1
|
Szczupak D, LjungQvist Brinson L, Kolarcik CL. Brain Connectivity, Neural Networks, and Resilience in Aging and Neurodegeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00027-6. [PMID: 39863250 DOI: 10.1016/j.ajpath.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
The importance of complex systems has become increasingly evident in recent years. The nervous system is one such example, with neural networks sitting at the intersection of complex networks and biology. A particularly exciting feature is the resilience of complex systems. For example, the ability of the nervous system to perform even in the face of challenges that include neuronal loss, neuroinflammation, protein accumulation, axonal disruptions, and metabolic stress is an intriguing and exciting line of investigation. In neurodegenerative diseases, neural network resilience is responsible for the time between the earliest disease-linked changes and clinical symptom onset and disease diagnosis. In this way, connectivity resilience of neurons within the complex network of cells that make up the nervous system has significant implications. This review provides an overview of relevant concepts related to complex systems with a focus on the connectivity of the nervous system. It discusses the development of the neural network and how a delicate balance determines how this complex system responds to injury, with examples illustrating maladaptive plasticity. The review then addresses the implications of these concepts, methods to understand brain connectivity and neural networks, and recent research efforts aimed at understanding neurodegeneration from this perspective. This study aims to provide foundational knowledge and an overview of current research directions in this evolving and exciting area of neuroscience.
Collapse
Affiliation(s)
- Diego Szczupak
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lovisa LjungQvist Brinson
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christi L Kolarcik
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Jiao S, Wang K, Luo Y, Zeng J, Han Z. Plastic reorganization of the topological asymmetry of hemispheric white matter networks induced by congenital visual experience deprivation. Neuroimage 2024; 299:120844. [PMID: 39260781 DOI: 10.1016/j.neuroimage.2024.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024] Open
Abstract
Congenital blindness offers a unique opportunity to investigate human brain plasticity. The influence of congenital visual loss on the asymmetry of the structural network remains poorly understood. To address this question, we recruited 21 participants with congenital blindness (CB) and 21 age-matched sighted controls (SCs). Employing diffusion and structural magnetic resonance imaging, we constructed hemispheric white matter (WM) networks using deterministic fiber tractography and applied graph theory methodologies to assess topological efficiency (i.e., network global efficiency, network local efficiency, and nodal local efficiency) within these networks. Statistical analyses revealed a consistent leftward asymmetry in global efficiency across both groups. However, a different pattern emerged in network local efficiency, with the CB group exhibiting a symmetric state, while the SC group showed a leftward asymmetry. Specifically, compared to the SC group, the CB group exhibited a decrease in local efficiency in the left hemisphere, which was caused by a reduction in the nodal properties of some key regions mainly distributed in the left occipital lobe. Furthermore, interhemispheric tracts connecting these key regions exhibited significant structural changes primarily in the splenium of the corpus callosum. This result confirms the initial observation that the reorganization in asymmetry of the WM network following congenital visual loss is associated with structural changes in the corpus callosum. These findings provide novel insights into the neuroplasticity and adaptability of the brain, particularly at the network level.
Collapse
Affiliation(s)
- Saiyi Jiao
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ke Wang
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; School of System Science, Beijing Normal University, Beijing 100875, China
| | - Yudan Luo
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Department of Psychology and Art Education, Chengdu Education Research Institute, Chengdu 610036, China
| | - Jiahong Zeng
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Gajawelli N, Paulli A, Deoni S, Paquette N, Darakjian D, Salazar C, Dean D, O'Muircheartaigh J, Nelson MD, Wang Y, Lepore N. Surface-based morphometry of the corpus callosum in young children of ages 1-5. Hum Brain Mapp 2024; 45:e26693. [PMID: 38924235 PMCID: PMC11199824 DOI: 10.1002/hbm.26693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/05/2024] [Accepted: 04/05/2024] [Indexed: 06/28/2024] Open
Abstract
The corpus callosum (CC) is a large white matter fiber bundle in the brain and is involved in various cognitive, sensory, and motor processes. While implicated in various developmental and psychiatric disorders, much is yet to be uncovered about the normal development of this structure, especially in young children. Additionally, while sexual dimorphism has been reported in prior literature, observations have not necessarily been consistent. In this study, we use morphometric measures including surface tensor-based morphometry (TBM) to investigate local changes in the shape of the CC in children between the ages of 12 and 60 months, in intervals of 12 months. We also analyze sex differences in each of these age groups. We observed larger significant clusters in the earlier ages between 12 v 24 m and between 48 v 60 m and localized differences in the anterior region of the body of the CC. Sex differences were most pronounced in the 12 m group. This study adds to the growing literature of work aiming to understand the developing brain and emphasizes the utility of surface TBM as a useful tool for analyzing regional differences in neuroanatomical morphometry.
Collapse
Affiliation(s)
- Niharika Gajawelli
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Athelia Paulli
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Sean Deoni
- Department of PediatricsWarren Alpert Medical School at Brown UniversityProvidenceRhode IslandUSA
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Natacha Paquette
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of PsychologyCHU Sainte‐JustineMontrealQuebecCanada
| | - Danielle Darakjian
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- College of MedicineCalifornia Northstate UniversityElk GroveCaliforniaUSA
| | - Carlos Salazar
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Douglas Dean
- Waisman Laboratory for Brain Imaging and BehaviorUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | | | - Marvin D. Nelson
- Department of PediatricsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Yalin Wang
- Department of Computer ScienceArizona State UniversityTempeArizonaUSA
| | - Natasha Lepore
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Paré S, Bleau M, Dricot L, Ptito M, Kupers R. Brain structural changes in blindness: a systematic review and an anatomical likelihood estimation (ALE) meta-analysis. Neurosci Biobehav Rev 2023; 150:105165. [PMID: 37054803 DOI: 10.1016/j.neubiorev.2023.105165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
In recent decades, numerous structural brain imaging studies investigated purported morphometric changes in early (EB) and late onset blindness (LB). The results of these studies have not yielded very consistent results, neither with respect to the type, nor to the anatomical locations of the brain morphometric alterations. To better characterize the effects of blindness on brain morphometry, we performed a systematic review and an Anatomical-Likelihood-Estimation (ALE) coordinate-based-meta-analysis of 65 eligible studies on brain structural changes in EB and LB, including 890 EB, 466 LB and 1257 sighted controls. Results revealed atrophic changes throughout the whole extent of the retino-geniculo-striate system in both EB and LB, whereas changes in areas beyond the occipital lobe occurred in EB only. We discuss the nature of some of the contradictory findings with respect to the used brain imaging methodologies and characteristics of the blind populations such as the onset, duration and cause of blindness. Future studies should aim for much larger sample sizes, eventually by merging data from different brain imaging centers using the same imaging sequences, opt for multimodal structural brain imaging, and go beyond a purely structural approach by combining functional with structural connectivity network analyses.
Collapse
Affiliation(s)
- Samuel Paré
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Maxime Bleau
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium
| | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ron Kupers
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Fan Y, Wang G, Dong Q, Liu Y, Leporé N, Wang Y. Tetrahedral spectral feature-Based bayesian manifold learning for grey matter morphometry: Findings from the Alzheimer's disease neuroimaging initiative. Med Image Anal 2021; 72:102123. [PMID: 34214958 PMCID: PMC8316398 DOI: 10.1016/j.media.2021.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
Structural and anatomical analyses of magnetic resonance imaging (MRI) data often require a reconstruction of the three-dimensional anatomy to a statistical shape model. Our prior work demonstrated the usefulness of tetrahedral spectral features for grey matter morphometry. However, most of the current methods provide a large number of descriptive shape features, but lack an unsupervised scheme to automatically extract a concise set of features with clear biological interpretations and that also carries strong statistical power. Here we introduce a new tetrahedral spectral feature-based Bayesian manifold learning framework for effective statistical analysis of grey matter morphology. We start by solving the technical issue of generating tetrahedral meshes which preserve the details of the grey matter geometry. We then derive explicit weak-form tetrahedral discretizations of the Hamiltonian operator (HO) and the Laplace-Beltrami operator (LBO). Next, the Schrödinger's equation is solved for constructing the scale-invariant wave kernel signature (SIWKS) as the shape descriptor. By solving the heat equation and utilizing the SIWKS, we design a morphometric Gaussian process (M-GP) regression framework and an active learning strategy to select landmarks as concrete shape descriptors. We evaluate the proposed system on publicly available data from the Alzheimers Disease Neuroimaging Initiative (ADNI), using subjects structural MRI covering the range from cognitively unimpaired (CU) to full blown Alzheimer's disease (AD). Our analyses suggest that the SIWKS and M-GP compare favorably with seven other baseline algorithms to obtain grey matter morphometry-based diagnoses. Our work may inspire more tetrahedral spectral feature-based Bayesian learning research in medical image analysis.
Collapse
Affiliation(s)
- Yonghui Fan
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Gang Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA; School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Yuxiang Liu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Natasha Leporé
- CIBORG Lab, Department of Radiology Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
6
|
Guerreiro MJS, Linke M, Lingareddy S, Kekunnaya R, Röder B. The effect of congenital blindness on resting-state functional connectivity revisited. Sci Rep 2021; 11:12433. [PMID: 34127748 PMCID: PMC8203782 DOI: 10.1038/s41598-021-91976-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Lower resting-state functional connectivity (RSFC) between 'visual' and non-'visual' neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition-as well as to evaluate the effect of resting state condition on group differences in RSFC-, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between 'visual' and non-'visual' circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.
Collapse
Affiliation(s)
- Maria J S Guerreiro
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany.
- Biological Psychology, Department of Psychology, Carl Von Ossietzky University of Oldenburg, 26111, Oldenburg, Germany.
| | - Madita Linke
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
| | - Sunitha Lingareddy
- Department of Radiology, Lucid Medical Diagnostics, Banjara Hills, Hyderabad, Telengana, 500082, India
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V. Ramanamma Children's Eye Care Center, Department of Pediatric Ophthalmology, Strabismus, and Neuro-Ophthalmology, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telengana, 500034, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
| |
Collapse
|
7
|
Ptito M, Bleau M, Djerourou I, Paré S, Schneider FC, Chebat DR. Brain-Machine Interfaces to Assist the Blind. Front Hum Neurosci 2021; 15:638887. [PMID: 33633557 PMCID: PMC7901898 DOI: 10.3389/fnhum.2021.638887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The loss or absence of vision is probably one of the most incapacitating events that can befall a human being. The importance of vision for humans is also reflected in brain anatomy as approximately one third of the human brain is devoted to vision. It is therefore unsurprising that throughout history many attempts have been undertaken to develop devices aiming at substituting for a missing visual capacity. In this review, we present two concepts that have been prevalent over the last two decades. The first concept is sensory substitution, which refers to the use of another sensory modality to perform a task that is normally primarily sub-served by the lost sense. The second concept is cross-modal plasticity, which occurs when loss of input in one sensory modality leads to reorganization in brain representation of other sensory modalities. Both phenomena are training-dependent. We also briefly describe the history of blindness from ancient times to modernity, and then proceed to address the means that have been used to help blind individuals, with an emphasis on modern technologies, invasive (various type of surgical implants) and non-invasive devices. With the advent of brain imaging, it has become possible to peer into the neural substrates of sensory substitution and highlight the magnitude of the plastic processes that lead to a rewired brain. Finally, we will address the important question of the value and practicality of the available technologies and future directions.
Collapse
Affiliation(s)
- Maurice Ptito
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Maxime Bleau
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Ismaël Djerourou
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Samuel Paré
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Fabien C. Schneider
- TAPE EA7423 University of Lyon-Saint Etienne, Saint Etienne, France
- Neuroradiology Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Daniel-Robert Chebat
- Visual and Cognitive Neuroscience Laboratory (VCN Lab), Department of Psychology, Faculty of Social Sciences and Humanities, Ariel University, Ariel, Israël
- Navigation and Accessibility Research Center of Ariel University (NARCA), Ariel, Israël
| |
Collapse
|
8
|
Gajawelli N, Deoni S, Shi J, Linguraru MG, Porras AR, Nelson MD, Tamrazi B, Rajagopalan V, Wang Y, Lepore N. Neurocranium thickness mapping in early childhood. Sci Rep 2020; 10:16651. [PMID: 33024168 PMCID: PMC7538561 DOI: 10.1038/s41598-020-73589-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
The neurocranium changes rapidly in early childhood to accommodate the growing brain. Developmental disorders and environmental factors such as sleep position may lead to abnormal neurocranial maturation. Therefore, it is important to understand how this structure develops, in order to provide a baseline for early detection of anomalies. However, its anatomy has not yet been well studied in early childhood due to the lack of available imaging databases. In hospitals, CT is typically used to image the neurocranium when a pathology is suspected, but the presence of ionizing radiation makes it harder to construct databases of healthy subjects. In this study, instead, we use a dataset of MRI data from healthy normal children in the age range of 6 months to 36 months to study the development of the neurocranium. After extracting its outline from the MRI data, we used a conformal geometry-based analysis pipeline to detect local thickness growth throughout this age span. These changes will help us understand cranial bone development with respect to the brain, as well as detect abnormal variations, which will in turn inform better treatment strategies for implicated disorders.
Collapse
Affiliation(s)
- Niharika Gajawelli
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Voxel Healthcare, LLC, Los Angeles, CA, USA
| | - Sean Deoni
- Advanced Baby Imaging Lab, Women & Infants Hospital of RI, Providence, RI, USA
- Department of Pediatrics, Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Radiology, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Jie Shi
- Department of Computer Science, Arizona State University, Tempe, AZ, USA
| | - Marius George Linguraru
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
- Departments of Radiology and Pediatrics, George Washington University, Washington, DC, USA
| | - Antonio R Porras
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschultz Medical Campus, Aurora, CO, USA
| | - Marvin D Nelson
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benita Tamrazi
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Vidya Rajagopalan
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yalin Wang
- Department of Computer Science, Arizona State University, Tempe, AZ, USA
| | - Natasha Lepore
- CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
- Voxel Healthcare, LLC, Los Angeles, CA, USA.
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Liu YX, Li B, Wu KR, Tang LY, Lin Q, Li QH, Yuan Q, Shi WQ, Liang RB, Ge QM, Shao Y. Altered white matter integrity in patients with monocular blindness: A diffusion tensor imaging and tract-based spatial statistics study. Brain Behav 2020; 10:e01720. [PMID: 32558355 PMCID: PMC7428480 DOI: 10.1002/brb3.1720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Visual deprivation can lead to abnormal and plastic changes in the brain's visual system and other systems. Although the secondary changes of gray matter in patients have been well studied, the study of white matter is rare. In fact, subtle changes in white matter may be revealed by diffusion tensor imaging, and tract-based spatial statistics can be used to analyze DTI image data. PURPOSE In the present study, diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS) were used to investigate abnormal structural changes in the white matter (WM) of patients with monocular blindness (MB). METHODS We recruited 16 healthy controls (HC) (fourteen males and two females) and 16 patients (fifteen males and one female) with right-eye blindness (without differences in left-eye vision). All patients were of similar age. Data acquisition was performed using magnetic resonance imaging (MRI) and DTI. Voxel-based whole brain comparisons of fractional anisotropy (FA) and radial diffusivity (RD) of WM fibers in patients and HC were performed using the TBSS method. The mean FA and RD values for altered brain regions in MB patients were analyzed via the receiver operating characteristic (ROC) curve. Correlation analysis was performed to investigate the relationships between the average FA (RD) value of the whole brain and anxiety score, depression score, and visual function questionnaire score in MB patients. RESULTS In MB patients, the mean FA of the whole brain was decreased versus HC. Moreover, the FA values of the corpus callosum, the corona radiata, the posterior thalamic radiation, and the right retrolenticular part of internal capsule were significantly decreased. In addition, the average RD value of the whole brain in MB patients was higher than that observed in HC. The mean FA and RD values of brain regions were analyzed using the ROC curve, and the results showed that the area under the ROC curve was more accurate. Furthermore, the average FA and RD values of the whole brain were significantly correlated with anxiety score, depression score, and visual function-related quality of life score. CONCLUSION DTI and TBSS may be useful in examining abnormal spontaneous alterations in the WM of MB patients. The observed changes in FA and RD values may imply the larvaceous neurological mechanism involved in MB.
Collapse
Affiliation(s)
- Yu-Xin Liu
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Li
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kang-Rui Wu
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Ying Tang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen University School of Medicine, Xiamen, China
| | - Qi Lin
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing-Hai Li
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Yuan
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Qing Shi
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong-Bin Liang
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian-Min Ge
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Abstract
Background Several neuroimaging studies demonstrated that visual deprivation led to significant cross-modal plasticity in the brain’s functional and anatomical architecture. Purpose To investigate the pattern of the interhemispheric functional connectivity in individuals with late blindness using the voxel-mirrored homotopic connectivity (VMHC) and seed-based functional connectivity (FC) methods. Material and Methods Forty-four individuals with late blindness (22 men, 22 women; mean age = 39.88 ± 12.84 years) and 55 sighted control individuals (35 men, 20 women; mean age = 43.13 ± 13.98 years)—closely matched for age, sex, and education—underwent resting-state magnetic resonance imaging scans. The VMHC and seed-based FC methods were applied to assess interhemispheric coordination in a voxel-wise manner. Results Compared with the sighted control groups, the late blindness groups showed decreased VMHC values in the bilateral cuneus/calcarine/lingual gyrus (CUN/CAL/LING) (BA 17/18/19) (voxel level: P < 0.001, Gaussian random field [GRF] correction, cluster level: P < 0.005). Meanwhile, for seed-based FC analysis, compared with the sighted control group, the late blindness group showed a decreased FC between the right lower VMHC regions and the bilateral CUN/LING/CAL/precuneus (PreCUN)/left middle occipital gyrus (MOG) (BA 18/19/30/31) and left precentral gyrus (PreCG) and postcentral gyrus (PostCG) (BA 2/3/4/6). The late blindness group showed a decreased FC between the left lower VMHC regions and the bilateral CUN/LING/CAL/PreCUN (BA 18/19/31) and left PreCG and PostCG (BA 2/3/4/6) relative to the sighted control group (voxel level: P < 0.001, GRF correction, cluster level: P < 0.005). Moreover, a negative correlation was observed between the duration of blindness and VMHC values in the bilateral CUN/CAL/LING (r = −0.393, P = 0.008) in individuals with late blindness. Conclusion Our results indicated that late blindness induced substantial impairment of interhemispheric coordination in the visual cortex. This might reflect impaired visual fusion, visual recognition function, and top-down modulations in individuals with late blindness.
Collapse
Affiliation(s)
- Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, PR China
| | - Han-Dong Dan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
11
|
Tregillus KEM, Likova LT. Differences in the major fiber-tracts of people with congenital and acquired blindness. ACTA ACUST UNITED AC 2020; 2020:3661-3667. [PMID: 34541437 DOI: 10.2352/issn.2470-1173.2020.11.hvei-366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In order to better understand how our visual system processes information, we must understand the underlying brain connectivity architecture, and how it can get reorganized under visual deprivation. The full extent to which visual development and visual loss affect connectivity is not well known. To investigate the effect of the onset of blindness on structural connectivity both at the whole-brain voxel-wise level and at the level of all major white-matter tracts, we applied two complementary Diffusion-Tension Imaging (DTI) methods, TBSS and AFQ. Diffusion-weighted brain images were collected from three groups of participants: congenitally blind (CB), acquired blind (AB), and fully sighted controls. The differences between these groups were evaluated on a voxel-wise scale with Tract-Based Spatial Statistics (TBSS) method, and on larger-scale with Automated Fiber Quantification (AFQ), a method that allows for between-group comparisons at the level of the major fiber tracts. TBSS revealed that both blind groups tended to have higher FA than sighted controls in the central structures of the brain. AFQ revealed that, where the three groups differed, congenitally blind participants tended to be more similar to sighted controls than to those participants who had acquired blindness later in life. These differences were specifically manifested in the left uncinated fasciculus, the right corticospinal fasciculus, and the left superior longitudinal fasciculus, areas broadly associated with a range of higher-level cognitive systems.
Collapse
Affiliation(s)
| | - Lora T Likova
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA
| |
Collapse
|
12
|
Cavaliere C, Aiello M, Soddu A, Laureys S, Reislev NL, Ptito M, Kupers R. Organization of the commissural fiber system in congenital and late-onset blindness. NEUROIMAGE-CLINICAL 2019; 25:102133. [PMID: 31945651 PMCID: PMC6965724 DOI: 10.1016/j.nicl.2019.102133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022]
Abstract
Larger anterior commissure (AC) in congenitally (CB) and late blind (LB) subjects. Decreased fractional anisotropy (FA) of the posterior part of AC (pAC) in CB and LB. Decreased FA in pAC is paralleled by increased number of pAC streamlines in CB only. Selective reduction of the splenium of the corpus callosum (CC) in CB and LB. Reduction of splenium correlated with decrease in streamlines and tract volume.
We investigated the effects of blindness on the structural and functional integrity of the corpus callosum and the anterior commissure (AC), which together form the two major components of the commissural pathways. Twelve congenitally blind (CB), 15 late blind (LB; mean onset of blindness of 16.6 ± 8.9 years), and 15 matched normally sighted controls (SC) participated in a multimodal brain imaging study. Magnetic resonance imaging(MRI) data were acquired using a 3T scanner, and included a structural brain scan, resting state functional MRI, and diffusion-weighted imaging. We used tractography to divide the AC into its anterior (aAC) and posterior (pAC) branch. Virtual tract dissection was performed using a deterministic spherical deconvolution tractography algorithm. The corpus callosum was subdivided into five subregions based on the criteria described by Witelson and modified by Bermudez and Zatorre. Our data revealed decreased fractional anisotropy of the pAC in CB and LB compared to SC, together with an increase in the number of streamlines in CB only. In addition, the AC surface area was significantly larger in CB compared to SC and LB, and correlated with the number of streamlines in pAC (rho = 0.55) and tract volume (rho = 0.46). As for the corpus callosum, the splenial part was significantly smaller in CB and LB, and fewer streamlines passed through it. We did not find group differences in functional connectivity of cortical areas connected by fibers crossing any of the five callosal subregions. The present data suggest that the two main components of the commissural system undergo neuroplastic changes, irrespective of the age of onset of blindness, although the alterations observed in the AC are more important in congenital than late-onset blindness.
Collapse
Affiliation(s)
- Carlo Cavaliere
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy; GIGA-Consciousness - Coma Science Group, GIGA-Research and Neurology Department, University and University Hospital of Liège, Liège, Belgium.
| | - Marco Aiello
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Andrea Soddu
- Brain and Mind Institute, The Department of Physics and Astronomy, University of Western Ontario London, ON, Canada
| | - Steven Laureys
- GIGA-Consciousness - Coma Science Group, GIGA-Research and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Nina L Reislev
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Maurice Ptito
- Ecole d'Optométrie, Université de Montréal, Montréal, Québec, Canada; Department of nuclear Medicine, University of Southern Denmark, Odense, Denmark; BRAINlab, Institute of Neuroscience, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 10, 2200 Copenhagen,Denmark
| | - Ron Kupers
- Ecole d'Optométrie, Université de Montréal, Montréal, Québec, Canada; BRAINlab, Institute of Neuroscience, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 10, 2200 Copenhagen,Denmark; Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
13
|
Altered microstructure rather than morphology in the corpus callosum after lower limb amputation. Sci Rep 2017; 7:44780. [PMID: 28303959 PMCID: PMC5355997 DOI: 10.1038/srep44780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
The corpus callosum (CC) has been implicated in the reorganization of the brain following amputation. However, it is unclear which regions of the CC are involved in this process. In this study, we explored the morphometric and microstructural changes in CC subregions in patients with unilateral lower limb amputation. Thirty-eight patients and 38 age- and gender-matched normal controls were included. The CC was divided into five regions, and the area, thickness and diffusion parameters of each region were investigated. While morphometric analysis showed no significant differences between the two groups, amputees showed significant higher values in axial diffusivity, radial diffusivity and mean diffusivity in region II of the CC, which connects the bilateral premotor and supplementary motor areas. In contrast, the mean fractional anisotropy value of the fibers generated by these cortical areas, as measured by tractography, was significantly smaller in amputees. These results demonstrate that the interhemispheric pathways contributing to motor coordination and imagery are reorganized in lower limb amputees.
Collapse
|
14
|
Gamond L, Vecchi T, Ferrari C, Merabet LB, Cattaneo Z. Emotion processing in early blind and sighted individuals. Neuropsychology 2017; 31:516-524. [PMID: 28287776 DOI: 10.1037/neu0000360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Emotion processing is known to be mediated by a complex network of cortical and subcortical regions with evidence of specialized hemispheric lateralization within the brain. In light of prior evidence indicating that lateralization of cognitive functions (such as language) may depend on normal visual development, we investigated whether the lack of prior visual experience would have an impact on the development of specialized hemispheric lateralization in emotional processing. METHOD We addressed this issue by comparing performance in early blind and sighted controls on a dichotic listening task requiring the detection of specific emotional vocalizations (i.e., suggestive of happiness or sadness) presented independently to either ear. RESULTS Consistent with previous studies, we found that sighted individuals showed enhanced detection of positive vocalizations when presented in the right ear (i.e., processed within the left hemisphere) and negative vocalizations when presented in the left ear (i.e., right hemisphere). It is interesting to note that although blind individuals were as accurate as sighted controls in detecting the valance of the vocalization, performance was not consistent with any pattern of specialized hemispheric lateralization. CONCLUSIONS Overall, these results suggest that although the lack of prior visual experience may not lead to impaired emotion processing performance, the underlying neurophysiological substrate (i.e., degree of special hemispheric lateralization) may depend on normal visual development. (PsycINFO Database Record
Collapse
Affiliation(s)
- Lucile Gamond
- Department of Psychology, University of Milano-Bicocca
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia
| | | | - Lotfi B Merabet
- The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School
| | | |
Collapse
|
15
|
Wang G, Wang Y. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey Matter Morphology Signatures. Neuroimage 2017; 147:360-380. [PMID: 28033566 PMCID: PMC5303630 DOI: 10.1016/j.neuroimage.2016.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 11/19/2022] Open
Abstract
In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis.
Collapse
Affiliation(s)
- Gang Wang
- School of Information and Electrical Engineering, Ludong University, Yantai, Shandong 264025, China.
| | - Yalin Wang
- Arizona State University, School of Computing, Informatics, Decision Systems Engineering, 699 S. Mill Avenue, Tempe, AZ 85281, United States.
| |
Collapse
|
16
|
Shi J, Zhang W, Wang Y. Shape Analysis with Hyperbolic Wasserstein Distance. PROCEEDINGS. IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2016; 2016:5051-5061. [PMID: 28392672 DOI: 10.1109/cvpr.2016.546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Shape space is an active research field in computer vision study. The shape distance defined in a shape space may provide a simple and refined index to represent a unique shape. Wasserstein distance defines a Riemannian metric for the Wasserstein space. It intrinsically measures the similarities between shapes and is robust to image noise. Thus it has the potential for the 3D shape indexing and classification research. While the algorithms for computing Wasserstein distance have been extensively studied, most of them only work for genus-0 surfaces. This paper proposes a novel framework to compute Wasserstein distance between general topological surfaces with hyperbolic metric. The computational algorithms are based on Ricci flow, hyperbolic harmonic map, and hyperbolic power Voronoi diagram and the method is general and robust. We apply our method to study human facial expression, longitudinal brain cortical morphometry with normal aging, and cortical shape classification in Alzheimer's disease (AD). Experimental results demonstrate that our method may be used as an effective shape index, which outperforms some other standard shape measures in our AD versus healthy control classification study.
Collapse
Affiliation(s)
- Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering Arizona State University
| | - Wen Zhang
- School of Computing, Informatics, and Decision Systems Engineering Arizona State University
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering Arizona State University
| |
Collapse
|
17
|
Drobyshevsky A. Concurrent decrease of brain white matter tracts' thicknesses and fractional anisotropy after antenatal hypoxia-ischemia detected with tract-based spatial statistics analysis. J Magn Reson Imaging 2016; 45:829-838. [PMID: 27505718 DOI: 10.1002/jmri.25407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/18/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To examine the extent of gray and white matter (WM) injury following global antenatal hypoxia-ischemia (H-I) and resulting in muscle hypertonia in newborns in a rabbit cerebral palsy model. MATERIALS AND METHODS Rabbit dams (n = 15) underwent uterine ischemia procedure resulting in a global fetal H-I at embryonic day 22 (embryonic 22 days gestation). Newborn's brains underwent high resolution diffusion tensor imaging on a 14 Tesla magnet ex vivo. Fractional anisotropy (FA) in brains of hypertonic (n = 9), nonhypertonic (n = 6), and sham control (n = 5) kits were compared voxel-wise using Tract-Based Spatial Statistics (TBSS) approach. Herein, we used a novel method to assess local WM tracts' thicknesses in TBSS analysis and compare between the groups. RESULTS Significant (corrected P < 0.05) reduction of WM FA was found in corpus callosum splenium (91.2%), periventricular WM (83.5%), fimbria hippocampi (78.8%), cingulum (81.4%), anterior commissure (95%), internal capsule (83.2%), and optic tract (82.9%) in the hypertonic group. Significant (corrected P < 0.05) reduction in WM tracts' thicknesses was found in corpus callosum (73.3%), periventricular WM (82.5%), cingulum (73.4%), bilaterally in the hypertonic group. CONCLUSION WM injury in newborn hypertonic kits 10 days after global fetal H-I is widespread and involves not only motor but also limbic and commissural fibers in multiple regions. WM injury in newborn hypertonic kits is manifested by changes in microstructural properties and decreased FA, as well as reduction of WM volumes, relative to nonhypertonic kits. J. Magn. Reson. Imaging 2017;45:700-709. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:829-838.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, Illinois, USA
| |
Collapse
|
18
|
Ho LC, Wang B, Conner IP, van der Merwe Y, Bilonick RA, Kim SG, Wu EX, Sigal IA, Wollstein G, Schuman JS, Chan KC. In Vivo Evaluation of White Matter Integrity and Anterograde Transport in Visual System After Excitotoxic Retinal Injury With Multimodal MRI and OCT. Invest Ophthalmol Vis Sci 2015; 56:3788-800. [PMID: 26066747 DOI: 10.1167/iovs.14-15552] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT). METHODS Diffusion tensor MRI was performed at 9.4 Tesla to monitor white matter integrity changes after unilateral N-methyl-D-aspartate (NMDA)-induced ERI in six Sprague-Dawley rats and six C57BL/6J mice. Additionally, four rats and four mice were intravitreally injected with saline to compare with NMDA-injected animals. Optical coherence tomography of the retina and manganese-enhanced MRI of anterograde transport were evaluated and correlated with DTI parameters. RESULTS In the rat optic nerve, the largest axial diffusivity decrease and radial diffusivity increase occurred within the first 3 and 7 days post ERI, respectively, suggestive of early axonal degeneration and delayed demyelination. The optic tract showed smaller directional diffusivity changes and weaker DTI correlations with retinal thickness compared with optic nerve, indicative of anterograde degeneration. The splenium of corpus callosum was also reorganized at 4 weeks post ERI. The DTI profiles appeared comparable between rat and mouse models. Furthermore, the NMDA-injured visual pathway showed reduced anterograde manganese transport, which correlated with diffusivity changes along but not perpendicular to optic nerve. CONCLUSIONS Diffusion tensor MRI, manganese-enhanced MRI, and OCT provided an in vivo model system for characterizing the spatiotemporal changes in white matter integrity, the eye-brain relationships and structural-physiological relationships in the visual system after ERI.
Collapse
Affiliation(s)
- Leon C Ho
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| | - Bo Wang
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Ian P Conner
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| | - Richard A Bilonick
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Seong-Gi Kim
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 6McGowan Institute for Regenerative
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ian A Sigal
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Gadi Wollstein
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 5Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pi
| | - Joel S Schuman
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 4Department of Bioengineering, Swanson School of Engineering, University
| | - Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 2UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylva
| |
Collapse
|