, MD, Stacy Kahn, MD, Christine Lee, MD, Munir Mobassaleh, MD, Jodie Ouahed, MD, Randi G. Pleskow, MD, Brian Regan, DO, Paul A. Rufo, MD, MMSc, Sabina Sabharwal, MD, Jared Silverstein, MD, Menno Verhave, MD, Anne Wolf, MD, Lori Zimmerman, MD, Naamah Zitomersky, MD
| | - BWH Crohn’s and Colitis Center
- BWH Crohn’s and Colitis Center: Jessica R. Allegretti, MD, MPH, Punyanganie De Silva, MD, MPH, Sonia Friedman, MD, Matthew Hamilton, MD, Joshua Korzenik, MD, Frederick Makrauer, MD, Beth-Ann Norton, MS, RN, ANP-BC, Rachel W. Winter, MD, MPH
| | - Alex K. Shalek
- Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, 02139 USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA 02139 USA,Harvard Stem Cell Institute, Cambridge, MA, USA 02138 USA,Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, 02139 USA,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139 USA
| | - Leslie Kean
- Division of Hematology Oncology Boston Children’s Hospital, Boston, MA 02115, USA
| | - Bruce Horwitz
- Division of Gastroenterology, Hepatology and Nutrition, Boston, MA 02115, USA
| | | | - George Tseng
- Department of Biostatistics University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Scott B. Snapper
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02115, USA,Division of Gastroenterology, Hepatology and Nutrition, Boston, MA 02115, USA
| | - Liza Konnikova
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Developmental Biology University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
21
|
Prognostic impact of stromal and intratumoral CD3, CD8 and FOXP3 in adjuvantly treated breast cancer: do they add information over stromal tumor-infiltrating lymphocyte density? Cancer Immunol Immunother 2020; 69:1549-1564. [PMID: 32303794 DOI: 10.1007/s00262-020-02557-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/28/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) and their subsets contribute to breast cancer prognosis. We investigated the prognostic impact of CD3+, CD8+ and FOXP3+ TILs in patients with early intermediate/high-risk breast cancer treated with adjuvant anthracycline-based chemotherapy within two randomized trials conducted by our Group. METHODS We examined 1011 patients (median follow-up 130.9 months) and their tumors for total, stromal (s) and intratumoral (i) CD3, CD8 and FOXP3 lymphocyte density (counts/mm2) on tissue-microarray cores by immunohistochemistry. Morphological sTIL density on whole H&E-stained sections was also evaluated. RESULTS The majority of TILs were CD3+. Total CD3 and CD8, sCD3 and sCD8, iCD3 and iCD8, sFOXP3 and iFOXP3 were strongly correlated (Spearman's rho values > 0.6). High individual lymphocytic subsets and sTIL density were strongly associated with high tumor grade, higher proliferation and HER2-positive and triple-negative tumors (all p values < 0.001). Higher sTIL density (10% increments), high density of almost each individual marker and all-high profiles conferred favorable prognosis. However, when adjusted for sTIL density, stromal and intratumoral lymphocytic subsets lost their prognostic significance, while higher sTIL density conferred up to 15% lower risk for relapse. Independently of sTIL density, higher total CD3+ and CD8+ TILs conferred 35% and 28% lower risk for relapse, respectively. CONCLUSIONS Stromal and intratumoral CD3+, CD8+ and FOXP3+ TIL density do not seem to add prognostic information over the morphologically assessed sTIL density, which is worth introducing in routine histology reports.
Collapse
|
22
|
de Wolf ACMT, Herberts CA, Hoefnagel MHN. Dawn of Monitoring Regulatory T Cells in (Pre-)clinical Studies: Their Relevance Is Slowly Recognised. Front Med (Lausanne) 2020; 7:91. [PMID: 32300597 PMCID: PMC7142310 DOI: 10.3389/fmed.2020.00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) have a prominent role in the control of immune homeostasis. Pharmacological impact on their activity or balance with effector T cells could contribute to (impaired) clinical responses or adverse events. Monitoring treatment-related effects on T cell subsets may therefore be part of (pre-)clinical studies for medicinal products. However, the extent of immune monitoring performed in studies for marketing authorisation and the degree of correspondence with data available in the public domain is not known. We evaluated the presence of T cell immunomonitoring in 46 registration dossiers of monoclonal antibodies indicated for immune-related disorders and published scientific papers. We found that the depth of Treg analysis in registration dossiers was rather small. Nevertheless, data on treatment-related Treg effects are available in public academia-driven studies (post-registration) and suggest that Tregs may act as a biomarker for clinical responses. However, public data are fragmented and obtained with heterogeneity of experimental approaches from a diversity of species and tissues. To reveal the potential added value of T cell (and particular Treg) evaluation in (pre-)clinical studies, more cell-specific data should be acquired, at least for medicinal products with an immunomodulatory mechanism. Therefore, extensive analysis of T cell subset contribution to clinical responses and the relevance of treatment-induced changes in their levels is needed. Preferably, industry and academia should work together to obtain these data in a standardised manner and to enrich our knowledge about T cell activity in disease pathogenesis and therapies. This will ultimately elucidate the necessity of T cell subset monitoring in the therapeutic benefit-risk assessment.
Collapse
|
23
|
Lippens L, Van Bockstal M, De Jaeghere EA, Tummers P, Makar A, De Geyter S, Van de Vijver K, Hendrix A, Vandecasteele K, Denys H. Immunologic impact of chemoradiation in cervical cancer and how immune cell infiltration could lead toward personalized treatment. Int J Cancer 2020; 147:554-564. [PMID: 32017078 DOI: 10.1002/ijc.32893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
We investigated the potential of tumor-infiltrating immune cells (ICs) as predictive or prognostic biomarkers for cervical cancer patients. In total, 38 patients treated with (chemo)radiotherapy and subsequent surgery were included in the current study. This unique treatment schedule makes it possible to analyze IC markers in pretreatment and posttreatment tissue specimens and their changes during treatment. IC markers for T cells (CD3, CD4, CD8 and FoxP3), macrophages (CD68 and CD163) and B cells (CD20), as well as IL33 and PD-L1, were retrospectively analyzed via immunohistochemistry. Patients were grouped in the low score or high score group based on the amount of positive cells on immunohistochemistry. Correlations to pathological complete response (pCR), cause-specific survival (CSS) and metastasis development during follow-up were evaluated. In analysis of pretreatment biopsies, significantly more pCR was seen for patients with CD8 = CD3, CD8 ≥ CD4, positive IL33 tumor cell (TC) scores, IL33 IC < TC and PD-L1 TC ≥5%. Besides patients with high CD8 scores, also patients with CD8 ≥ CD4, CD163 ≥ CD68 or PD-L1 IC ≥5% had better CSS. In the analysis of posttreatment specimens, less pCR was observed for patients with high CD8 or CD163 scores. Patients with decreasing CD8 or CD163 scores between pretreatment and posttreatment samples showed more pCR, whereas those with increasing CD8 or decreasing IL33 IC scores showed a worse CSS. Meanwhile, patients with an increasing CD3 score or stable/increasing PD-L1 IC score showed more metastasis during follow-up. In this way, the intratumoral IC landscape is a promising tool for prediction of outcome and response to (chemo)radiotherapy.
Collapse
Affiliation(s)
- Lien Lippens
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Mieke Van Bockstal
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Pathology, Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Emiel A De Jaeghere
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Philippe Tummers
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Gynecology, Department of Human Structure and Repair, Gent University Hospital, Ghent, Belgium
| | - Amin Makar
- Gynecology, Department of Human Structure and Repair, Gent University Hospital, Ghent, Belgium
| | - Sofie De Geyter
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Koen Van de Vijver
- Pathology, Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katrien Vandecasteele
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Radiation Therapy, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
24
|
Interleukin-10 production by B cells is regulated by cytokines, but independently of GATA-3 or FoxP3 expression. Cell Immunol 2020; 347:103987. [DOI: 10.1016/j.cellimm.2019.103987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/21/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
|
25
|
Abstract
B cells are typically characterized by their ability to produce antibodies, function as secondary antigen-present cells, and produce various immunoregulatory cytokines. The regulatory B (Breg)-cell population is now widely accepted as an important modulatory component of the immune system that suppresses inflammation. Recent studies indicate that Breg-cell populations are small under physiological conditions but expand substantially in both human patients and murine models of chronic inflammatory diseases, autoimmune diseases, infection, transplantation, and cancer. Almost all B-cell subsets can be induced to form Breg cells. In addition, there are unique Breg-cell subsets such as B10 and Tim-1+ B cells. Immunoregulatory function may be mediated by production of cytokines such as IL-10 and TGF-β and ensuing suppression of T cells, by direct cell-cell interactions, and (or) by altering the immune microenvironment. In this chapter, we describe in detail the discovery of Breg cells, their phenotypes, differentiation, function, contributions to disease, and therapeutic potential.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China.
| |
Collapse
|
26
|
Kaffes I, Szulzewsky F, Chen Z, Herting CJ, Gabanic B, Velázquez Vega JE, Shelton J, Switchenko JM, Ross JL, McSwain LF, Huse JT, Westermark B, Nelander S, Forsberg-Nilsson K, Uhrbom L, Maturi NP, Cimino PJ, Holland EC, Kettenmann H, Brennan CW, Brat DJ, Hambardzumyan D. Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. Oncoimmunology 2019; 8:e1655360. [PMID: 31646100 PMCID: PMC6791439 DOI: 10.1080/2162402x.2019.1655360] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/15/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant primary brain tumor in adults, with a median survival of 14.6 months. Recent efforts have focused on identifying clinically relevant subgroups to improve our understanding of pathogenetic mechanisms and patient stratification. Concurrently, the role of immune cells in the tumor microenvironment has received increasing attention, especially T cells and tumor-associated macrophages (TAM). The latter are a mixed population of activated brain-resident microglia and infiltrating monocytes/monocyte-derived macrophages, both of which express ionized calcium-binding adapter molecule 1 (IBA1). This study investigated differences in immune cell subpopulations among distinct transcriptional subtypes of GBM. Human GBM samples were molecularly characterized and assigned to Proneural, Mesenchymal or Classical subtypes as defined by NanoString nCounter Technology. Subsequently, we performed and analyzed automated immunohistochemical stainings for TAM as well as specific T cell populations. The Mesenchymal subtype of GBM showed the highest presence of TAM, CD8+, CD3+ and FOXP3+ T cells, as compared to Proneural and Classical subtypes. High expression levels of the TAM-related gene AIF1, which encodes the TAM-specific protein IBA1, correlated with a worse prognosis in Proneural GBM, but conferred a survival benefit in Mesenchymal tumors. We used our data to construct a mathematical model that could reliably identify Mesenchymal GBM with high sensitivity using a combination of the aforementioned cell-specific IHC markers. In conclusion, we demonstrated that molecularly distinct GBM subtypes are characterized by profound differences in the composition of their immune microenvironment, which could potentially help to identify tumors amenable to immunotherapy.
Collapse
Affiliation(s)
- Ioannis Kaffes
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.,Department of Cellular Neurosciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Frank Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Zhihong Chen
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.,Discovery and Developmental Therapeutics Program, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Cameron J Herting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Ben Gabanic
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Jennifer Shelton
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - James L Ross
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Leon F McSwain
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Naga Prathyusha Maturi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Patrick J Cimino
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Eric C Holland
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Helmut Kettenmann
- Department of Cellular Neurosciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Dolores Hambardzumyan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.,Discovery and Developmental Therapeutics Program, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
27
|
Macrophages with regulatory functions, a possible new therapeutic perspective in autoimmune diseases. Autoimmun Rev 2019; 18:102369. [PMID: 31404701 DOI: 10.1016/j.autrev.2019.102369] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Macrophages are pivotal cells involved in chronic inflammatory and autoimmune diseases. In fact, during these diseases, activated macrophages may play a critical role, promoting the inflammation as well as mediating the damage resolution. This dichotomy is referred to two end-stage phenotypes of macrophages, conventionally known as M1 and M2, playing a pro-inflammatory and anti-inflammatory role, respectively. The M1 macrophages are the mainly subset involved during inflammatory processes, producing pro-inflammatory mediators. Conversely, the M2 macrophages are proposed to contribute to the resolution phase of inflammation, when cells with pro-resolving property are recruited and activated. In fact, this subset of macrophages may activate regulatory T lymphocytes, which play a critical role in the maintenance of peripheral tolerance and preventing the occurrence of autoimmune diseases. On these bases, the polarization toward the M2 phenotype could play a therapeutic role for autoimmune diseases. In this Review we discussed the characteristic of M1 and M2 macrophages, focusing on the immunoregulatory role of M2 cells and their potential ability to control the inflammation and to promote the immunological tolerance.
Collapse
|
28
|
Tsagozis P, Augsten M, Zhang Y, Li T, Hesla A, Bergh J, Haglund F, Tobin NP, Ehnman M. An immunosuppressive macrophage profile attenuates the prognostic impact of CD20-positive B cells in human soft tissue sarcoma. Cancer Immunol Immunother 2019; 68:927-936. [PMID: 30879106 PMCID: PMC6529392 DOI: 10.1007/s00262-019-02322-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Background Immune cells can regulate disease progression and response to treatment in multiple tumor types, but their activities in human soft tissue sarcoma are poorly characterized. Methods Marker-defined immune cell subsets were characterized from a tumor microenvironmental perspective in two independent cohorts of human soft tissue sarcoma by multiplex IHC, quantitative PCR and/or bioinformatics. Results B cell profiling revealed a prognostic role for CD20 protein (cohort 1, 33 patients) and MS4A1 gene expression (cohort 2, 265 patients). Multiplex IHC and gene correlation analysis supported a role in antigen presentation, immune cell differentiation and T cell activation. The prognostic role of MS4A1 expressing B cells was only observed in an IL10low, PTGS2low or CD163low tumor microenvironment according to the transcriptomic data. IL10 levels consistently correlated with the M2-like macrophage marker CD163, which also defined the majority of macrophages. A polarization of these cells toward a pro-tumoral phenotype was further supported by lack of correlation between CD163 and M1 markers like NOS2, as well as by low abundance of CD80 positive cells in tissue. Conclusions Analysis of CD20/MS4A1 expression in soft tissue sarcoma merits further attention as a promising candidate prognostic tool for survival, but not in patients with a pronounced immunosuppressive tumor microenvironment. Macrophages are ubiquitous and polarized toward a protumoral phenotype. This provides a rationale for further studies on B cell function and immunotherapy targeting M2-polarized macrophages. Electronic supplementary material The online version of this article (10.1007/s00262-019-02322-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Panagiotis Tsagozis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Section of Orthopaedics, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Augsten
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Amcure GmbH, Eggenstein-Leopoldshafen, Germany
| | - Yifan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tian Li
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Asle Hesla
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Section of Orthopaedics, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ehnman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
29
|
Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? AUTOIMMUNITY HIGHLIGHTS 2018; 9:9. [PMID: 30415321 PMCID: PMC6230324 DOI: 10.1007/s13317-018-0109-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Current clinical experience with immunomodulatory agents and monoclonal antibodies in principle has established the benefit of depleting lymphocytic populations in relapsing–remitting multiple sclerosis (RRMS). B and T cells may exert multiple pro-inflammatory actions, but also possess regulatory functions making their role in RRMS pathogenesis much more complex. There is no clear correlation of Tregs and Bregs with clinical features of the disease. Herein, we discuss the emerging data on regulatory T and B cell subset distributions in MS and their roles in the pathophysiology of MS and its murine model, experimental autoimmune encephalomyelitis (EAE). In addition, we summarize the immunomodulatory properties of certain MS therapeutic agents through their effect on such regulatory cell subsets and their relevance to clinical outcomes.
Collapse
|
30
|
Tarique M, Naz H, Kurra SV, Saini C, Naqvi RA, Rai R, Suhail M, Khanna N, Rao DN, Sharma A. Interleukin-10 Producing Regulatory B Cells Transformed CD4 +CD25 - Into Tregs and Enhanced Regulatory T Cells Function in Human Leprosy. Front Immunol 2018; 9:1636. [PMID: 30083152 PMCID: PMC6065098 DOI: 10.3389/fimmu.2018.01636] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/03/2018] [Indexed: 01/18/2023] Open
Abstract
Regulatory B cells (Bregs) are known to exhibit their regulatory functions through interleukin-10 (IL-10) cytokine which suppress inflammation. There are only a few studies explaining the phenotype and functioning of these cells in contribution to host immunity in leprosy. Here, we evaluated the role of IL-10 producing Bregs in the pathogenesis of leprosy and assessed their immunoregulatory effects on Tregs and effector T cells. We found an increased frequency of Bregs and increased expression of their immune modulatory molecules (IL-10, FoxP3, and PDL-1) in leprosy patients. The potential immunoregulatory mechanism of Bregs was also investigated using MACS sorted Teff (CD4+CD25−) and Treg (CD4+CD25+) cells were cocultured with Bregs to elucidate the effects of Bregs on effector T and regulatory T cells. Cell coculture results showed that purified Bregs cells from leprosy patients convert CD4+CD25− cells into CD4+CD25+ cells. Cell coculture experiments also demonstrated that leprosy derived IL-10 producing Bregs enhance FoxP3 and PD-1 expression in Tregs and enhanced Tregs activity. Blocking of IL-10 receptor confirmed that IL-10 producing Breg has immunomodulatory effect on Tregs and effector T cells as effector T cells are not converted into Tregs and enhanced expression of FoxP3 and PD-1 was not observed on Tregs. Collectively, these findings demonstrate that IL-10 producing Breg cells play an important mechanism in controlling the immunopathogenesis of leprosy and have an immunomodulatory effect on Tregs and effector T cells. Our findings may pave way for novel targets of IL-10 producing Bregs for immunotherapy in leprosy patients.
Collapse
Affiliation(s)
- Mohd Tarique
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Huma Naz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Santosh V Kurra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Chaman Saini
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Raza Ali Naqvi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Reeta Rai
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Neena Khanna
- Department of Dermatovenerology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Donthamshetty N Rao
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|