1
|
Grandner MA, Valencia DY, Seixas AA, Oliviér K, Gallagher RA, Killgore WDS, Hale L, Branas C, Alfonso-Miller P. Development and Initial Validation of the Assessment of Sleep Environment (ASE): Describing and Quantifying the Impact of Subjective Environmental Factors on Sleep. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13599. [PMID: 36294179 PMCID: PMC9602531 DOI: 10.3390/ijerph192013599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to develop and test the reliability and validity of a 13-item self-report Assessment of Sleep Environment (ASE). This study investigates the relationship between subjective experiences of environmental factors (light, temperature, safety, noise, comfort, humidity, and smell) and sleep-related parameters (insomnia symptoms, sleep quality, daytime sleepiness, and control over sleep). The ASE was developed using an iterative process, including literature searches for item generation, qualitative feedback, and pilot testing. It was psychometrically assessed using data from the Sleep and Healthy Activity Diet Environment and Socialization (SHADES) study (N = 1007 individuals ages 22-60). Reliability was determined with an internal consistency and factor analysis. Validity was evaluated by comparing ASE to questionnaires of insomnia severity, sleep quality, daytime sleepiness, sleep control, perceived stress, and neighborhood disorder. The ASE demonstrated high internal consistency and likely reflects a single factor. ASE score was associated with insomnia symptoms (B = 0.09, p < 0.0001), sleep quality (B = 0.07, p < 0.0001), and sleep control (B = -0.01, p < 0.0001), but not daytime sleepiness. The ASE was also associated with perceived stress (B = 0.20, p < 0.0001) and neighborhood disorder (B = -0.01, p < 0.0001). Among sleep environment factors, only smell was not associated with sleep quality; warmth and safety were negatively associated with sleepiness; and of the sleep environment factors, only light/dark, noise/quiet, and temperature (warm/cool) were not associated with insomnia symptoms. The ASE is a reliable and valid measure of sleep environment. Physical environment (light, temperature, safety, noise, comfort, humidity, and smell) was associated with insomnia symptoms and sleep quality but not sleepiness.
Collapse
Affiliation(s)
- Michael A. Grandner
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona, Tucson, AZ 85724, USA
| | - Dora Y. Valencia
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona, Tucson, AZ 85724, USA
| | - Azizi A. Seixas
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
| | - Kayla Oliviér
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona, Tucson, AZ 85724, USA
| | - Rebecca A. Gallagher
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Lauren Hale
- Department of Family, Population, and Preventive Medicine, Program in Public Health, Stony Brook University, Stony Brook, NY 11794, USA
| | - Charles Branas
- Department of Epidemiology, Columbia University, New York, NY 10032, USA
| | - Pamela Alfonso-Miller
- Northumbria Sleep Research, Department of Psychology, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| |
Collapse
|
2
|
Jurcau A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2021; 22:11847. [PMID: 34769277 PMCID: PMC8584731 DOI: 10.3390/ijms222111847] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
As the population ages, the incidence of neurodegenerative diseases is increasing. Due to intensive research, important steps in the elucidation of pathogenetic cascades have been made and significantly implicated mitochondrial dysfunction and oxidative stress. However, the available treatment in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis is mainly symptomatic, providing minor benefits and, at most, slowing down the progression of the disease. Although in preclinical setting, drugs targeting mitochondrial dysfunction and oxidative stress yielded encouraging results, clinical trials failed or had inconclusive results. It is likely that by the time of clinical diagnosis, the pathogenetic cascades are full-blown and significant numbers of neurons have already degenerated, making it impossible for mitochondria-targeted or antioxidant molecules to stop or reverse the process. Until further research will provide more efficient molecules, a healthy lifestyle, with plenty of dietary antioxidants and avoidance of exogenous oxidants may postpone the onset of neurodegeneration, while familial cases may benefit from genetic testing and aggressive therapy started in the preclinical stage.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
3
|
Changes in sleep EEG with aging in humans and rodents. Pflugers Arch 2021; 473:841-851. [PMID: 33791849 PMCID: PMC8076123 DOI: 10.1007/s00424-021-02545-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
Sleep is one of the most ubiquitous but also complex animal behaviors. It is regulated at the global, systems level scale by circadian and homeostatic processes. Across the 24-h day, distribution of sleep/wake activity differs between species, with global sleep states characterized by defined patterns of brain electric activity and electromyography. Sleep patterns have been most intensely investigated in mammalian species. The present review begins with a brief overview on current understandings on the regulation of sleep, and its interaction with aging. An overview on age-related variations in the sleep states and associated electrophysiology and oscillatory events in humans as well as in the most common laboratory rodents follows. We present findings observed in different studies and meta-analyses, indicating links to putative physiological changes in the aged brain. Concepts requiring a more integrative view on the role of circadian and homeostatic sleep regulatory mechanisms to explain aging in sleep are emerging.
Collapse
|
4
|
Romanella SM, Roe D, Tatti E, Cappon D, Paciorek R, Testani E, Rossi A, Rossi S, Santarnecchi E. The Sleep Side of Aging and Alzheimer's Disease. Sleep Med 2021; 77:209-225. [PMID: 32912799 PMCID: PMC8364256 DOI: 10.1016/j.sleep.2020.05.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/23/2023]
Abstract
As we age, sleep patterns undergo significant modifications in micro and macrostructure, worsening cognition and quality of life. These are associated with remarkable brain changes, like deterioration in synaptic plasticity, gray and white matter, and significant modifications in hormone levels. Sleep alterations are also a core component of mild cognitive impairment (MCI) and Alzheimer's Disease (AD). AD night time is characterized by a gradual decrease in slow-wave activity and a substantial reduction of REM sleep. Sleep abnormalities can accelerate AD pathophysiology, promoting the accumulation of amyloid-β (Aβ) and phosphorylated tau. Thus, interventions that target sleep disturbances in elderly people and MCI patients have been suggested as a possible strategy to prevent or decelerate conversion to dementia. Although cognitive-behavioral therapy and pharmacological medications are still first-line treatments, despite being scarcely effective, new interventions have been proposed, such as sensory stimulation and Noninvasive Brain Stimulation (NiBS). The present review outlines the current state of the art of the relationship between sleep modifications in healthy aging and the neurobiological mechanisms underlying age-related changes. Furthermore, we provide a critical analysis showing how sleep abnormalities influence the prognosis of AD pathology by intensifying Aβ and tau protein accumulation. We discuss potential therapeutic strategies to target sleep disruptions and conclude that there is an urgent need for testing new therapeutic sleep interventions.
Collapse
Affiliation(s)
- S M Romanella
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - D Roe
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - E Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, USA
| | - D Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - R Paciorek
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - E Testani
- Sleep Medicine Center, Department of Neurology, Policlinico Santa Maria Le Scotte, Siena, Italy
| | - A Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - S Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - E Santarnecchi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Błaszczyk JW. Energy Metabolism Decline in the Aging Brain-Pathogenesis of Neurodegenerative Disorders. Metabolites 2020; 10:metabo10110450. [PMID: 33171879 PMCID: PMC7695180 DOI: 10.3390/metabo10110450] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
There is a growing body of evidencethat indicates that the aging of the brain results from the decline of energy metabolism. In particular, the neuronal metabolism of glucose declines steadily, resulting in a growing deficit of adenosine triphosphate (ATP) production-which, in turn, limits glucose access. This vicious circle of energy metabolism at the cellular level is evoked by a rising deficiency of nicotinamide adenine dinucleotide (NAD) in the mitochondrial salvage pathway and subsequent impairment of the Krebs cycle. A decreasing NAD level also impoverishes the activity of NAD-dependent enzymes that augments genetic errors and initiate processes of neuronal degeneration and death.This sequence of events is characteristic of several brain structures in which neurons have the highest energy metabolism. Neurons of the cerebral cortex and basal ganglia with long unmyelinated axons and these with numerous synaptic junctions are particularly prone to senescence and neurodegeneration. Unfortunately, functional deficits of neurodegeneration are initially well-compensated, therefore, clinical symptoms are recognized too late when the damages to the brain structures are already irreversible. Therefore, future treatment strategies in neurodegenerative disorders should focus on energy metabolism and compensation age-related NAD deficit in neurons. This review summarizes the complex interrelationships between metabolic processes on the systemic and cellular levels and provides directions on how to reduce the risk of neurodegeneration and protect the elderly against neurodegenerative diseases.
Collapse
Affiliation(s)
- Janusz Wiesław Błaszczyk
- Department of Human Motor Behavior, Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| |
Collapse
|
6
|
Romanella SM, Roe D, Paciorek R, Cappon D, Ruffini G, Menardi A, Rossi A, Rossi S, Santarnecchi E. Sleep, Noninvasive Brain Stimulation, and the Aging Brain: Challenges and Opportunities. Ageing Res Rev 2020; 61:101067. [PMID: 32380212 PMCID: PMC8363192 DOI: 10.1016/j.arr.2020.101067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
As we age, sleep patterns undergo severe modifications of their micro and macrostructure, with an overall lighter and more fragmented sleep structure. In general, interventions targeting sleep represent an excellent opportunity not only to maintain life quality in the healthy aging population, but also to enhance cognitive performance and, when pathology arises, to potentially prevent/slow down conversion from e.g. Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Sleep abnormalities are, in fact, one of the earliest recognizable biomarkers of dementia, being also partially responsible for a cascade of cortical events that worsen dementia pathophysiology, including impaired clearance systems leading to build-up of extracellular amyloid-β (Aβ) peptide and intracellular hyperphosphorylated tau proteins. In this context, Noninvasive Brain Stimulation (NiBS) techniques, such as transcranial electrical stimulation (tES) and transcranial magnetic stimulation (TMS), may help investigate the neural substrates of sleep, identify sleep-related pathology biomarkers, and ultimately help patients and healthy elderly individuals to restore sleep quality and cognitive performance. However, brain stimulation applications during sleep have so far not been fully investigated in healthy elderly cohorts, nor tested in AD patients or other related dementias. The manuscript discusses the role of sleep in normal and pathological aging, reviewing available evidence of NiBS applications during both wakefulness and sleep in healthy elderly individuals as well as in MCI/AD patients. Rationale and details for potential future brain stimulation studies targeting sleep alterations in the aging brain are discussed, including enhancement of cognitive performance, overall quality of life as well as protein clearance.
Collapse
Affiliation(s)
- Sara M Romanella
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Daniel Roe
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachel Paciorek
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Davide Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Arianna Menardi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Padova Neuroscience Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandro Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Siena Robotics and Systems Lab (SIRS-Lab), Engineering and Mathematics Department, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Effects of Aging on Cortical Neural Dynamics and Local Sleep Homeostasis in Mice. J Neurosci 2018; 38:3911-3928. [PMID: 29581380 PMCID: PMC5907054 DOI: 10.1523/jneurosci.2513-17.2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/13/2023] Open
Abstract
Healthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss. We performed chronic recordings of cortical neural activity and local field potentials from the motor cortex in young and older male C57BL/6J mice, during spontaneous waking and sleep, as well as during sleep after sleep deprivation. In older animals, we observed an increase in the incidence of non-rapid eye movement sleep local field potential slow waves and their associated neuronal silent (OFF) periods, whereas the overall pattern of state-dependent cortical neuronal firing was generally similar between ages. Furthermore, we observed that the response to sleep deprivation at the level of local cortical network activity was not affected by aging. Our data thus suggest that the local cortical neural dynamics and local sleep homeostatic mechanisms, at least in the motor cortex, are not impaired during healthy senescence in mice. This indicates that powerful protective or compensatory mechanisms may exist to maintain neuronal function stable across the life span, counteracting global changes in sleep amount and architecture. SIGNIFICANCE STATEMENT The biological significance of age-dependent changes in sleep is unknown but may reflect either a diminished sleep need or a reduced capacity to generate deep sleep stages. As aging has been linked to profound disruptions in cortical sleep oscillations and because sleep need is reflected in specific patterns of cortical activity, we performed chronic electrophysiological recordings of cortical neural activity during waking, sleep, and after sleep deprivation from young and older mice. We found that all main hallmarks of cortical activity during spontaneous sleep and recovery sleep after sleep deprivation were largely intact in older mice, suggesting that the well-described age-related changes in global sleep are unlikely to arise from a disruption of local network dynamics within the neocortex.
Collapse
|
8
|
Abstract
Heritability of obesity and body weight variation is high. Molecular genetic studies have led to the identification of mutations in a few genes, with a major effect on obesity (major genes and monogenic forms). Analyses of these genes have helped to unravel important pathways and have created a more profound understanding of body weight regulation. For most individuals, a polygenic basis is relevant for the genetic predisposition to obesity. Small effect sizes are conveyed by the polygenic variants. Hence, only if a number of these variants is harboured, a sizeable phenotypic effect is detectable. Most, if not all, of the genes relevant to weight regulation are expressed in the hypothalamus. This underscores the major role of this region of the brain in body weight regulation.
Collapse
Affiliation(s)
- Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| | - Anna-Lena Volckmar
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Essen, Essen, Germany.
| |
Collapse
|
9
|
Ingiosi AM, Opp MR, Krueger JM. Sleep and immune function: glial contributions and consequences of aging. Curr Opin Neurobiol 2013; 23:806-11. [PMID: 23452941 DOI: 10.1016/j.conb.2013.02.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 11/18/2022]
Abstract
The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | | | | |
Collapse
|
10
|
St-Onge MP. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure. J Clin Sleep Med 2013; 9:73-80. [PMID: 23319909 DOI: 10.5664/jcsm.2348] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Short sleep duration and obesity are common occurrence in today's society. An extensive literature from cross-sectional and longitudinal epidemiological studies shows a relationship between short sleep and prevalence of obesity and weight gain. However, causality cannot be inferred from such studies. Clinical intervention studies have examined whether reducing sleep in normal sleepers, typically sleeping 7-9 h/night, can affect energy intake, energy expenditure, and endocrine regulators of energy balance. The aim of this review is to evaluate studies that have assessed food intake, energy expenditure, and leptin and ghrelin levels after periods of restricted and normal sleep. Most studies support the notion that restricting sleep increases food intake, but the effects on energy expenditure are mixed. Differences in methodology and component of energy expenditure analyzed may account for the discrepancies. Studies examining the effects of sleep on leptin and ghrelin have provided conflicting results with increased, reduced, or unchanged leptin and ghrelin levels after restricted sleep compared to normal sleep. Energy balance of study participants and potential sex differences may account for the varied results. Studies should strive for constant energy balance and feeding schedules when assessing the role of sleep on hormonal profile. Although studies suggest that restricting sleep may lead to weight gain via increased food intake, research is needed to examine the impact on energy expenditure and endocrine controls. Also, studies have been of short duration, and there is little knowledge on the reverse question: does increasing sleep duration in short sleepers lead to negative energy balance?
Collapse
Affiliation(s)
- Marie-Pierre St-Onge
- New York Obesity Nutrition Research Center, St. Luke's/Roosevelt Hospital, New York, NY, USA.
| |
Collapse
|
11
|
Serotonin: from top to bottom. Biogerontology 2012; 14:21-45. [PMID: 23100172 DOI: 10.1007/s10522-012-9406-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/08/2012] [Indexed: 01/13/2023]
Abstract
Serotonin is a monoamine neurotransmitter, which is phylogenetically conserved in a wide range of species from nematodes to humans. In mammals, age-related changes in serotonin systems are known risk factors of age-related diseases, such as diabetes, faecal incontinence and cardiovascular diseases. A decline in serotonin function with aging would be consistent with observations of age-related changes in behaviours, such as sleep, sexual behaviour and mood all of which are linked to serotonergic function. Despite this little is known about serotonin in relation to aging. This review aims to give a comprehensive analysis of the distribution, function and interactions of serotonin in the brain; gastrointestinal tract; skeletal; vascular and immune systems. It also aims to demonstrate how the function of serotonin is linked to aging and disease pathology in these systems. The regulation of serotonin via microRNAs is also discussed, as are possible applications of serotonergic drugs in aging research and age-related diseases. Furthermore, this review demonstrates that serotonin is potentially involved in whole organism aging through its links with multiple organs, the immune system and microRNA regulation. Methods to investigate these links are discussed.
Collapse
|