1
|
Wu HF, Hamilton C, Porritt H, Winbo A, Zeltner N. Modelling neurocardiac physiology and diseases using human pluripotent stem cells: current progress and future prospects. J Physiol 2024. [PMID: 39235952 DOI: 10.1113/jp286416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our lifetime the heart executes cycles of contraction and relaxation to meet the body's ever-changing metabolic needs. This vital function is continuously regulated by the autonomic nervous system. Cardiovascular dysfunction and autonomic dysregulation are also closely associated; however, the degrees of cause and effect are not always readily discernible. Thus, to better understand cardiovascular disorders, it is crucial to develop model systems that can be used to study the neurocardiac interaction in healthy and diseased states. Human pluripotent stem cell (hiPSC) technology offers a unique human-based modelling system that allows for studies of disease effects on the cells of the heart and autonomic neurons as well as of their interaction. In this review, we summarize current understanding of the embryonic development of the autonomic, cardiac and neurocardiac systems, their regulation, as well as recent progress of in vitro modelling systems based on hiPSCs. We further discuss the advantages and limitations of hiPSC-based models in neurocardiac research.
Collapse
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Charlotte Hamilton
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Harrison Porritt
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Annika Winbo
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Motley W, Chaudry V, Lloyd TE. Treatment and Management of Hereditary Neuropathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Zhou JB, Wang ED, Zhou XL. Modifications of the human tRNA anticodon loop and their associations with genetic diseases. Cell Mol Life Sci 2021; 78:7087-7105. [PMID: 34605973 PMCID: PMC11071707 DOI: 10.1007/s00018-021-03948-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Transfer RNAs (tRNAs) harbor the most diverse posttranscriptional modifications. Among such modifications, those in the anticodon loop, either on nucleosides or base groups, compose over half of the identified posttranscriptional modifications. The derivatives of modified nucleotides and the crosstalk of different chemical modifications further add to the structural and functional complexity of tRNAs. These modifications play critical roles in maintaining anticodon loop conformation, wobble base pairing, efficient aminoacylation, and translation speed and fidelity as well as mediating various responses to different stress conditions. Posttranscriptional modifications of tRNA are catalyzed mainly by enzymes and/or cofactors encoded by nuclear genes, whose mutations are firmly connected with diverse human diseases involving genetic nervous system disorders and/or the onset of multisystem failure. In this review, we summarize recent studies about the mechanisms of tRNA modifications occurring at tRNA anticodon loops. In addition, the pathogenesis of related disease-causing mutations at these genes is briefly described.
Collapse
Affiliation(s)
- Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 93 Middle Huaxia Road, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
4
|
Boer RE, Torrey ZR, Schneekloth JS. Chemical Modulation of Pre-mRNA Splicing in Mammalian Systems. ACS Chem Biol 2020; 15:808-818. [PMID: 32191432 DOI: 10.1021/acschembio.0c00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA splicing is a key component of gene expression and proteomic diversity in humans. The spliceosome assembles on and processes individual nascent pre-mRNA transcripts into distinct mature mRNAs that can code for different proteins. Splicing programs can be affected by somatic mutations and changes in response to exogenous stimuli. Importantly, alterations in splicing can be direct drivers of diseases including cancers. This Review describes recent advances and the potential for targeting and controlling pre-mRNA splicing in humans with small molecules, ranging from targeting spliceosomal proteins to direct targeting of individual RNA transcripts.
Collapse
Affiliation(s)
- Robert E. Boer
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - Zachary R. Torrey
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - John S. Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| |
Collapse
|
5
|
Abstract
The autonomic nervous system exerts broad control over the involuntary functions of the human body through complex equilibrium between sympathetic and parasympathetic tone. Imbalance in this equilibrium is associated with a multitude of cardiovascular outcomes, including mortality. The cardiovascular static state of this equilibrium can be quantified using physiological parameters such as heart rate (HR), blood pressure, and by spectral analysis of HR variability. Here, we review the current state of knowledge of the genetic background of cardiovascular measurements of autonomic tone. For most parameters of autonomic tone, a large portion of variability is explained by genetic heritability. Many of the static parameters of autonomic tone have also been studied through candidate-gene approach, yielding some insight into how genotypes of adrenergic receptors affect variables such as HR. Genome-wide approaches in large cohorts similarly exist for static variables such as HR and blood pressure but less is known about the genetic background of the dynamic and more specific measurements, such as HR variability. Furthermore, because most autonomic measures are likely polygenic, pathway analyses and modeling of polygenic effects are critical. Future work will hopefully explain the control of autonomic tone and guide individualized therapeutic interventions.
Collapse
|
6
|
Bokhari SRA, Inayat F, Jawa A, Virk HUH, Awais M, Hussain N, Hassan GU, Ahmad HI, Chaudhry HS, Adil A, Haider A, Figueredo VM, Rangaswami J, Assir MZK. Cardiovascular Autonomic Neuropathy and its Association with Cardiovascular and All-cause Mortality in Patients with End-stage Renal Disease. Cureus 2018; 10:e3243. [PMID: 30410849 PMCID: PMC6214649 DOI: 10.7759/cureus.3243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background End-stage renal disease frequently leads to increased cardiovascular mortality. Cardiovascular autonomic neuropathy (CAN) may be predictive of cardiac arrhythmias and sudden cardiac death in patients with end-stage renal disease. Methods A total of 70 patients with end-stage renal disease were included in the study. The assessment of cardiac dysautonomia was based on the four standardized tests performed at the baseline and, again, at the end of the study. The criteria for CAN included at least two abnormal test results. Results Fifty of 70 patients completed the study and were followed-up after one year. Out of the 50 patients, 44 (88%) had CAN at baseline. Twelve (24%) patients died at the one-year follow-up. Sudden cardiac death was reported in seven out of 12 (58%) patients. All seven patients who died had high dysautonomia scores (three abnormal tests) at the baseline. There was a significantly higher percentage of patients with all four abnormal tests amongst patients who died of any cause (56% vs. 17%; RR 6.07, 95% CI 1.29-28.49; p-value 0.02) or due to sudden cardiac death (43% vs. 10.5%; RR 6.37, 95% CI 1.03-39.36; p-value 0.04). All five patients who did not have CAN at the baseline developed this abnormality on repeat testing after one year. Conclusion The prevalence of CAN in patients with end-stage renal disease on maintenance hemodialysis was significantly higher. CAN was an independent predictor of all-cause and cardiovascular mortality, which highlights it as a risk stratification tool in patients with end-stage renal disease.
Collapse
Affiliation(s)
- Syed Rizwan A Bokhari
- Department of Nephrology and Hypertension, Tulane University School of Medicine, New Orleans, USA
| | - Faisal Inayat
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Ali Jawa
- Department of Medicine, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, PAK
| | - Hafeez Ul Hasan Virk
- Department of Cardiovascular Diseases, Einstein Heart and Vascular Institute, New York, USA
| | - Muhammad Awais
- Department of Medicine, Prince Sultan Military Medical City, Riyadh, SAU
| | - Nadeem Hussain
- Department of Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Ghias Ul Hassan
- Department of Medicine, Ameer Ud Din Medical College, Lahore, PAK
| | - Hafiz Ijaz Ahmad
- Department of Nephrology, Allama Iqbal Medical College, Lahore, PAK
| | - Hammad S Chaudhry
- Department of Medicine, Allama Iqbal Medical College/Jinnah Hospital, Lahore, PAK
| | - Abdullah Adil
- Depertment of Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Ali Haider
- Department of Medicine, Allama Iqbal Medical College, Jhang, PAK
| | - Vincent M Figueredo
- Department of Cardiovascular Diseases, Einstein Medical Center, Philadelphia, USA
| | | | | |
Collapse
|
7
|
Rubin BY, Anderson SL. IKBKAP/ELP1 gene mutations: mechanisms of familial dysautonomia and gene-targeting therapies. APPLICATION OF CLINICAL GENETICS 2017; 10:95-103. [PMID: 29290691 PMCID: PMC5735983 DOI: 10.2147/tacg.s129638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The successful completion of the Human Genome Project led to the discovery of the molecular basis of thousands of genetic disorders. The identification of the mutations that cause familial dysautonomia (FD), an autosomal recessive disorder that impacts sensory and autonomic neurons, was aided by the release of the human DNA sequence. The identification and characterization of the genetic cause of FD have changed the natural history of this disease. Genetic testing programs, which were established shortly after the disease-causing mutations were identified, have almost completely eliminated the birth of children with this disorder. Characterization of the principal disease-causing mutation has led to the development of therapeutic modalities that ameliorate its effect, while the development of mouse models that recapitulate the impact of the mutation has allowed for the in-depth characterization of its impact on neuronal development and survival. The intense research focus on this disorder, while clearly benefiting the FD patient population, also serves as a model for the positive impact focused research efforts can have on the future of other genetic diseases. Here, we present the research advances and scientific breakthroughs that have changed and will continue to change the natural history of this centuries-old genetic disease.
Collapse
Affiliation(s)
- Berish Y Rubin
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Sylvia L Anderson
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
8
|
Doulgerakis D, Moyssakis I, Kapelios CJ, Eleftheriadou I, Chorepsima S, Michail S, Tentolouris N. Cardiac Autonomic Neuropathy Predicts All-Cause and Cardiovascular Mortality in Patients With End-Stage Renal Failure: A 5-Year Prospective Study. Kidney Int Rep 2017; 2:686-694. [PMID: 29142986 PMCID: PMC5678628 DOI: 10.1016/j.ekir.2017.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/13/2017] [Accepted: 03/08/2017] [Indexed: 01/20/2023] Open
Abstract
Introduction Chronic renal disease is associated with increased cardiovascular (CV) mortality. Cardiac autonomic neuropathy (CAN) is predictive of mortality for diseases that affect the autonomic nervous system. We prospectively evaluated the prognostic value of indexes of left ventricular (LV) function and CAN in all-cause and CV mortality of patients with end-stage renal failure (ESRF). Methods A total of 133 patients with ESRF were recruited. LV function was evaluated by echocardiography, whereas cardiac autonomic function was assessed using the battery of the 4 standardized tests proposed by Ewing. Results A total of 123 of 133 (92.5%) patients completed the study and were followed for a mean of 4.9 ± 2.6 years. Mean LV ejection fraction (LVEF) was 50.9 ± 6.9%, whereas 70 (57.9%) patients had CAN. Sixty-nine all-cause and 36 CV deaths were recorded. The survival rates at 3, 5, and 7 years were 77.2%, 57.4%, and 33.7%, respectively. Multivariate analysis after adjustment for waist circumference, current smoking, history of diabetes, and coronary artery disease demonstrated that the only independent predictors of all-cause mortality during follow-up were age, serum triglycerides, LVEF, and presence of CAN. Competing risk regression analysis, after adjusting for waist circumference, coronary heart disease, serum glucose, and triglycerides, indicated that age and presence of CAN were independent risk factors for CV mortality. Discussion Age and presence of CAN are independent predictors of all-cause and CV mortality in patients with ESRF. The functionality of the cardiac autonomic nervous system activity can be used for the risk stratification in patients with ESRF.
Collapse
Affiliation(s)
- Dimitrios Doulgerakis
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Chris J Kapelios
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Eleftheriadou
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatia Chorepsima
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Michail
- Department of Nephrology, Laiko General Hospital, Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Donyo M, Hollander D, Abramovitch Z, Naftelberg S, Ast G. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway. Hum Mol Genet 2016; 25:1307-17. [PMID: 26769675 DOI: 10.1093/hmg/ddw011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/11/2016] [Indexed: 01/04/2023] Open
Abstract
Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD.
Collapse
Affiliation(s)
- Maya Donyo
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ziv Abramovitch
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
10
|
Tourtellotte WG. Axon Transport and Neuropathy: Relevant Perspectives on the Etiopathogenesis of Familial Dysautonomia. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:489-99. [PMID: 26724390 DOI: 10.1016/j.ajpath.2015.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
Peripheral neuropathies are highly prevalent and are most often associated with chronic disease, side effects from chemotherapy, or toxic-metabolic abnormalities. Neuropathies are less commonly caused by genetic mutations, but studies of the normal function of mutated proteins have identified particular vulnerabilities that often implicate mitochondrial dynamics and axon transport mechanisms. Hereditary sensory and autonomic neuropathies are a group of phenotypically related diseases caused by monogenic mutations that primarily affect sympathetic and sensory neurons. Here, I review evidence to indicate that many genetic neuropathies are caused by abnormalities in axon transport. Moreover, in hereditary sensory and autonomic neuropathies. There may be specific convergence on gene mutations that disrupt nerve growth factor signaling, upon which sympathetic and sensory neurons critically depend.
Collapse
Affiliation(s)
- Warren G Tourtellotte
- Division of Neuropathology, Department of Pathology, and the Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
11
|
Selective retinal ganglion cell loss in familial dysautonomia. J Neurol 2014; 261:702-9. [PMID: 24487827 DOI: 10.1007/s00415-014-7258-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
To define the retinal phenotype of subjects with familial dysautonomia (FD). A cross-sectional study was carried out in 90 subjects divided in three groups of 30 each (FD subjects, asymptomatic carriers and controls). The study was developed at the Dysautonomia Center, New York University Medical Center. All subjects underwent spectral domain optical coherence tomography (OCT) and full neuro-ophthalmic examinations. In a subset of affected subjects, visual evoked potentials and microperimetry were also obtained. We compared the retinal nerve fiber layer (RNFL) thickness from OCT between the three groups. OCT showed loss of the RNFL in all FD subjects predominantly in the maculopapillary region (63 % temporally, p < 0.0001; and 21 % nasally, p < 0.005). RNFL loss was greatest in older FD subjects and was associated with decreased visual acuity and color vision, central visual field defects, temporal optic nerve pallor, and delayed visual evoked potentials. Asymptomatic carriers of the FD gene mutation all had thinner RNFL (12 % globally, p < 0.005). OCT and clinical neuro-ophthalmological findings suggest that maculopapillary ganglion cells are primarily affected in FD subjects, leading to a specific optic nerve damage that closely resembles mitochondrial optic neuropathies. This raises the possibility that reduced IKAP levels may affect mitochondrial proteins and their function in the nervous system, particularly in the retina.
Collapse
|
12
|
Feng D, Xie J. Aberrant splicing in neurological diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:631-49. [PMID: 23821330 DOI: 10.1002/wrna.1184] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/12/2022]
Abstract
Splicing of precursor messenger RNA (pre-mRNA) removes the intervening sequences (introns) and joins the expressed regions (exons) in the nucleus, before an intron-containing eukaryotic mRNA transcript can be exported and translated into proteins in the cytoplasm. While some sequences are always included or excluded (constitutive splicing), others can be selectively used (alternative splicing) in this process. Particularly by alternative splicing, up to tens of thousands of variant transcripts can be produced from a single gene, which contributes greatly to the proteomic diversity for such complex cellular functions as 'wiring' neurons in the nervous system. Disruption of this process leads to aberrant splicing, which accounts for the defects of up to 50% of mutations that cause certain human genetic diseases. In this review, we describe the different mechanisms of aberrant splicing that cause or have been associated with neurological diseases.
Collapse
Affiliation(s)
- Dairong Feng
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
13
|
Liu B, Anderson SL, Qiu J, Rubin BY. Cardiac glycosides correct aberrant splicing of IKBKAP-encoded mRNA in familial dysautonomia derived cells by suppressing expression of SRSF3. FEBS J 2013; 280:3632-46. [PMID: 23711097 DOI: 10.1111/febs.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/30/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
The ability to modulate the production of the wild-type transcript in cells bearing the splice-altering familial dysautonomia (FD) causing mutation in the IKBKAP gene prompted a study of the impact of a panel of pharmaceuticals on the splicing of this transcript, which revealed the ability of the cardiac glycoside digoxin to increase the production of the wild-type, exon-20-containing, IKBKAP-encoded transcript and the full-length IκB-kinase-complex-associated protein in FD-derived cells. Characterization of the cis elements and trans factors involved in the digoxin-mediated effect on splicing reveals that this response is dependent on an SRSF3 binding site(s) located in the intron 5' of the alternatively spliced exon and that digoxin mediates its effect by suppressing the level of the SRSF3 protein. Characterization of the digoxin-mediated effect on the RNA splicing process was facilitated by the identification of several RNA splicing events in which digoxin treatment mediates the enhanced inclusion of exonic sequence. Moreover, we demonstrate the ability of digoxin to impact the splicing process in neuronal cells, a cell type profoundly impacted by FD. This study represents the first demonstration that digoxin possesses splice-altering capabilities that are capable of reversing the impact of the FD-causing mutation. These findings support the clinical evaluation of the impact of digoxin on the FD patient population.
Collapse
Affiliation(s)
- Bo Liu
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | | | | | | |
Collapse
|
14
|
Bochner R, Ziv Y, Zeevi D, Donyo M, Abraham L, Ashery-Padan R, Ast G. Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model. Hum Mol Genet 2013; 22:2785-94. [PMID: 23515154 DOI: 10.1093/hmg/ddt126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Familial dysautonomia (FD) is a severe neurodegenerative genetic disorder restricted to the Ashkenazi Jewish population. The most common mutation in FD patients is a T-to-C transition at position 6 of intron 20 of the IKBKAP gene. This mutation causes aberrant skipping of exon 20 in a tissue-specific manner, leading to reduction of the IκB kinase complex-associated protein (IKAP) protein in the nervous system. We established a homozygous humanized mouse strain carrying human exon 20 and its two flanking introns; the 3' intron has the transition observed in the IKBKAP gene of FD patients. Although our FD humanized mouse does not display FD symptoms, the unique, tissue-specific splicing pattern of the IKBKAP in these mice allowed us to evaluate the effect of therapies on gene expression and exon 20 splicing. The FD mice were supplemented with phosphatidylserine (PS), a safe food supplement that increases mRNA and protein levels of IKBKAP in cell lines generated from FD patients. Here we demonstrated that PS treatment increases IKBAKP mRNA and IKAP protein levels in various tissues of FD mice without affecting exon 20 inclusion levels. We also observed that genes associated with transcription regulation and developmental processes were up-regulated in the cerebrum of PS-treated mice. Thus, PS holds promise for the treatment of FD.
Collapse
Affiliation(s)
- Ron Bochner
- Department of Human Molecular Genetics and Biochemistry
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
GOALS To analyze the neurochemical profile during the recurrent attacks of nausea and vomiting in patients with Riley-day syndrome. BACKGROUND One of the most disabling features of patients with Riley-day syndrome are recurrent attacks of severe nausea/retching/vomiting accompanied by hypertension, tachycardia, and skin flushing, usually triggered by emotional or other stresses. STUDY We monitored blood pressure and heart rate and measured plasma catecholamines during typical dysautonomic crises triggered by emotionally charged situations. For comparison, measurements were repeated at follow-up after the symptoms had resolved and the patients were feeling calm and well. RESULTS During a typical attack, patients were hypertensive and tachycardic. In all patients, circulating levels of norepinephrine (P < 0.002) and dopamine (P < 0.007) increased significantly. CONCLUSIONS Activation of dopamine receptors in the chemoreceptor trigger zone may explain the cyclic nausea/retching/vomiting of patients with Riley-day syndrome.
Collapse
|
16
|
Anderson SL, Liu B, Qiu J, Sturm AJ, Schwartz JA, Peters AJ, Sullivan KA, Rubin BY. Nutraceutical-mediated restoration of wild-type levels of IKBKAP-encoded IKAP protein in familial dysautonomia-derived cells. Mol Nutr Food Res 2012; 56:570-9. [PMID: 22495984 DOI: 10.1002/mnfr.201100670] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SCOPE The reported ability to modulate the production of the wild-type transcript in cells bearing the splice-altering familial dysautonomia (FD)-causing mutation in the IKBKAP gene prompted an evaluation of the impact of commonly consumed nutraceuticals on the splicing of this transcript. METHODS AND RESULTS Screening efforts revealed the ability of the isoflavones, genistein, and daidzein, to impact splicing and increase the production of the wild-type, exon-20-containing, transcript, and the full-length IKBKAP-encoded IΚB kinase complex associated protein(IKAP) in FD-derived cells. Genistein was also found to impact splicing in neuronal cells, a cell type profoundly impacted by FD. The simultaneous exposure of FD-derived cells to genistein and epigallocatechin gallate (EGCG) resulted in the almost exclusive production of the exon-20-containing transcript and the production of wild-type amounts of IKAP protein. CONCLUSION This study represents the first demonstration that the isoflavones, genistein and daidzein, possess splice-altering capabilities and that simultaneous treatment with genistein and EGCG reverses the splice-altering impact of the FD-causing mutation. These findings support the clinical evaluation of the therapeutic impact of the combined administration of these two commonly consumed nutraceuticals on this patient population and suggest a broader evaluation of the impact of these nutraceuticals on the in vivo RNA splicing process.
Collapse
Affiliation(s)
- Sylvia L Anderson
- Laboratory for Familial Dysautonomia Research, Department of Biological Sciences, Fordham University, Bronx, NY10458, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dietrich P, Alli S, Shanmugasundaram R, Dragatsis I. IKAP expression levels modulate disease severity in a mouse model of familial dysautonomia. Hum Mol Genet 2012; 21:5078-90. [PMID: 22922231 DOI: 10.1093/hmg/dds354] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hereditary sensory and autonomic neuropathies (HSANs) encompass a group of genetically inherited disorders characterized by sensory and autonomic dysfunctions. Familial dysautonomia (FD), also known as HSAN type III, is an autosomal recessive disorder that affects 1/3600 live births in the Ashkenazi Jewish population. The disease is caused by abnormal development and progressive degeneration of the sensory and autonomic nervous systems and is inevitably fatal, with only 50% of patients reaching the age of 40. FD is caused by a mutation in intron 20 of the Ikbkap gene that results in severe reduction in the expression of its encoded protein, inhibitor of kappaB kinase complex-associated protein (IKAP). Although the mutation that causes FD was identified in 2001, so far there is no appropriate animal model that recapitulates the disorder. Here, we report the generation and characterization of the first mouse models for FD that recapitulate the molecular and pathological features of the disease. Important for therapeutic interventions is also our finding that a slight increase in IKAP levels is enough to ameliorate the phenotype and increase the life span. Understanding the mechanisms underlying FD will provide insights for potential new therapeutic interventions not only for FD, but also for other peripheral neuropathies.
Collapse
Affiliation(s)
- Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
18
|
Induced pluripotent stem cells to model and treat neurogenetic disorders. Neural Plast 2012; 2012:346053. [PMID: 22888453 PMCID: PMC3409544 DOI: 10.1155/2012/346053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/30/2012] [Indexed: 12/12/2022] Open
Abstract
Remarkable advances in cellular reprogramming have made it possible to generate pluripotent stem cells from somatic cells, such as fibroblasts obtained from human skin biopsies. As a result, human diseases can now be investigated in relevant cell populations derived from induced pluripotent stem cells (iPSCs) of patients. The rapid growth of iPSC technology has turned these cells into multipurpose basic and clinical research tools. In this paper, we highlight the roles of iPSC technology that are helping us to understand and potentially treat neurological diseases. Recent studies using iPSCs to model various neurogenetic disorders are summarized, and we discuss the therapeutic implications of iPSCs, including drug screening and cell therapy for neurogenetic disorders. Although iPSCs have been used in animal models with promising results to treat neurogenetic disorders, there are still many issues associated with reprogramming that must be addressed before iPSC technology can be fully exploited with translation to the clinic.
Collapse
|
19
|
Liu HX, Komatsu Y, Mishina Y, Mistretta CM. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds. Dev Biol 2012; 368:294-303. [PMID: 22659543 DOI: 10.1016/j.ydbio.2012.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 01/06/2023]
Abstract
The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin.
Collapse
Affiliation(s)
- Hong-Xiang Liu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
20
|
Pastore C, Topalidou I, Forouhar F, Yan AC, Levy M, Hunt JF. Crystal structure and RNA binding properties of the RNA recognition motif (RRM) and AlkB domains in human AlkB homolog 8 (ABH8), an enzyme catalyzing tRNA hypermodification. J Biol Chem 2011; 287:2130-43. [PMID: 22065580 DOI: 10.1074/jbc.m111.286187] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Humans express nine paralogs of the bacterial DNA repair enzyme AlkB, an iron/2-oxoglutarate-dependent dioxygenase that reverses alkylation damage to nucleobases. The biochemical and physiological roles of these paralogs remain largely uncharacterized, hampering insight into the evolutionary expansion of the AlkB family. However, AlkB homolog 8 (ABH8), which contains RNA recognition motif (RRM) and methyltransferase domains flanking its AlkB domain, recently was demonstrated to hypermodify the anticodon loops in some tRNAs. To deepen understanding of this activity, we performed physiological and biophysical studies of ABH8. Using GFP fusions, we demonstrate that expression of the Caenorhabditis elegans ABH8 ortholog is widespread in larvae but restricted to a small number of neurons in adults, suggesting that its function becomes more specialized during development. In vitro RNA binding studies on several human ABH8 constructs indicate that binding affinity is enhanced by a basic α-helix at the N terminus of the RRM domain. The 3.0-Å-resolution crystal structure of a construct comprising the RRM and AlkB domains shows disordered loops flanking the active site in the AlkB domain and a unique structural Zn(II)-binding site at its C terminus. Although the catalytic iron center is exposed to solvent, the 2-oxoglutarate co-substrate likely adopts an inactive conformation in the absence of tRNA substrate, which probably inhibits uncoupled free radical generation. A conformational change in the active site coupled to a disorder-to-order transition in the flanking protein segments likely controls ABH8 catalytic activity and tRNA binding specificity. These results provide insight into the functional and structural adaptations underlying evolutionary diversification of AlkB domains.
Collapse
Affiliation(s)
- Chiara Pastore
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | |
Collapse
|
21
|
Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality. PLoS One 2011; 6:e27015. [PMID: 22046433 PMCID: PMC3203942 DOI: 10.1371/journal.pone.0027015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/07/2011] [Indexed: 01/07/2023] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population, and leads to death before the age of 40. The disease is characterized by abnormal development and progressive degeneration of the sensory and autonomic nervous system. A single base pair substitution in intron 20 of the Ikbkap gene accounts for 98% of FD cases, and results in the expression of low levels of the full-length mRNA with simultaneous expression of an aberrantly spliced mRNA in which exon 20 is missing. To date, there is no animal model for the disease, and the essential cellular functions of IKAP - the protein encoded by Ikbkap - remain unknown. To better understand the normal function of IKAP and in an effort to generate a mouse model for FD, we have targeted the mouse Ikbkap gene by homologous recombination. We created two distinct alleles that result in either loss of Ikbkap expression, or expression of an mRNA lacking only exon 20. Homozygosity for either mutation leads to developmental delay, cardiovascular and brain malformations, accompanied with early embryonic lethality. Our analyses indicate that IKAP is essential for expression of specific genes involved in cardiac morphogenesis, and that cardiac failure is the likely cause of abnormal vascular development and embryonic lethality. Our results also indicate that deletion of exon 20 abolishes gene function. This implies that the truncated IKAP protein expressed in FD patients does not retain any significant biological function.
Collapse
|
22
|
Durnaoglu S, Genc S, Genc K. Patient-specific pluripotent stem cells in neurological diseases. Stem Cells Int 2011; 2011:212487. [PMID: 21776279 PMCID: PMC3138107 DOI: 10.4061/2011/212487] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/28/2011] [Accepted: 05/09/2011] [Indexed: 12/29/2022] Open
Abstract
Many human neurological diseases are not currently curable and result in devastating neurologic sequelae. The increasing availability of induced pluripotent stem cells (iPSCs) derived from adult human somatic cells provides new prospects for cellreplacement strategies and disease-related basic research in a broad spectrum of human neurologic diseases. Patient-specific iPSC-based modeling of neurogenetic and neurodegenerative diseases is an emerging efficient tool for in vitro modeling to understand disease and to screen for genes and drugs that modify the disease process. With the exponential increase in iPSC research in recent years, human iPSCs have been successfully derived with different technologies and from various cell types. Although there remain a great deal to learn about patient-specific iPSC safety, the reprogramming mechanisms, better ways to direct a specific reprogramming, ideal cell source for cellular grafts, and the mechanisms by which transplanted stem cells lead to an enhanced functional recovery and structural reorganization, the discovery of the therapeutic potential of iPSCs offers new opportunities for the treatment of incurable neurologic diseases. However, iPSC-based therapeutic strategies need to be thoroughly evaluated in preclinical animal models of neurological diseases before they can be applied in a clinical setting.
Collapse
Affiliation(s)
- Serpen Durnaoglu
- Department of Neuroscience, Health Science Institute, Dokuz Eylül University, Inciralti, 35340 Izmir, Turkey
| | | | | |
Collapse
|
23
|
|
24
|
Ming X, Bain JM, Smith D, Brimacombe M, Gold von-Simson G, Axelrod FB. Assessing autonomic dysfunction symptoms in children: a pilot study. J Child Neurol 2011; 26:420-7. [PMID: 21196528 DOI: 10.1177/0883073810381921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As a screening tool to identify symptoms of autonomic dysfunction, the Pediatric Autonomic Symptoms Scale was administered to parents of children with familial dysautonomia, autism spectrum disorders, and age-matched controls. The total scores for the presence of symptoms were compared among the 3 groups for each section and overall. The Pediatric Autonomic Symptoms Scale distinguished controls from children with familial dysautonomia and autism spectrum disorders with scores from each section and overall scores. Familial dysautonomia children scored significantly higher in visceral symptoms, while children with autism spectrum disorders scored significantly higher in psychosocial symptoms. In familial dysautonomia, the concordance for the presence of symptoms within sections and overall scores ranged from 71% to 100%. The concordance for absence of autonomic dysfunction symptoms in controls ranged from 75% to 87.5%. The Pediatric Autonomic Symptoms Scale is comprehensive and can profile autonomic dysfunction in the 2 neurodevelopmental disorders. Its usefulness in other pediatric disorders remains to be studied.
Collapse
Affiliation(s)
- Xue Ming
- Department of Neurosciences and Neurology, New Jersey Medical School, Newark, NJ, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Tang ZZ, Sharma S, Zheng S, Chawla G, Nikolic J, Black DL. Regulation of the mutually exclusive exons 8a and 8 in the CaV1.2 calcium channel transcript by polypyrimidine tract-binding protein. J Biol Chem 2011; 286:10007-16. [PMID: 21282112 PMCID: PMC3060452 DOI: 10.1074/jbc.m110.208116] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CaV1.2 calcium channels play roles in diverse cellular processes such as gene regulation, muscle contraction, and membrane excitation and are diversified in their activity through extensive alternative splicing of the CaV1.2 mRNA. The mutually exclusive exons 8a and 8 encode alternate forms of transmembrane segment 6 (IS6) in channel domain 1. The human genetic disorder Timothy syndrome is caused by mutations in either of these two CaV1.2 exons, resulting in disrupted Ca2+ homeostasis and severe pleiotropic disease phenotypes. The tissue-specific pattern of exon 8/8a splicing leads to differences in symptoms between patients with exon 8 or 8a mutations. Elucidating the mechanisms controlling the exon 8/8a splicing choice will be important in understanding the spectrum of defects associated with the disease. We found that the polypyrimidine tract-binding protein (PTB) mediates a switch from exon 8 to 8a splicing. PTB and its neuronal homolog, nPTB, are widely studied splicing regulators controlling large sets of alternative exons. During neuronal development, PTB expression is down-regulated with a concurrent increase in nPTB expression. Exon 8a is largely repressed in embryonic mouse brain but is progressively induced during neuronal differentiation as PTB is depleted. This splicing repression is mediated by the direct binding of PTB to sequence elements upstream of exon 8a. The nPTB protein is a weaker repressor of exon 8a, resulting in a shift in exon choice when nPTB replaces PTB in cells. These results provide mechanistic understanding of how these two exons, important for human disease, are controlled.
Collapse
Affiliation(s)
- Zhen Zhi Tang
- Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
26
|
Phosphatidylserine increases IKBKAP levels in familial dysautonomia cells. PLoS One 2010; 5:e15884. [PMID: 21209961 PMCID: PMC3012102 DOI: 10.1371/journal.pone.0015884] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP). The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS), an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease.
Collapse
|
27
|
Abstract
Ninety-four percent of human genes are discontinuous, such that segments expressed as mRNA are contained within exons and separated by intervening segments, called introns. Following transcription, genes are expressed as precursor mRNAs (pre-mRNAs), which are spliced co-transcriptionally, and the flanking exons are joined together to form a continuous mRNA. One advantage of this architecture is that it allows alternative splicing by differential use of exons to generate multiple mRNAs from individual genes. Regulatory elements located within introns and exons guide the splicing complex, the spliceosome, and auxiliary RNA binding proteins to the correct sites for intron removal and exon joining. Misregulation of splicing and alternative splicing can result from mutations in cis-regulatory elements within the affected gene or from mutations that affect the activities of trans-acting factors that are components of the splicing machinery. Mutations that affect splicing can cause disease directly or contribute to the susceptibility or severity of disease. An understanding of the role of splicing in disease expands potential opportunities for therapeutic intervention by either directly addressing the cause or by providing novel approaches to circumvent disease processes.
Collapse
Affiliation(s)
- Amanda J Ward
- Departments of Molecular and Cellular Biology and Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
28
|
Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol Cell Biol 2010; 30:1814-27. [PMID: 20123966 DOI: 10.1128/mcb.01602-09] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Uridines in the wobble position of tRNA are almost invariably modified. Modifications can increase the efficiency of codon reading, but they also prevent mistranslation by limiting wobbling. In mammals, several tRNAs have 5-methoxycarbonylmethyluridine (mcm5U) or derivatives thereof in the wobble position. Through analysis of tRNA from Alkbh8-/- mice, we show here that ALKBH8 is a tRNA methyltransferase required for the final step in the biogenesis of mcm5U. We also demonstrate that the interaction of ALKBH8 with a small accessory protein, TRM112, is required to form a functional tRNA methyltransferase. Furthermore, prior ALKBH8-mediated methylation is a prerequisite for the thiolation and 2'-O-ribose methylation that form 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) and 5-methoxycarbonylmethyl-2'-O-methyluridine (mcm5Um), respectively. Despite the complete loss of all of these uridine modifications, Alkbh8-/- mice appear normal. However, the selenocysteine-specific tRNA (tRNASec) is aberrantly modified in the Alkbh8-/- mice, and for the selenoprotein Gpx1, we indeed observed reduced recoding of the UGA stop codon to selenocysteine.
Collapse
|
29
|
Abulhasan Y, Buu N, Frigon C. Perioperative use of dexmedetomidine in an infant with familial dysautonomia. Br J Anaesth 2009; 103:413-5. [PMID: 19592408 DOI: 10.1093/bja/aep178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a case of a 10-month-old girl with familial dysautonomia, who was scheduled for the insertion of a gastrotomy tube via laparoscopy under general anaesthesia. We used a total i.v. anaesthetic technique including dexmedetomidine and titrated the drug to patients' haemodynamic status and BIS value. Vital signs remained virtually unchanged during the entire procedure, and the tracheal tube was removed at the end of the procedure. Postoperative course was uneventful. Careful planning of the anaesthetic management, understanding the physiological consequences, and being able to titrate the medications utilized are key to the decrease of complications encountered in these patients. We report the safe use of dexmedetomidine in an infant with this extremely rare condition.
Collapse
Affiliation(s)
- Y Abulhasan
- Department of Anaesthesiology, McGill University Health Center, Montreal Children's Hospital, 2300 Tupper Street, Room C-1118, Montreal, QC H3H 1P3, Canada
| | | | | |
Collapse
|
30
|
Miaskowski C. Understanding the Genetic Determinants of Pain and Pain Management. Semin Oncol Nurs 2009; 25:S1-7. [DOI: 10.1016/j.soncn.2009.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|