1
|
Ochoa R, Soler MA, Gladich I, Battisti A, Minovski N, Rodriguez A, Fortuna S, Cossio P, Laio A. Computational Evolution Protocol for Peptide Design. Methods Mol Biol 2022; 2405:335-359. [PMID: 35298821 DOI: 10.1007/978-1-0716-1855-4_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Computational peptide design is useful for therapeutics, diagnostics, and vaccine development. To select the most promising peptide candidates, the key is describing accurately the peptide-target interactions at the molecular level. We here review a computational peptide design protocol whose key feature is the use of all-atom explicit solvent molecular dynamics for describing the different peptide-target complexes explored during the optimization. We describe the milestones behind the development of this protocol, which is now implemented in an open-source code called PARCE. We provide a basic tutorial to run the code for an antibody fragment design example. Finally, we describe three additional applications of the method to design peptides for different targets, illustrating the broad scope of the proposed approach.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, Colombia
| | | | - Ivan Gladich
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- SISSA, Trieste, Italy
| | | | - Nikola Minovski
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Ljubljana, Slovenia
| | - Alex Rodriguez
- The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Genova, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Alessandro Laio
- The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
- SISSA, Trieste, Italy
| |
Collapse
|
2
|
Sepúlveda N, Carneiro J, Lacerda E, Nacul L. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome as a Hyper-Regulated Immune System Driven by an Interplay Between Regulatory T Cells and Chronic Human Herpesvirus Infections. Front Immunol 2019; 10:2684. [PMID: 31824487 PMCID: PMC6883905 DOI: 10.3389/fimmu.2019.02684] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity and chronic viral infections are recurrent clinical observations in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a complex disease with an unknown cause. Given these observations, the regulatory CD4+ T cells (Tregs) show promise to be good candidates for the underlying pathology due to their capacity to suppress the immune responses against both self and microbial antigens. Here, we discussed the overlooked role of these cells in the chronicity of Human Herpes Virus 6 (HHV6), Herpes Simplex 1 (HSV1), and Epstein–Barr virus (EBV), as often reported as triggers of ME/CFS. Using simulations of the cross-regulation model for the dynamics of Tregs, we illustrated that mild infections might lead to a chronically activated immune responses under control of Tregs if the responding clone has a high autoimmune potential. Such infections promote persistent inflammation and possibly fatigue. We then hypothesized that ME/CFS is a condition characterized by a predominance of this type of infections under control of Tregs. In contrast, healthy individuals are hypothesized to trigger immune responses of a virus-specific clone with a low autoimmune potential. According to this hypothesis, simple model simulations of the CD4+ T-cell repertoire could reproduce the increased density and percentages of Tregs observed in patients suffering from the disease, when compared to healthy controls. A deeper analysis of Tregs in the pathogenesis of ME/CFS will help to assess the validity of this hypothesis.
Collapse
Affiliation(s)
- Nuno Sepúlveda
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.,Centre of Statistics and Its Applications, University of Lisbon, Lisbon, Portugal
| | - Jorge Carneiro
- Quantitative Organism Biology Group, Gulbenkian Institute of Science, Oeiras, Portugal
| | - Eliana Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Luis Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
3
|
Chiman K, Gholamreza K, Shahram J, Mohammad KB, Reza T, Maryam T, Haghighi SB, Makvandi M. Immuno- and bio-informatic analysis of hexon protein in human adenovirus D8 isolated from patients with keratoconjunctivitis. Future Virol 2019. [DOI: 10.2217/fvl-2018-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: In silico analysis of the hexon protein of human adenovirus serotype D-8 isolated from a patients with keratoconjunctivitis in Iran. Materials & methods: The hexon gene of HAdV-D8 was amplified by PCR. HAdV-D8 recovered from EKC outbreak was isolated by growing in A549 cells. Results: The hexon gene isolated from a patient with EKC comprised 2829 nt and 942 aa. The analyses of selected B-cell epitopes prediction (KTFQPEPQIGENNWQD) and T-cell epitopes prediction (TENFDIDLAFFDIPQ), showed high score immunogenicity, which may prove this to be a promising candidate for epitope vaccine development. Conclusion: In silico analysis of selected B-cell epitopes prediction (KTFQPEPQIGENNWQD) and T-cell epitopes prediction (TENFDIDLAFFDIPQ) are immunogenic and provoke B- and T-cell responses.
Collapse
Affiliation(s)
- Karami Chiman
- Infectious & Tropical Disease Research Center, Health Research Institute, & Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Jalilian Shahram
- Infectious & Tropical Disease Research Center, Health Research Institute, & Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Karimi B Mohammad
- Department of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, East Azerbaijan, Iran
| | - Taherkhani Reza
- Department of Microbiology & Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Tabasi Maryam
- Infectious & Tropical Disease Research Center, Health Research Institute, & Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh B Haghighi
- Department of General Courses, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Infectious & Tropical Disease Research Center, Health Research Institute, & Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Nelson SA, Sant AJ. Imprinting and Editing of the Human CD4 T Cell Response to Influenza Virus. Front Immunol 2019; 10:932. [PMID: 31134060 PMCID: PMC6514101 DOI: 10.3389/fimmu.2019.00932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Immunity to influenza is unique among pathogens, in that immune memory is established both via intermittent lung localized infections with highly variable influenza virus strains and by intramuscular vaccinations with inactivated protein-based vaccines. Studies in the past decades have suggested that the B cell responses to influenza infection and vaccination are highly biased by an individual's early history of influenza infection. This reactivity likely reflects both the competitive advantage that memory B cells have in an immune response and the relatively limited diversity of epitopes in influenza hemagglutinin that are recognized by B cells. In contrast, CD4 T cells recognize a wide array of epitopes, with specificities that are heavily influenced by the diversity of influenza antigens available, and a multiplicity of functions that are determined by both priming events and subsequent confrontations with antigens. Here, we consider the events that prime and remodel the influenza-specific CD4 T cell response in humans that have highly diverse immune histories and how the CD4 repertoire may be edited in terms of functional potential and viral epitope specificity. We discuss the consequences that imprinting and remodeling may have on the potential of different human hosts to rapidly respond with protective cellular immunity to infection. Finally, these issues are discussed in the context of future avenues of investigation and vaccine strategies.
Collapse
Affiliation(s)
| | - Andrea J. Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Lin R, Choi YH, Zidar DA, Walker JKL. β-Arrestin-2-Dependent Signaling Promotes CCR4-mediated Chemotaxis of Murine T-Helper Type 2 Cells. Am J Respir Cell Mol Biol 2018; 58:745-755. [PMID: 29361236 PMCID: PMC6002661 DOI: 10.1165/rcmb.2017-0240oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/10/2017] [Indexed: 12/24/2022] Open
Abstract
Allergic asthma is a complex inflammatory disease that leads to significant healthcare costs and reduction in quality of life. Although many cell types are implicated in the pathogenesis of asthma, CD4+ T-helper cell type 2 (Th2) cells are centrally involved. We previously reported that the asthma phenotype is virtually absent in ovalbumin-sensitized and -challenged mice that lack global expression of β-arrestin (β-arr)-2 and that CD4+ T cells from these mice displayed significantly reduced CCL22-mediated chemotaxis. Because CCL22-mediated activation of CCR4 plays a role in Th2 cell regulation in asthmatic inflammation, we hypothesized that CCR4-mediated migration of CD4+ Th2 cells to the lung in asthma may use β-arr-dependent signaling. To test this hypothesis, we assessed the effect of various signaling inhibitors on CCL22-induced chemotaxis using in vitro-polarized primary CD4+ Th2 cells from β-arr2-knockout and wild-type mice. Our results show, for the first time, that CCL22-induced, CCR4-mediated Th2 cell chemotaxis is dependent, in part, on a β-arr2-dependent signaling pathway. In addition, we show that this chemotactic signaling mechanism involves activation of P-p38 and Rho-associated protein kinase. These findings point to a proinflammatory role for β-arr2-dependent signaling and support β-arr2 as a novel therapeutic target in asthma.
Collapse
Affiliation(s)
- Rui Lin
- Duke University Division of Pulmonary Medicine and
| | - Yeon ho Choi
- Duke University Division of Pulmonary Medicine and
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Julia K. L. Walker
- Duke University Division of Pulmonary Medicine and
- Duke University School of Nursing, Duke University, Durham, North Carolina; and
| |
Collapse
|
6
|
Population mechanics: A mathematical framework to study T cell homeostasis. Sci Rep 2017; 7:9511. [PMID: 28842645 PMCID: PMC5573381 DOI: 10.1038/s41598-017-09949-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/17/2017] [Indexed: 12/01/2022] Open
Abstract
Unlike other cell types, T cells do not form spatially arranged tissues, but move independently throughout the body. Accordingly, the number of T cells in the organism does not depend on physical constraints imposed by the shape or size of specific organs. Instead, it is determined by competition for interleukins. From the perspective of classical population dynamics, competition for resources seems to be at odds with the observed high clone diversity, leading to the so-called diversity paradox. In this work we make use of population mechanics, a non-standard theoretical approach to T cell homeostasis that accounts for clone diversity as arising from competition for interleukins. The proposed models show that carrying capacities of T cell populations naturally emerge from the balance between interleukins production and consumption. These models also suggest remarkable functional differences in the maintenance of diversity in naïve and memory pools. In particular, the distribution of memory clones would be biased towards clones activated more recently, or responding to more aggressive pathogenic threats. In contrast, permanence of naïve T cell clones would be determined by their affinity for cognate antigens. From this viewpoint, positive and negative selection can be understood as mechanisms to maximize naïve T cell diversity.
Collapse
|
7
|
Jandrlić DR, Lazić GM, Mitić NS, Pavlović MD. Software tools for simultaneous data visualization and T cell epitopes and disorder prediction in proteins. J Biomed Inform 2016; 60:120-31. [PMID: 26851400 DOI: 10.1016/j.jbi.2016.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
We have developed EpDis and MassPred, extendable open source software tools that support bioinformatic research and enable parallel use of different methods for the prediction of T cell epitopes, disorder and disordered binding regions and hydropathy calculation. These tools offer a semi-automated installation of chosen sets of external predictors and an interface allowing for easy application of the prediction methods, which can be applied either to individual proteins or to datasets of a large number of proteins. In addition to access to prediction methods, the tools also provide visualization of the obtained results, calculation of consensus from results of different methods, as well as import of experimental data and their comparison with results obtained with different predictors. The tools also offer a graphical user interface and the possibility to store data and the results obtained using all of the integrated methods in the relational database or flat file for further analysis. The MassPred part enables a massive parallel application of all integrated predictors to the set of proteins. Both tools can be downloaded from http://bioinfo.matf.bg.ac.rs/home/downloads.wafl?cat=Software. Appendix A includes the technical description of the created tools and a list of supported predictors.
Collapse
Affiliation(s)
- Davorka R Jandrlić
- University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade, Serbia.
| | - Goran M Lazić
- University of Belgrade, Faculty of Mathematics, P.O.B. 550, Studentski trg 16/IV, Belgrade, Serbia.
| | - Nenad S Mitić
- University of Belgrade, Faculty of Mathematics, P.O.B. 550, Studentski trg 16/IV, Belgrade, Serbia.
| | - Mirjana D Pavlović
- University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 12/V, Belgrade, Serbia.
| |
Collapse
|
8
|
Salvat RS, Choi Y, Bishop A, Bailey-Kellogg C, Griswold KE. Protein deimmunization via structure-based design enables efficient epitope deletion at high mutational loads. Biotechnol Bioeng 2015; 112:1306-18. [PMID: 25655032 PMCID: PMC4452428 DOI: 10.1002/bit.25554] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/09/2015] [Accepted: 01/18/2015] [Indexed: 12/31/2022]
Abstract
Anti-drug immune responses are a unique risk factor for biotherapeutics, and undesired immunogenicity can alter pharmacokinetics, compromise drug efficacy, and in some cases even threaten patient safety. To fully capitalize on the promise of biotherapeutics, more efficient and generally applicable protein deimmunization tools are needed. Mutagenic deletion of a protein's T cell epitopes is one powerful strategy to engineer immunotolerance, but deimmunizing mutations must maintain protein structure and function. Here, EpiSweep, a structure-based protein design and deimmunization algorithm, has been used to produce a panel of seven beta-lactamase drug candidates having 27-47% reductions in predicted epitope content. Despite bearing eight mutations each, all seven engineered enzymes maintained good stability and activity. At the same time, the variants exhibited dramatically reduced interaction with human class II major histocompatibility complex proteins, key regulators of anti-drug immune responses. When compared to 8-mutation designs generated with a sequence-based deimmunization algorithm, the structure-based designs retained greater thermostability and possessed fewer high affinity epitopes, the dominant drivers of anti-biotherapeutic immune responses. These experimental results validate the first structure-based deimmunization algorithm capable of mapping optimal biotherapeutic design space. By designing optimal mutations that reduce immunogenic potential while imparting favorable intramolecular interactions, broadly distributed epitopes may be simultaneously targeted using high mutational loads.
Collapse
Affiliation(s)
- Regina S Salvat
- Thayer School of Engineering, Dartmouth, 14 Engineering Dr., Hanover, New Hampshire, 03755
| | - Yoonjoo Choi
- Department of Computer Science, Dartmouth, 6211 Sudikoff Laboratory, Hanover, New Hampshire, 03755
| | | | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth, 6211 Sudikoff Laboratory, Hanover, New Hampshire, 03755.
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, 14 Engineering Dr., Hanover, New Hampshire, 03755.
- Program in Molecular and Cellular Biology, Dartmouth, Hanover, New Hampshire.
| |
Collapse
|
9
|
Arias CF, Herrero MA, Cuesta JA, Acosta FJ, Fernández-Arias C. The growth threshold conjecture: a theoretical framework for understanding T-cell tolerance. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150016. [PMID: 26587263 PMCID: PMC4632576 DOI: 10.1098/rsos.150016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/09/2015] [Indexed: 05/15/2023]
Abstract
Adaptive immune responses depend on the capacity of T cells to target specific antigens. As similar antigens can be expressed by pathogens and host cells, the question naturally arises of how can T cells discriminate friends from foes. In this work, we suggest that T cells tolerate cells whose proliferation rates remain below a permitted threshold. Our proposal relies on well-established facts about T-cell dynamics during acute infections: T-cell populations are elastic (they expand and contract) and they display inertia (contraction is delayed relative to antigen removal). By modelling inertia and elasticity, we show that tolerance to slow-growing populations can emerge as a population-scale feature of T cells. This result suggests a theoretical framework to understand immune tolerance that goes beyond the self versus non-self dichotomy. It also accounts for currently unexplained observations, such as the paradoxical tolerance to slow-growing pathogens or the presence of self-reactive T cells in the organism.
Collapse
Affiliation(s)
- Clemente F. Arias
- Departamento de Matemática Aplicada, and, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Ecología, Universidad Complutense de Madrid, Madrid, Spain
- Author for correspondence: Clemente F. Arias e-mail:
| | - Miguel A. Herrero
- Departamento de Matemática Aplicada, and, Universidad Complutense de Madrid, Madrid, Spain
| | - José A. Cuesta
- Grupo Interdisciplinar de Sistemas Complejos, Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | | | - Cristina Fernández-Arias
- Department of Microbiology, Division of Parasitology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Computationally driven deletion of broadly distributed T cell epitopes in a biotherapeutic candidate. Cell Mol Life Sci 2014; 71:4869-80. [PMID: 24880662 DOI: 10.1007/s00018-014-1652-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/23/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022]
Abstract
Biotherapeutics are subject to immune surveillance within the body, and anti-biotherapeutic immune responses can compromise drug efficacy and patient safety. Initial development of targeted antidrug immune memory is coordinated by T cell recognition of immunogenic subsequences, termed "T cell epitopes." Biotherapeutics may therefore be deimmunized by mutating key residues within cognate epitopes, but there exist complex trade-offs between immunogenicity, mutational load, and protein structure-function. Here, a protein deimmunization algorithm has been applied to P99 beta-lactamase, a component of antibody-directed enzyme prodrug therapies. The algorithm, integer programming for immunogenic proteins, seamlessly integrates computational prediction of T cell epitopes with both 1- and 2-body sequence potentials that assess protein tolerance to epitope-deleting mutations. Compared to previously deimmunized P99 variants, which bore only one or two mutations, the enzymes designed here contain 4-5 widely distributed substitutions. As a result, they exhibit broad reductions in major histocompatibility complex recognition. Despite their high mutational loads and markedly reduced immunoreactivity, all eight engineered variants possessed wild-type or better catalytic activity. Thus, the protein design algorithm is able to disrupt broadly distributed epitopes while maintaining protein function. As a result, this computational tool may prove useful in expanding the repertoire of next-generation biotherapeutics.
Collapse
|
11
|
Pavlović MD, Jandrlić DR, Mitić NS. Epitope distribution in ordered and disordered protein regions. Part B — Ordered regions and disordered binding sites are targets of T- and B-cell immunity. J Immunol Methods 2014; 407:90-107. [DOI: 10.1016/j.jim.2014.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 01/04/2023]
|
12
|
Mitić NS, Pavlović MD, Jandrlić DR. Epitope distribution in ordered and disordered protein regions - part A. T-cell epitope frequency, affinity and hydropathy. J Immunol Methods 2014; 406:83-103. [PMID: 24614036 DOI: 10.1016/j.jim.2014.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 02/08/2023]
Abstract
Highly disordered protein regions are prevalently hydrophilic, extremely sensitive to proteolysis in vitro, and are expected to be under-represented as T-cell epitopes. The aim of this research was to find out whether disorder and hydropathy prediction methods could help in understanding epitope processing and presentation. According to the pan-specific T-cell epitope predictors NetMHCpan and NetMHCIIpan and 9 publicly available disorder predictors, frequency of epitopes presented by human leukocyte antigens (HLA) class-I or -II was found to be more than 2.5 times higher in ordered than in disordered protein regions (depending on the disorder predictor). Both HLA class-I and HLA class-II binding epitopes are prevalently hydrophilic in disordered and prevalently hydrophobic in ordered protein regions, whereas epitopes recognized by HLA class-II alleles are more hydrophobic than those recognized by HLA class-I. As regards both classes of HLA molecules, high-affinity binding epitopes display more hydrophobicity than low affinity-binding epitopes (in both ordered and disordered regions). Epitopes belonging to disordered protein regions were not predicted to have poor affinity to HLA class-II molecules, as expected from disorder intrinsic proteolytic instability. The relation of epitope hydrophobicity and order/disorder location was also valid if alleles were grouped according to the HLA class-I and HLA class-II supertypes, except for the class-I supertype A3 in which the main part of recognized epitopes was prevalently hydrophilic. Regarding specific supertypes, the affinity of epitopes belonging to ordered regions varies only slightly (depending on the disorder predictor) compared to the affinity of epitopes in corresponding disordered regions. The distribution of epitopes in ordered and disordered protein regions has revealed that the curves of order-epitope distribution were convex-like while the curves of disorder-epitope distribution were concave-like. The percentage of prevalently hydrophobic epitopes increases with the enhancement of epitope promiscuity level and moving from disordered to ordered regions. These data suggests that reverse vaccinology, oriented towards promiscuous and high-affinity epitopes, is also oriented towards prevalently hydrophobic, ordered regions. The analysis of predicted and experimentally evaluated epitopes of cancer-testis antigen MAGE-A3 has confirmed that the majority of T-cell epitopes, particularly those that are promiscuous or naturally processed, was located in ordered and disorder/order boundary protein regions overlapping hydrophobic regions.
Collapse
Affiliation(s)
- Nenad S Mitić
- University of Belgrade, Faculty of Mathematics, P.O.B. 550, Studentski trg 16, Belgrade, Serbia.
| | - Mirjana D Pavlović
- University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 12/V, Belgrade, Serbia.
| | - Davorka R Jandrlić
- University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade, Serbia.
| |
Collapse
|
13
|
Lo WL, Solomon BD, Donermeyer DL, Hsieh CS, Allen PM. T cell immunodominance is dictated by the positively selecting self-peptide. eLife 2014; 3:e01457. [PMID: 24424413 PMCID: PMC3885792 DOI: 10.7554/elife.01457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Naive T cell precursor frequency determines the magnitude of immunodominance. While a broad T cell repertoire requires diverse positively selecting self-peptides, how a single positively selecting ligand influences naive T cell precursor frequency remains undefined. We generated a transgenic mouse expressing a naturally occurring self-peptide, gp250, that positively selects an MCC-specific TCR, AND, as the only MHC class II I-E(k) ligand to study the MCC highly organized immunodominance hierarchy. The single gp250/I-E(k) ligand greatly enhanced MCC-tetramer(+) CD4(+) T cells, and skewed MCC-tetramer(+) population toward V11α(+)Vβ3(+), a major TCR pair in MCC-specific immunodominance. The gp250-selected V11α(+)Vβ3(+) CD4(+) T cells had a significantly increased frequency of conserved MCC-preferred CDR3 features. Our studies establish a direct and causal relationship between a selecting self-peptide and the specificity of the selected TCRs. Thus, an immunodominant T cell response can be due to a dominant positively selecting self-peptide. DOI: http://dx.doi.org/10.7554/eLife.01457.001.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, United States
| | | | | | | | | |
Collapse
|
14
|
Sant AJ, Chaves FA, Leddon SA, Tung J. The control of the specificity of CD4 T cell responses: thresholds, breakpoints, and ceilings. Front Immunol 2013; 4:340. [PMID: 24167504 PMCID: PMC3805957 DOI: 10.3389/fimmu.2013.00340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/04/2013] [Indexed: 12/31/2022] Open
Abstract
It has been known for over 25 years that CD4 T cell responses are restricted to a finite number of peptide epitopes within pathogens or protein vaccines. These selected peptide epitopes are termed "immunodominant." Other peptides within the antigen that can bind to host MHC molecules and recruit CD4 T cells as single peptides are termed "cryptic" because they fail to induce responses when expressed in complex proteins or when in competition with other peptides during the immune response. In the last decade, our laboratory has evaluated the mechanisms that underlie the preferential specificity of CD4 T cells and have discovered that both intracellular events within antigen presenting cells, particular selective DM editing, and intercellular regulatory pathways, involving IFN-γ, indoleamine 2,3-dioxygenase, and regulatory T cells, play a role in selecting the final peptide specificity of CD4 T cells. In this review, we summarize our findings, discuss the implications of this work on responses to pathogens and vaccines and speculate on the logic of these regulatory events.
Collapse
Affiliation(s)
- Andrea J. Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Francisco A. Chaves
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Scott A. Leddon
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacqueline Tung
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
15
|
Ferrante A. Thermodynamics of Peptide-MHC Class II Interactions: Not all Complexes are Created Equal. Front Immunol 2013; 4:308. [PMID: 24101920 PMCID: PMC3787305 DOI: 10.3389/fimmu.2013.00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/15/2013] [Indexed: 11/13/2022] Open
Abstract
The adaptive immune response begins when CD4+ T cells recognize antigenic peptides bound to class II molecules of the Major Histocompatibility Complex (MHCII). The interaction between peptides and MHCII has been historically interpreted as a rigid docking event. However, this model has been challenged by the evidence that conformational flexibility plays an important role in peptide-MHCII complex formation. Thermodynamic analysis of the binding reaction suggests a model of complexation in which the physical-chemical nature of the peptide determines the variability in flexibility of the substates in the peptide-MHC conformational ensemble. This review discusses our understanding of the correlation between thermodynamics of peptide binding and structural features of the resulting complex as well as their impact on HLA-DM activity and on our ability to predict MHCII-restricted epitopes.
Collapse
Affiliation(s)
- Andrea Ferrante
- Molecular Immunology, Institute of Arctic Biology, University of Alaska Fairbanks , Fairbanks, AK , USA
| |
Collapse
|
16
|
CD4 T-cell memory responses to viral infections of humans show pronounced immunodominance independent of duration or viral persistence. J Virol 2012; 87:2617-27. [PMID: 23255792 DOI: 10.1128/jvi.03047-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Little is known concerning immunodominance within the CD4 T-cell response to viral infections and its persistence into long-term memory. We tested CD4 T-cell reactivity against each viral protein in persons immunized with vaccinia virus (VV), either recently or more than 40 years ago, as a model self-limited viral infection. Similar tests were done with persons with herpes simplex virus 1 (HSV-1) infection as a model chronic infection. We used an indirect method capable of counting the CD4 T cells in blood reactive with each individual viral protein. Each person had a clear CD4 T-cell dominance hierarchy. The top four open reading frames accounted for about 40% of CD4 virus-specific T cells. Early and long-term memory CD4 T-cell responses to vaccinia virus were mathematically indistinguishable for antigen breadth and immunodominance. Despite the chronic intermittent presence of HSV-1 antigen, the CD4 T-cell dominance and diversity patterns for HSV-1 were identical to those observed for vaccinia virus. The immunodominant CD4 T-cell antigens included both long proteins abundantly present in virions and shorter, nonstructural proteins. Limited epitope level and direct ex vivo data were also consistent with pronounced CD4 T-cell immunodominance. We conclude that human memory CD4 T-cell responses show a pattern of pronounced immunodominance for both chronic and self-limited viral infections and that this pattern can persist over several decades in the absence of antigen.
Collapse
|
17
|
Roy BM, Zhukov DV, Maynard JA. Flanking residues are central to DO11.10 T cell hybridoma stimulation by ovalbumin 323-339. PLoS One 2012; 7:e47585. [PMID: 23110081 PMCID: PMC3479146 DOI: 10.1371/journal.pone.0047585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/18/2012] [Indexed: 11/30/2022] Open
Abstract
T cell activation requires formation of a tri-molecular interaction between a major histocompatibility complex (MHC), peptide, and T cell receptor. In a common model system, the ovalbumin epitope 323–339 binds the murine class II MHC, I-Ad, in at least three distinct registers. The DO11.10 T cell recognizes the least stable of these, as determined by peptide-MHC dissociation rates. Using exogenous peptides and peptide insertions into a carrier protein in combination with IL-2 secretion assays, we show that the alternate registers do not competitively inhibit display of the active register four. In contrast, this weakly binding register is stabilized by the presence of n-terminal flanking residues active in MHC binding. The DO11.10 hybridoma is sensitive to the presence of specific wild-type residues extending to at least the P-3 peptide position. Transfer of the P-4 to P-2 flanking residues to a hen egg lysozyme epitope also presented by I-Ad increases the activity of that epitope substantially. These results illustrate the inherent complexity in delineating the interaction of multiple registers based on traditional thermodynamic measurements and demonstrate the potential of flanking residue modification for increasing the activity of weakly bound epitopes. The latter technique represents an alternative to substitution of anchor residues within a weakly bound register, which we show can significantly decrease the activity of the epitope to a responding T cell.
Collapse
Affiliation(s)
- Benjamin M. Roy
- Department of Chemical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Chemical Engineering, University of Texas at Austin, Austin Texas, United States of America
| | - Dmitriy V. Zhukov
- Department of Chemical Engineering, University of Texas at Austin, Austin Texas, United States of America
| | - Jennifer A. Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Nayak JL, Sant AJ. Loss in CD4 T-cell responses to multiple epitopes in influenza due to expression of one additional MHC class II molecule in the host. Immunology 2012; 136:425-36. [PMID: 22747522 DOI: 10.1111/j.1365-2567.2012.03599.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An understanding of factors controlling CD4 T-cell immunodominance is needed to pursue CD4 T-cell epitope-driven vaccine design, yet our understanding of this in humans is limited by the complexity of potential MHC class II molecule expression. In the studies described here, we took advantage of genetically restricted, well-defined mouse strains to better understand the effect of increasing MHC class II molecule diversity on the CD4 T-cell repertoire and the resulting anti-influenza immunodominance hierarchy. Interferon-γ ELISPOT assays were implemented to directly quantify CD4 T-cell responses to I-A(b) and I-A(s) restricted peptide epitopes following primary influenza virus infection in parental and F(1) hybrid strains. We found striking and asymmetric declines in the magnitude of many peptide-specific responses in F(1) animals. These declines could not be accounted for by the lower surface density of MHC class II on the cell or by antigen-presenting cells failing to stimulate T cells with lower avidity T-cell receptors. Given the large diversity of MHC class II expressed in humans, these findings have important implications for the rational design of peptide-based vaccines that are based on the premise that CD4 T-cell epitope specificity can be predicted by a simple cataloguing of an individual's MHC class II genotype.
Collapse
Affiliation(s)
- Jennifer L Nayak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
19
|
Klitz W, Gragert L, Trachtenberg E. Spectrum of HLA associations: the case of medically refractory pediatric acute lymphoblastic leukemia. Immunogenetics 2012; 64:409-19. [PMID: 22350167 PMCID: PMC3349849 DOI: 10.1007/s00251-012-0605-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/31/2012] [Indexed: 02/01/2023]
Abstract
Although studies of HLA and disease now date back some 50 years, a principled understanding of that relationship has been slow to emerge. Here, we examine the associations of three HLA loci with medically refractory pediatric acute lymphoblastic leukemia (pALL) patients in a case-control study involving 2,438 cases and 41,750 controls. An analysis of alleles from the class I loci, HLA-A and HLA-B, and the class II locus DRB1 illuminates a spectrum of extremely significant allelic associations conferring both predisposition and protection. Genotypes constructed from predisposing, protective, and neutral allelic categories point to an additive mode of disease causation. For all three loci, genotypes homozygous for predisposing alleles are at highest disease risk while the favorable effect of homozygous protective genotypes is less striking. Analysis of A-B and B-DRB1 haplotypes reveals locus-specific differences in disease effects, while that all three loci influence pALL; the influence of HLA-B is greater than that of HLA-A, and the predisposing effect of DRB1 exceeds that of HLA-B. We propose that the continuum in disease susceptibility suggests a system in which many alleles take part in disease predisposition based on differences in binding affinity to one or a few peptides of exogenous origin. This work provides evidence that an immune response mediated by alleles from several HLA loci plays a critical role in the pathogenesis of pALL, adding to the numerous studies pointing to a role for an infectious origin in pALL.
Collapse
Affiliation(s)
- William Klitz
- School of Public Health, University of California, Berkeley, CA, USA.
| | | | | |
Collapse
|
20
|
Halling-Brown M, Shaban R, Frampton D, Sansom CE, Davies M, Flower D, Duffield M, Titball RW, Brusic V, Moss DS. Proteins accessible to immune surveillance show significant T-cell epitope depletion: Implications for vaccine design. Mol Immunol 2009; 46:2699-705. [DOI: 10.1016/j.molimm.2009.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
21
|
Lord EM. Immunology at the university of Rochester. Immunol Res 2009; 45:97-9. [PMID: 19240990 DOI: 10.1007/s12026-009-8099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Edith M Lord
- Department of Microbiology & Immunology, University of Rochester Medical Center, NY 14642, USA.
| |
Collapse
|