1
|
Schuster T, Amoah A, Vollmer A, Marka G, Niemann J, Saçma M, Sakk V, Soller K, Vogel M, Grigoryan A, Wlaschek M, Scharffetter-Kochanek K, Mulaw M, Geiger H. Quantitative determination of the spatial distribution of components in single cells with CellDetail. Nat Commun 2024; 15:10250. [PMID: 39592623 PMCID: PMC11599593 DOI: 10.1038/s41467-024-54638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The distribution of biomolecules within cells changes upon aging and diseases. To quantitatively determine the spatial distribution of components inside cells, we built the user-friendly open-source 3D-cell-image analysis platform Cell Detection and Analysis of Intensity Lounge (CellDetail). The algorithm within CellDetail is based on the concept of the dipole moment. CellDetail provides quantitative values for the distribution of the polarity proteins Cdc42 and Tubulin in young and aged hematopoietic stem cells (HSCs). Septin proteins form networks within cells that are critical for cell compartmentalization. We uncover a reduced level of organization of the Septin network within aged HSCs and within senescent human fibroblasts. Changes in the Septin network structure might therefore be a common feature of aging. The level of organization of the network of Septin proteins in aged HSCs can be restored to a youthful level by pharmacological attenuation of the activity of the small RhoGTPase Cdc42.
Collapse
Affiliation(s)
- Tanja Schuster
- Institute of Molecular Medicine, Ulm University, Ulm, Germany.
| | - Amanda Amoah
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
- Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - Gina Marka
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Julian Niemann
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Mehmet Saçma
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Mona Vogel
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Ani Grigoryan
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | | | - Medhanie Mulaw
- Unit for Single-Cell Genomics, Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Sha S, Gao H, Zeng H, Chen F, Kang J, Jing Y, Liu X, Xu B. Adherent-invasive Escherichia coli LF82 disrupts the tight junctions of Caco-2 monolayers. Arab J Gastroenterol 2024; 25:383-389. [PMID: 39069423 DOI: 10.1016/j.ajg.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND STUDY AIMS Adherent invasive Escherichia coli (AIEC) are enriched in IBD (inflammatory bowel disease) patients, but the role and mechanism of AIEC in the intestinal epithelial barrier is poorly defined. We evaluated the role of the AIEC strain E. coli LF82 in vitro and investigated the role of Th17 in this process. MATERIAL AND METHODS After coincubation with AIEC, the epithelial barrier integrity was monitored by epithelial resistance measurements. The permeability of the barrier was evaluated by TEER (trans-epithelial electrical resistance) and mucosal-to-serosal flux rate. The presence of interepithelial tight junction proteins ZO-1 and Claudin-1 were determined by immunofluorescence and western blot analysis. Cytokines in the cell culture supernatant were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS AIEC infection decreased TEER and increased the mucosal-to-serosal flux rate of Lucifer yellow in the intestinal barrier model in a time- and dose-dependent manner. AIEC infection decreased the expression and changed the distribution of ZO-1 and claudin-1. It also induced the secretion of cytokines such as TNF-α and IL-17. CONCLUSION AIEC strain E. coli LF82 increased the permeability and disrupted the tight junctions of the intestinal epithelial barrier, revealing that AIEC plays an aggravative role in the inflammatory response.
Collapse
Affiliation(s)
- Sumei Sha
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China
| | - Huijun Gao
- Department of Gastroenterology, No. 988 Hospital of Joint Logistic Support Force, Jiaozuo, Henan Province 454000, PR China
| | - Hong Zeng
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China; Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi Province 710000, PR China
| | - Fenrong Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China
| | - Junxiu Kang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China
| | - Yan Jing
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China
| | - Xin Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Key Laboratory of Gastrointestinal Motility Disorders, Clinical Research Center of Gastrointestinal Diseases, Xi'an, Shaanxi Province 710004, PR China.
| | - Bin Xu
- Tangdu Hospital of the Air Force Medical University, Xi'an, Shaanxi, PR China; Department of General Surgery, the Chenggong Hospital Affiliated to Xiamen University (Central Hospital of the 73th Chinese People's Liberation Army), Xiamen Fujian Province 361003, PR China.
| |
Collapse
|
3
|
Herrera-Quintana L, Vázquez-Lorente H, Hinojosa-Nogueira D, Plaza-Diaz J. Relationship between Infant Feeding and the Microbiome: Implications for Allergies and Food Intolerances. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1030. [PMID: 39201963 PMCID: PMC11353207 DOI: 10.3390/children11081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024]
Abstract
Childhood is a critical period for immune system development, which is greatly influenced by the gut microbiome. Likewise, a number of factors affect the gut microbiome composition and diversity, including breastfeeding, formula feeding, and solid foods introduction. In this regard, several studies have previously demonstrated that breastfeeding promotes a favorable microbiome. In contrast, formula feeding and the early incorporation of certain solid foods may adversely affect microbiome development. Additionally, there is increasing evidence that disruptions in the early microbiome can lead to allergic conditions and food intolerances. Thus, developing strategies to promote optimal infant nutrition requires an understanding of the relationship between infant nutrition and long-term health. The present review aims to examine the relationship between infant feeding practices and the microbiome, as well as its implications on allergies and food intolerances in infants. Moreover, this study synthesizes existing evidence on how different eating habits influence the microbiome. It highlights their implications for the prevention of allergies and food intolerances. In conclusion, introducing allergenic solid foods before six months, alongside breastfeeding, may significantly reduce allergies and food intolerances risks, being also associated with variations in gut microbiome and related complications.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Daniel Hinojosa-Nogueira
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria), 29590 Málaga, Spain;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
4
|
Sosnovski KE, Braun T, Amir A, BenShoshan M, Abbas-Egbariya H, Ben-Yishay R, Anafi L, Avivi C, Barshack I, Denson LA, Haberman Y. Reduced LHFPL3-AS2 lncRNA expression is linked to altered epithelial polarity and proliferation, and to ileal ulceration in Crohn disease. Sci Rep 2023; 13:20513. [PMID: 37993670 PMCID: PMC10665440 DOI: 10.1038/s41598-023-47997-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
Disruption of intestinal epithelial functions is linked to Crohn disease (CD) pathogenesis. We identified a widespread reduction in the expression of long non-coding RNAs (lncRNAs) including LHFPL3-AS2 in the treatment-naïve CD ileum of the RISK pediatric cohort. We validated the reduction of LHFPL3-AS2 in adult CD and noted a further reduction in patients with more severe CD from the RISK cohort. LHFPL3-AS2 knockdown in Caco-2 cells robustly affected epithelial monolayer morphogenesis with markedly reduced confluency and spreading, showing atypical rounding, and clumping. mRNA-seq analysis of LHFPL3-AS2 knockdown cells highlighted the reduction of genes and pathways linked with apical polarity, actin bundles, morphogenesis, and the b-catenin-TCF4 complex. LHFPL3-AS2 knockdown significantly reduced the ability of cells to form an internal lumen within the 3-dimensional (3D) cyst model, with mislocalization of actin and adherent and tight junction proteins, affecting epithelial polarity. LHFPL3-AS2 knockdown also resulted in defective mitotic spindle formation and consequent reduction in epithelial proliferation. Altogether, we show that LHFPL3-AS2 reduction affects epithelial morphogenesis, polarity, mitotic spindle formation, and proliferation, which are key processes in maintaining epithelial homeostasis in CD. Reduced expression of LHFPL3-AS2 in CD patients and its further reduction with ileal ulceration outcome, emphasizes its significance in this context.
Collapse
Affiliation(s)
- Katya E Sosnovski
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Marina BenShoshan
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haya Abbas-Egbariya
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rakefet Ben-Yishay
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Liat Anafi
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Camilla Avivi
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lee A Denson
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Jingjie W, Jun S. Gut vascular barrier in the pathogenesis and resolution of Crohn's disease: A novel link from origination to therapy. Clin Immunol 2023; 253:109683. [PMID: 37406981 DOI: 10.1016/j.clim.2023.109683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The gut vascular barrier (GVB) is the deepest layer of the gut barrier. It mainly comprised gut vascular endothelial cells, enteric glial cells, and pericytes. The GVB facilitates nutrient absorption and blocks bacterial translocation through its size-restricted permeability. Accumulating evidence suggests that dysfunction of this barrier correlates with several clinical pathologies including Crohn's disease (CD). Significant progress has been made to elucidate the mechanism of GVB dysfunction and to confirm the participation of disrupted GVB in the course of CD. However, further analyses are required to pinpoint the specific roles of GVB in CD pathogenesis. Many preclinical models and clinical trials have demonstrated that various agents are effective in protecting the GVB integrity and thus providing a potential CD treatment strategy. Through this review, we established a systemic understanding of the role of GVB in CD pathogenesis and provided novel insights for GVB-targeting strategies in CD treatment.
Collapse
Affiliation(s)
- Wang Jingjie
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 160# Pu Jian Ave, Shanghai 200127, China
| | - Shen Jun
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 160# Pu Jian Ave, Shanghai 200127, China.
| |
Collapse
|
6
|
Huang Q, Yang Y, Zhu Y, Chen Q, Zhao T, Xiao Z, Wang M, Song X, Jiang Y, Yang Y, Zhang J, Xiao Y, Nan Y, Wu W, Ai K. Oral Metal-Free Melanin Nanozymes for Natural and Durable Targeted Treatment of Inflammatory Bowel Disease (IBD). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207350. [PMID: 36760016 DOI: 10.1002/smll.202207350] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Indexed: 05/11/2023]
Abstract
Oral antioxidant nanozymes bring great promise for inflammatory bowel disease (IBD) treatment. To efficiently eliminate reactive oxygen species (ROS), various metal-based nanozymes have been developed for the treatment of IBD but their practical applications are seriously impaired by unstable ROS-eliminating properties and potential metal ion leakage in the digestive tract. Here, the authors for the first time propose metal-free melanin nanozymes (MeNPs) with excellent gastrointestinal stability and biocompatibility as a favorable therapy strategy for IBD. Moreover, MeNPs have extremely excellent natural and long-lasting characteristics of targeting IBD lesions. In view of the dominant role of ROS in IBD, the authors further reveal that oral administration of MeNPs can greatly alleviate the six major pathological features of IBD: oxidative stress, endoplasmic reticulum stress, apoptosis, inflammation, gut barrier disruption, and gut dysbiosis. Overall, this strategy highlights the great clinical application prospects of metal-free MeNPs via harnessing ROS scavenging at IBD lesions, offering a paradigm for antioxidant nanozyme in IBD or other inflammatory diseases.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Mingyuan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiangping Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinping Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Wei Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
7
|
Lechuga S, Braga-Neto MB, Naydenov NG, Rieder F, Ivanov AI. Understanding disruption of the gut barrier during inflammation: Should we abandon traditional epithelial cell lines and switch to intestinal organoids? Front Immunol 2023; 14:1108289. [PMID: 36875103 PMCID: PMC9983034 DOI: 10.3389/fimmu.2023.1108289] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Disruption of the intestinal epithelial barrier is a hallmark of mucosal inflammation. It increases exposure of the immune system to luminal microbes, triggering a perpetuating inflammatory response. For several decades, the inflammatory stimuli-induced breakdown of the human gut barrier was studied in vitro by using colon cancer derived epithelial cell lines. While providing a wealth of important data, these cell lines do not completely mimic the morphology and function of normal human intestinal epithelial cells (IEC) due to cancer-related chromosomal abnormalities and oncogenic mutations. The development of human intestinal organoids provided a physiologically-relevant experimental platform to study homeostatic regulation and disease-dependent dysfunctions of the intestinal epithelial barrier. There is need to align and integrate the emerging data obtained with intestinal organoids and classical studies that utilized colon cancer cell lines. This review discusses the utilization of human intestinal organoids to dissect the roles and mechanisms of gut barrier disruption during mucosal inflammation. We summarize available data generated with two major types of organoids derived from either intestinal crypts or induced pluripotent stem cells and compare them to the results of earlier studies with conventional cell lines. We identify research areas where the complementary use of colon cancer-derived cell lines and organoids advance our understanding of epithelial barrier dysfunctions in the inflamed gut and identify unique questions that could be addressed only by using the intestinal organoid platforms.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Manuel B. Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
8
|
Park SE, Kang S, Paek J, Georgescu A, Chang J, Yi AY, Wilkins BJ, Karakasheva TA, Hamilton KE, Huh DD. Geometric engineering of organoid culture for enhanced organogenesis in a dish. Nat Methods 2022; 19:1449-1460. [PMID: 36280722 PMCID: PMC10027401 DOI: 10.1038/s41592-022-01643-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/09/2022] [Indexed: 12/22/2022]
Abstract
Here, we introduce a facile, scalable engineering approach to enable long-term development and maturation of organoids. We have redesigned the configuration of conventional organoid culture to develop a platform that converts single injections of stem cell suspensions to radial arrays of organoids that can be maintained for extended periods without the need for passaging. Using this system, we demonstrate accelerated production of intestinal organoids with significantly enhanced structural and functional maturity, and their continuous development for over 4 weeks. Furthermore, we present a patient-derived organoid model of inflammatory bowel disease (IBD) and its interrogation using single-cell RNA sequencing to demonstrate its ability to reproduce key pathological features of IBD. Finally, we describe the extension of our approach to engineer vascularized, perfusable human enteroids, which can be used to model innate immune responses in IBD. This work provides an immediately deployable platform technology toward engineering more realistic organ-like structures in a dish.
Collapse
Affiliation(s)
- Sunghee Estelle Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shawn Kang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jungwook Paek
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrei Georgescu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Vivodyne, Inc., Philadelphia, PA, USA
| | - Jeehan Chang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Yoon Yi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tatiana A Karakasheva
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Zhou Y, Luo Y, Yu B, Zheng P, Yu J, Huang Z, Mao X, Luo J, Yan H, He J. Agrobacterium sp. ZX09 β-Glucan Attenuates Enterotoxigenic Escherichia coli-Induced Disruption of Intestinal Epithelium in Weaned Pigs. Int J Mol Sci 2022; 23:ijms231810290. [PMID: 36142202 PMCID: PMC9499454 DOI: 10.3390/ijms231810290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
To explore the protective effect of dietary β-glucan (BGL) supplementation on intestinal epithelium exposure to enterotoxigenic Escherichia coli (ETEC), thirty-two weaned pigs were assigned to four groups. Pigs were fed with a basal diet or basal diet containing 500 mg/kg BGL, and were orally infused with ETEC or culture medium. Results showed BGL supplementation had no influence on growth performance in weaned pigs. However, BGL supplementation increased the absorption of D-xylose, and significantly decreased the serum concentrations of D-lactate and diamine oxidase (DAO) in the ETEC-challenged pigs (p < 0.05). Interestingly, BGL significantly increased the abundance of the zonula occludens-1-(ZO-1) in the jejunal epithelium upon ETEC challenge (p < 0.05). BGL supplementation also increased the number of S-phase cells and the number of sIgA-positive cells, but significantly decreased the number of total apoptotic cells in the jejunal epithelium upon ETEC challenge (p < 0.05). Moreover, BGL significantly increased the duodenal catalase (CAT) activity and the ileal total superoxide dismutase (T-SOD) activity in the ETEC-challenged pigs (p < 0.05). Importantly, BGL significantly decreased the expression levels of critical inflammation related proteins such as the tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) in the jejunal and ileal mucosa upon ETEC challenge (p < 0.05). BGL also elevated the propanoic acid content and the abundance of Lactobacillus and Bacillus in the colon upon ETEC challenge (p < 0.05). These results suggested BGL could alleviate the ETEC-induced intestinal epithelium injury, which may be associated with suppressed inflammation and improved intestinal immunity and antioxidant capacity, as well as the improved intestinal macrobiotic.
Collapse
Affiliation(s)
- Yuankang Zhou
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Yuheng Luo
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Bing Yu
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Ping Zheng
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Jie Yu
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Zhiqing Huang
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Xiangbing Mao
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Junqiu Luo
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Hui Yan
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Jun He
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
- Correspondence:
| |
Collapse
|
10
|
Peerapen P, Thongboonkerd V. Calcium oxalate monohydrate crystal disrupts tight junction via F-actin reorganization. Chem Biol Interact 2021; 345:109557. [PMID: 34147488 DOI: 10.1016/j.cbi.2021.109557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/19/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Tight junction is an intercellular protein complex that regulates paracellular permeability and epithelial cell polarization. This intercellular barrier is associated with actin filament. Calcium oxalate monohydrate (COM), the major crystalline composition in kidney stones, has been shown to disrupt tight junction but with an unclear mechanism. This study aimed to address whether COM crystal disrupts tight junction via actin deregulation. MDCK distal renal tubular epithelial cells were treated with 100 μg/ml COM crystals for 48 h. Western blot analysis revealed that level of a tight junction protein, zonula occludens-1 (ZO-1), significantly decreased, whereas that of β-actin remained unchanged after exposure to COM crystals. Immunofluorescence study showed discontinuation and dissociation of ZO-1 and filamentous actin (F-actin) expression at the cell border. In addition, clumping of F-actin was found in some cytoplasmic areas of the COM-treated cells. Moreover, transepithelial resistance (TER) was reduced by COM crystals, indicating the defective barrier function of the polarized cells. All of these COM-induced defects could be completely abolished by pretreatment with 20 μM phalloidin, an F-actin stabilizer, 2-h prior to the 48-h crystal exposure. These findings indicate that COM crystal does not reduce the total level of actin but causes tight junction disruption via F-actin reorganization.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
11
|
Bethlehem L, van Echten-Deckert G. Ectoines as novel anti-inflammatory and tissue protective lead compounds with special focus on inflammatory bowel disease and lung inflammation. Pharmacol Res 2020; 164:105389. [PMID: 33352226 DOI: 10.1016/j.phrs.2020.105389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
The compatible solute ectoine is one of the most abundant and powerful cytoprotectant in the microbial world. Due to its unique ability to stabilize biological membranes and macromolecules it has been successfully commercialized as ingredient of various over-the-counter drugs, achieving primarily epithelial protection. While trying to elucidate the mechanism of its cell protective properties in in-vitro studies, a significant anti-inflammatory effect was documented for the small molecule. The tissue protective potential of ectoine considerably improved organ quality during preservation. In addition, ectoine and derivatives have been demonstrated to significantly decrease inflammatory cytokine production, thereby alleviating the inflammatory response following organ transplantation, and launching new therapeutic options for pathologies such as Inflammatory Bowel Disease (IBD) and Chronic Obstructive Pulmonary Disease (COPD). In this review, we aim to summarize the knowledge of this fairly nascent field of the anti-inflammatory potential of diverse ectoines. We also point out that this promising field faces challenges in its biochemical and molecular substantiations, including defining the molecular mechanisms of the observed effects and their regulation. However, based on their potent cytoprotective, anti-inflammatory, and non-toxic properties we believe that ectoines represent promising candidates for risk free interventions in inflammatory pathologies with steeply increasing demands for new therapeutics.
Collapse
Affiliation(s)
- Lukas Bethlehem
- Institute for Microbiology & Biotechnology, University Bonn, Germany.
| | | |
Collapse
|