1
|
Zeng L, Yang K, Yu G, Chen J, Long Z, Xiang W, Liu S, Zheng Y, Yan Y, Hao M, Sun L. Efficacy and safety of culture-expanded mesenchymal stromal cell therapy in the treatment of 4 types of inflammatory arthritis: A systematic review and meta-analysis of 36 randomized controlled trials. Semin Arthritis Rheum 2024; 68:152498. [PMID: 38970896 DOI: 10.1016/j.semarthrit.2024.152498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVE This study aims to assess the effectiveness and safety of mesenchymal stem cell (MSC) transplantation in the treatment of inflammatory arthritis. METHODS Two researchers conducted a comprehensive search of Chinese and English databases from their inception until July 2023. The literature screening and data extraction were then performed. Statistical analysis was carried out using RevMan 5.4 software. RESULTS A total of 36 relevant RCTs, involving 2,076 participants, were ultimately included in this study. These RCTs encompassed four types of inflammatory arthritis, namely rheumatoid arthritis (RA), osteoarthritis (OA), ankylosing spondylitis (AS), and systemic sclerosis (SSc). The results demonstrated that MSC therapy exhibited improvements in the Visual Analog Scale (VAS) for pain in OA patients (bone marrow: SMD=-0.95, 95 % CI: -1.55 to -0.36, P = 0.002; umbilical cord: SMD=-2.03, 95 % CI: -2.99 to -1.07, P < 0.0001; adipose tissue: SMD=-1.26, 95 % CI: -1.99 to -0.52, P = 0.0009). Specifically, MSCs sourced from adipose tissue showed enhancements in Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain (P = 0.0001), WOMAC physical function (P = 0.001), and total WOMAC scores (P = 0.0003). As for MSC therapy in RA, AS, and SSc, the current systematic review suggests a potential therapeutic effect of MSCs on these inflammatory arthritic conditions. Safety assessments indicated that MSC therapy did not increase the incidence of adverse events. CONCLUSION MSCs have the potential to alleviate joint pain and improve joint function in patients with inflammatory arthritis. Moreover, MSC therapy appears to be relatively safe and could be considered as a viable alternative treatment option for inflammatory arthritis.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China; Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA; Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China.
| | - Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Shuman Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Yaru Zheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Yexing Yan
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Wu L, Lu J, Lan T, Zhang D, Xu H, Kang Z, Peng F, Wang J. Stem cell therapies: a new era in the treatment of multiple sclerosis. Front Neurol 2024; 15:1389697. [PMID: 38784908 PMCID: PMC11111935 DOI: 10.3389/fneur.2024.1389697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated condition that persistently harms the central nervous system. While existing treatments can slow its course, a cure remains elusive. Stem cell therapy has gained attention as a promising approach, offering new perspectives with its regenerative and immunomodulatory properties. This article reviews the application of stem cells in MS, encompassing various stem cell types, therapeutic potential mechanisms, preclinical explorations, clinical research advancements, safety profiles of clinical applications, as well as limitations and challenges, aiming to provide new insights into the treatment research for MS.
Collapse
Affiliation(s)
- Lei Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Tianye Lan
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hanying Xu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- Changchun University of Chinese Medicine, Changchun, China
| | - Fang Peng
- Hunan Provincial People's Hospital, Changsha, China
| | - Jian Wang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
4
|
Zaripova LN, Midgley A, Christmas SE, Beresford MW, Pain C, Baildam EM, Oldershaw RA. Mesenchymal Stem Cells in the Pathogenesis and Therapy of Autoimmune and Autoinflammatory Diseases. Int J Mol Sci 2023; 24:16040. [PMID: 38003230 PMCID: PMC10671211 DOI: 10.3390/ijms242216040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs) modulate immune responses and maintain self-tolerance. Their trophic activities and regenerative properties make them potential immunosuppressants for treating autoimmune and autoinflammatory diseases. MSCs are drawn to sites of injury and inflammation where they can both reduce inflammation and contribute to tissue regeneration. An increased understanding of the role of MSCs in the development and progression of autoimmune disorders has revealed that MSCs are passive targets in the inflammatory process, becoming impaired by it and exhibiting loss of immunomodulatory activity. MSCs have been considered as potential novel cell therapies for severe autoimmune and autoinflammatory diseases, which at present have only disease modifying rather than curative treatment options. MSCs are emerging as potential therapies for severe autoimmune and autoinflammatory diseases. Clinical application of MSCs in rare cases of severe disease in which other existing treatment modalities have failed, have demonstrated potential use in treating multiple diseases, including rheumatoid arthritis, systemic lupus erythematosus, myocardial infarction, liver cirrhosis, spinal cord injury, multiple sclerosis, and COVID-19 pneumonia. This review explores the biological mechanisms behind the role of MSCs in autoimmune and autoinflammatory diseases. It also covers their immunomodulatory capabilities, potential therapeutic applications, and the challenges and risks associated with MSC therapy.
Collapse
Affiliation(s)
- Lina N. Zaripova
- Institute of Fundamental and Applied Medicine, National Scientific Medical Center, 42 Abylai Khan Avenue, Astana 010000, Kazakhstan;
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Angela Midgley
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
| | - Stephen E. Christmas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, UK;
| | - Michael W. Beresford
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, East Prescott Road, Liverpool L14 5AB, UK
| | - Clare Pain
- Department of Women and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Institute in the Park, Alder Hey Children’s NHS Foundation Trust, Liverpool L14 5AB, UK; (A.M.); (M.W.B.); (C.P.)
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, East Prescott Road, Liverpool L14 5AB, UK
| | - Eileen M. Baildam
- Department of Paediatric Rheumatology, The Alexandra Hospital, Mill Lane, Cheadle SK8 2PX, UK;
| | - Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
5
|
Suzdaltseva Y, Kiselev SL. Mesodermal Derivatives of Pluripotent Stem Cells Route to Scarless Healing. Int J Mol Sci 2023; 24:11945. [PMID: 37569321 PMCID: PMC10418846 DOI: 10.3390/ijms241511945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation during normal tissue regeneration in adults may result in noticeable cosmetic and functional defects and have a significant impact on the quality of life. In contrast, fetal tissues in the mid-gestation period are known to be capable of complete regeneration with the restitution of the initial architecture, organization, and functional activity. Successful treatments that are targeted to minimize scarring can be realized by understanding the cellular and molecular mechanisms of fetal wound regeneration. However, such experiments are limited by the inaccessibility of fetal material for comparable studies. For this reason, the molecular mechanisms of fetal regeneration remain unknown. Mesenchymal stromal cells (MSCs) are central to tissue repair because the molecules they secrete are involved in the regulation of inflammation, angiogenesis, and remodeling of the extracellular matrix. The mesodermal differentiation of human pluripotent stem cells (hPSCs) recapitulates the sequential steps of embryogenesis in vitro and provides the opportunity to generate the isogenic cell models of MSCs corresponding to different stages of human development. Further investigation of the functional activity of cells from stromal differon in a pro-inflammatory microenvironment will procure the molecular tools to better understand the fundamental mechanisms of fetal tissue regeneration. Herein, we review recent advances in the generation of clonal precursors of primitive mesoderm cells and MSCs from hPSCs and discuss critical factors that determine the functional activity of MSCs-like cells in a pro-inflammatory microenvironment in order to identify therapeutic targets for minimizing scarring.
Collapse
Affiliation(s)
- Yulia Suzdaltseva
- Department of Epigenetics, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119333 Moscow, Russia;
| | | |
Collapse
|
6
|
Suzdaltseva Y, Goryunov K, Silina E, Manturova N, Stupin V, Kiselev SL. Equilibrium among Inflammatory Factors Determines Human MSC-Mediated Immunosuppressive Effect. Cells 2022; 11:cells11071210. [PMID: 35406773 PMCID: PMC8997511 DOI: 10.3390/cells11071210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are thought to be a promising therapeutic agent due to their multiple paracrine and immunomodulatory properties, providing protection from chronic inflammation and promoting tissue repair. MSCs can regulate the balance of pro-inflammatory and anti-inflammatory factors in inflamed tissues, creating a microenvironment necessary for successful healing; however, their interactions with immune cells are still poorly studied. We examined the temporal and spatial changes in gene regulation and the paracrine milieu accompanying the MSC-mediated immunosuppression effect in mixed cultures with activated peripheral blood mononuclear cells (PBMCs). Our data reveal that the peak of suppression of PBMC proliferation was achieved within 48 h following co-culture with MSCs and subsequently did not undergo a significant change. This effect was accompanied by an increase in COX-2 expression and an induction of IDO synthesis in MSCs. At this point, the expression of IL-1, IL-6, IL-8, IFN-γ, MCP-1, and G-CSF was upregulated in co-cultured cells. On the contrary, we observed a decrease in the concentrations of IL-10, IL-13, IL-5, and MIP-1b in co-culture supernatants compared to intact cultures of activated PBMCs. The regulation of IDO, IL-1, IL-6, and G-CSF production was accomplished with the involvement of direct cell-cell contact between MSCs and PBMCs. These findings provide new insights into the use of potential precondition inducers or their combinations to obtain functionally qualified MSCs for more effective treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yulia Suzdaltseva
- Department of Epigenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia;
- Correspondence:
| | - Kirill Goryunov
- Department of Cell Technologies, National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia;
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Natalia Manturova
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Victor Stupin
- Department of Hospital Surgery, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Sergey L. Kiselev
- Department of Epigenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia;
| |
Collapse
|
7
|
Nicholls J, Cao B, Le Texier L, Xiong LY, Hunter CR, Llanes G, Aguliar EG, Schroder WA, Phipps S, Lynch JP, Cao H, Heazlewood SY, Williams B, Clouston AD, Nefzger CM, Polo JM, Nilsson SK, Blazar BR, MacDonald KPA. Bone Marrow Regulatory T Cells Are a Unique Population, Supported by Niche-Specific Cytokines and Plasmacytoid Dendritic Cells, and Required for Chronic Graft-Versus-Host Disease Control. Front Cell Dev Biol 2021; 9:737880. [PMID: 34631716 PMCID: PMC8493124 DOI: 10.3389/fcell.2021.737880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice. In vivo our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.
Collapse
Affiliation(s)
- Jemma Nicholls
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Laetitia Le Texier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Laura Yan Xiong
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher R. Hunter
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Genesis Llanes
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ethan G. Aguliar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Wayne A. Schroder
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Simon Phipps
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jason P. Lynch
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Huimin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Shen Y. Heazlewood
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | | | - Christian M. Nefzger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jose M. Polo
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Susan K. Nilsson
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Kelli P. A. MacDonald
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Li SW, Cai Y, Mao XL, He SQ, Chen YH, Yan LL, Zhou JJ, Song YQ, Ye LP, Zhou XB. The Immunomodulatory Properties of Mesenchymal Stem Cells Play a Critical Role in Inducing Immune Tolerance after Liver Transplantation. Stem Cells Int 2021; 2021:6930263. [PMID: 34531915 PMCID: PMC8440082 DOI: 10.1155/2021/6930263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
Although liver transplantation is considered to be the best choice for patients with end-stage liver diseases, postoperative immune rejection still cannot be overlooked. Patients with liver transplantation have to take immunosuppressive drugs for a long time or even their entire lives, in which heavy economic burden and side effects caused by the drugs have become the major impediment for liver transplantation. There is a growing body of evidences indicating that mesenchymal stem cell (MSC) transplantation, a promising tool in regenerative medicine, can be used as an effective way to induce immune tolerance after liver transplantation based on their huge expansion potential and unique immunomodulatory properties. MSCs have been reported to inhibit innate immunity and adaptive immunity to induce a tolerogenic microenvironment. In in vitro studies, transplanted MSCs show plasticity in immune regulation by altering their viability, migration, differentiation, and secretion in the interactions with the surrounding host microenvironment. In this review, we aim to provide an overview of the current understanding of immunomodulatory properties of MSCs in liver transplantation, to elucidate the potential mechanisms behind MSCs regulating immune response, especially in vivo and the influence of the microenvironment, and ultimately to discuss the feasible strategies to improve the clinical prognosis of liver transplantation. Only after exhaustive understanding of potential mechanisms of the MSC immunomodulation can we improve the safety and effectiveness of MSC treatment and achieve better therapeutic effects.
Collapse
Affiliation(s)
- Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Sai-qin He
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jing-jing Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-qi Song
- Taizhou Hospital, Zhejiang University, Linhai, Zhejiang, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
9
|
Razazian M, Khosravi M, Bahiraii S, Uzan G, Shamdani S, Naserian S. Differences and similarities between mesenchymal stem cell and endothelial progenitor cell immunoregulatory properties against T cells. World J Stem Cells 2021; 13:971-984. [PMID: 34567420 PMCID: PMC8422932 DOI: 10.4252/wjsc.v13.i8.971] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-marrow-derived mesenchymal stem cells and endothelial progenitor cells have some interesting biological properties that make them unique for cell therapy of degenerative and cardiovascular disorders. Although both cell populations have been already studied and used for their regenerative potentials, recently their special immunoregulatory features have brought much more attention. Mesenchymal stem cells and endothelial progenitor cells have both proangiogenic functions and have been shown to suppress the immune response, particularly T cell proliferation, activation, and cytokine production. This makes them suitable choices for allogeneic stem cell transplantation. Nevertheless, these two cells do not have equal immunoregulatory activities. Many elements including their extraction sources, age/passage, expression of different markers, secretion of bioactive mediators, and some others could change the efficiency of their immunosuppressive function. However, to our knowledge, no publication has yet compared mesenchymal stem cells and endothelial progenitor cells for their immunological interaction with T cells. This review aims to specifically compare the immunoregulatory effect of these two populations including their T cell suppression, deactivation, cytokine production, and regulatory T cells induction capacities. Moreover, it evaluates the implications of the tumor necrosis factor alpha-tumor necrosis factor receptor 2 axis as an emerging immune checkpoint signaling pathway controlling most of their immunological properties.
Collapse
Affiliation(s)
- Mehdi Razazian
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
| | - Maryam Khosravi
- Microenvironment & Immunity Unit, Institut Pasteur, Paris 75724, France
- Institut national de la santé et de la recherche médicale (Inserm) Unit 1224, Paris 75724, France
| | - Sheyda Bahiraii
- Department of Pharmacognosy, University of Vienna, Vienna 1090, Austria
| | - Georges Uzan
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
| | - Sara Shamdani
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
- CellMedEx; Saint Maur Des Fossés 94100, France
| | - Sina Naserian
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
- CellMedEx; Saint Maur Des Fossés 94100, France.
| |
Collapse
|
10
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
11
|
Multipotent adult progenitor cells induce regulatory T cells and promote their suppressive phenotype via TGFβ and monocyte-dependent mechanisms. Sci Rep 2021; 11:13549. [PMID: 34193955 PMCID: PMC8245558 DOI: 10.1038/s41598-021-93025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/17/2021] [Indexed: 02/08/2023] Open
Abstract
Dysregulation of the immune system can initiate chronic inflammatory responses that exacerbate disease pathology. Multipotent adult progenitor cells (MAPC cells), an adult adherent bone-marrow derived stromal cell, have been observed to promote the resolution of uncontrolled inflammatory responses in a variety of clinical conditions including acute ischemic stroke, acute myocardial infarction (AMI), graft vs host disease (GvHD), and acute respiratory distress syndrome (ARDS). One of the proposed mechanisms by which MAPC cells modulate immune responses is via the induction of regulatory T cells (Tregs), however, the mechanism(s) involved remains to be fully elucidated. Herein, we demonstrate that, in an in vitro setting, MAPC cells increase Treg frequencies by promoting Treg proliferation and CD4+ T cell differentiation into Tregs. Moreover, MAPC cell-induced Tregs (miTregs) have a more suppressive phenotype characterized by increased expression of CTLA-4, HLA-DR, and PD-L1 and T cell suppression capacity. MAPC cells also promoted Treg activation by inducing CD45RA+ CD45RO+ transitional Tregs. Additionally, we identify transforming growth factor beta (TGFβ) as an essential factor for Treg induction secreted by MAPC cells. Furthermore, inhibition of indoleamine 2, 3-dioxygenase (IDO) resulted in decreased Treg induction by MAPC cells demonstrating IDO involvement. Our studies also show that CD14+ monocytes play a critical role in Treg induction by MAPC cells. Our study describes MAPC cell dependent Treg phenotypic changes and provides evidence of potential mechanisms by which MAPC cells promote Treg differentiation.
Collapse
|
12
|
Yu Y, Valderrama AV, Han Z, Uzan G, Naserian S, Oberlin E. Human fetal liver MSCs are more effective than adult bone marrow MSCs for their immunosuppressive, immunomodulatory, and Foxp3 + T reg induction capacity. Stem Cell Res Ther 2021; 12:138. [PMID: 33597011 PMCID: PMC7888159 DOI: 10.1186/s13287-021-02176-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. METHODS MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25-T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. RESULTS We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. CONCLUSIONS These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.
Collapse
Affiliation(s)
- Yi Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Beijing Institute of Stem Cells, Health & Biotech Co., Ltd, Beijing, People’s Republic of China
| | | | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Beijing Institute of Stem Cells, Health & Biotech Co., Ltd, Beijing, People’s Republic of China
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
- CellMedEx, Saint Maur des Fossés, France
| | - Estelle Oberlin
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| |
Collapse
|
13
|
Xia L, Jiang Y, Zhang XH, Wang XR, Wei R, Qin K, Lu Y. SUMOylation disassembles the tetrameric pyruvate kinase M2 to block myeloid differentiation of leukemia cells. Cell Death Dis 2021; 12:101. [PMID: 33473116 PMCID: PMC7817830 DOI: 10.1038/s41419-021-03400-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leukemia arises from blockage of the differentiation/maturation of hematopoietic progenitor cells at different stages with uncontrolled proliferation of leukemic cells. However, the signal pathways that block cell differentiation remain unclear. Herein we found that SUMOylation of the M2 isoform of pyruvate kinase (PKM2), a rate-limiting glycolytic enzyme catalyzing the dephosphorylation of phosphoenolpyruvate to pyruvate, is prevalent in a variety of leukemic cell lines as well as primary samples from patients with leukemia through multiple-reaction monitoring based targeted mass spectrometry analysis. SUMOylation of PKM2 lysine 270 (K270) triggered conformation change from tetrameric to dimeric of PKM2, reduced PK activity, and led to nuclear translocation of PKM2. SUMO1 modification of PKM2 recruits and promotes degradation of RUNX1 via a SUMO-interacting motif, resulting in blockage of myeloid differentiation of NB4 and U937 leukemia cells. Replacement of wild type PKM2 with a SUMOylation-deficient mutant (K270R) abrogated the interaction with RUNX1, and the blockage of myeloid differentiation in vitro and in xenograft model. Our results establish PKM2 as an essential modulator of leukemia cell differentiation and a potential therapeutic target, which may offer synergistic effect with differentiation therapy in the treatment of leukemia.
Collapse
Affiliation(s)
- Li Xia
- Institute of Dermatology, Xinhua Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education and Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Jiang
- Department of Hematology, Dalian Key Laboratory of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xue-Hong Zhang
- Department of Hematology, Dalian Key Laboratory of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xin-Ran Wang
- Institute of Dermatology, Xinhua Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education and Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Wei
- Institute of Dermatology, Xinhua Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education and Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Qin
- Institute of Dermatology, Xinhua Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education and Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lu
- Institute of Dermatology, Xinhua Hospital, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education and Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
14
|
Chakraborty S, Sinha S, Sengupta A. Emerging trends in chromatin remodeler plasticity in mesenchymal stromal cell function. FASEB J 2020; 35:e21234. [PMID: 33337557 DOI: 10.1096/fj.202002232r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Emerging evidences highlight importance of epigenetic regulation and their integration with transcriptional and cell signaling machinery in determining tissue resident adult pluripotent mesenchymal stem/stromal cell (MSC) activity, lineage commitment, and multicellular development. Histone modifying enzymes and large multi-subunit chromatin remodeling complexes and their cell type-specific plasticity remain the central defining features of gene regulation and establishment of tissue identity. Modulation of transcription factor expression gradient ex vivo and concomitant flexibility of higher order chromatin architecture in response to signaling cues are exciting approaches to regulate MSC activity and tissue rejuvenation. Being an important constituent of the adult bone marrow microenvironment/niche, pathophysiological perturbation in MSC homeostasis also causes impaired hematopoietic stem/progenitor cell function in a non-cell autonomous mechanism. In addition, pluripotent MSCs can function as immune regulatory cells, and they reside at the crossroad of innate and adaptive immune response pathways. Research in the past few years suggest that MSCs/stromal fibroblasts significantly contribute to the establishment of immunosuppressive microenvironment in shaping antitumor immunity. Therefore, it is important to understand mesenchymal stromal epigenome and transcriptional regulation to leverage its applications in regenerative medicine, epigenetic memory-guided trained immunity, immune-metabolic rewiring, and precision immune reprogramming. In this review, we highlight the latest developments and prospects in chromatin biology in determining MSC function in the context of lineage commitment and immunomodulation.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Sayantani Sinha
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Amitava Sengupta
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| |
Collapse
|
15
|
Naserian S, Leclerc M, Shamdani S, Uzan G. Current Preventions and Treatments of aGVHD: From Pharmacological Prophylaxis to Innovative Therapies. Front Immunol 2020; 11:607030. [PMID: 33391276 PMCID: PMC7773902 DOI: 10.3389/fimmu.2020.607030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Graft versus host disease (GVHD) is one of the main causes of mortality and the reason for up to 50% of morbidity after hematopoietic stem cell transplantations (HSCT) which is the treatment of choice for many blood malignancies. Thanks to years of research and exploration, we have acquired a profound understanding of the pathophysiology and immunopathology of these disorders. This led to the proposition and development of many therapeutic approaches during the last decades, some of them with very promising results. In this review, we have focused on the recent GVHD treatments from classical chemical and pharmacological prophylaxis to more innovative treatments including gene therapy and cell therapy, most commonly based on the application of a variety of immunomodulatory cells. Furthermore, we have discussed the advantages and potentials of cell-free therapy as a newly emerging approach to treat GVHD. Among them, we have particularly focused on the implication of the TNFα-TNFR2 axis as a new immune checkpoint signaling pathway controlling different aspects of many immunoregulatory cells.
Collapse
Affiliation(s)
- Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
- CellMedEx, Saint Maur Des Fossés, France
| | - Mathieu Leclerc
- Service d’Hématologie Clinique et de Thérapie Cellulaire, Hôpital Henri Mondor, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
- Faculté de Médecine de Créteil, Université Paris-Est, Créteil, France
| | - Sara Shamdani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
- CellMedEx, Saint Maur Des Fossés, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| |
Collapse
|
16
|
Naserian S, Shamdani S, Arouche N, Uzan G. Regulatory T cell induction by mesenchymal stem cells depends on the expression of TNFR2 by T cells. Stem Cell Res Ther 2020; 11:534. [PMID: 33303019 PMCID: PMC7731479 DOI: 10.1186/s13287-020-02057-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/27/2020] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal stem/stromal cells can modulate the effector immune cells especially T lymphocytes. Due to this important feature, they can regulate the development of a variety of disorders including inflammatory and autoimmune disorders, cancers, and transplantation outcomes. One of the most important MSC immunoregulatory functions is their capacity to convert conventional T cells into regulatory T cells. Several mechanisms, mostly related to MSCs but not T cells, have been shown essential for this aspect. The inflammatory microenvironment majorly caused by pro-inflammatory cytokines has been demonstrated to govern the direction of the immune response. In this respect, we have recently revealed that the TNFα-TNFR2 signaling controls several aspects of MSC immunomodulatory properties including their ability to suppress T cells and their conversion towards Foxp3-expressing Tregs. Here in this work, we have looked from another angle by investigating the impact of TNFR2 expression by T cells on their ability to be converted to suppressive Tregs by MSCs. We showed that unlike WT-T cells, their TNFR2 KO counterparts are remarkably less able to convert into Foxp3+ and Foxp3- Tregs. Furthermore, TNFR2 blockade diminished the anti-inflammatory cytokine secretion by iTregs and consequently resulted in less T cell immunosuppression. This work is the first evidence of the crucial association of TNFR2 expression by T cells with their iTreg conversion capacity by MSCs. It strengthens once more the potential of anti-TNFR2 administration for a strong and effective interference with the immunosuppression exerted by TNFR2-expressing cells.
Collapse
Affiliation(s)
- Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
- CellMedEx, Saint Maur Des Fossés, France
| | - Sara Shamdani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
- CellMedEx, Saint Maur Des Fossés, France
| | - Nassim Arouche
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| |
Collapse
|
17
|
Beldi G, Bahiraii S, Lezin C, Nouri Barkestani M, Abdelgawad ME, Uzan G, Naserian S. TNFR2 Is a Crucial Hub Controlling Mesenchymal Stem Cell Biological and Functional Properties. Front Cell Dev Biol 2020; 8:596831. [PMID: 33344453 PMCID: PMC7746825 DOI: 10.3389/fcell.2020.596831] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have drawn lots of attention as gold standard stem cells in fundamental and clinical researches during the last 20 years. Due to their tissue and vascular repair capacities, MSCs have been used to treat a variety of degenerative disorders. Moreover, MSCs are able to modulate immune cells’ functions, particularly T cells while inducing regulatory T cells (iTregs). MSCs are very sensitive to inflammatory signals. Their biological functions could remarkably vary after exposure to different pro-inflammatory cytokines, notably TNFα. In this article, we have explored the importance of TNFR2 expression in a series of MSCs’ biological and functional properties. Thus, MSCs from wild-type (WT) and TNFR2 knockout (TNFR2 KO) mice were isolated and underwent several ex vivo experiments to investigate the biological significance of TNFR2 molecule in MSC main functions. Hampering in TNFR2 signaling resulted in reduced MSC colony-forming units and proliferation rate and diminished the expression of all MSC characteristic markers such as stem cell antigen-1 (Sca1), CD90, CD105, CD44, and CD73. TNFR2 KO-MSCs produced more pro-inflammatory cytokines like TNFα, IFNγ, and IL-6 and less anti-inflammatory mediators such as IL-10, TGFβ, and NO and induced Tregs with less suppressive effect. Furthermore, the TNFR2 blockade remarkably decreased MSC regenerative functions such as wound healing, complex tube formation, and endothelial pro-angiogenic support. Therefore, our results reveal the TNFα–TNFR2 axis as a crucial regulator of MSC immunological and regenerative functions.
Collapse
Affiliation(s)
- Ghada Beldi
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sheyda Bahiraii
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Chloé Lezin
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | | | - Mohamed Essameldin Abdelgawad
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France.,Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France.,CellMedEx, Saint Maur Des Fossés, France
| |
Collapse
|
18
|
Camacho V, Matkins VR, Patel SB, Lever JM, Yang Z, Ying L, Landuyt AE, Dean EC, George JF, Yang H, Ferrell PB, Maynard CL, Weaver CT, Turnquist HR, Welner RS. Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10. JCI Insight 2020; 5:135681. [PMID: 33208555 PMCID: PMC7710301 DOI: 10.1172/jci.insight.135681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
The nonimmune roles of Tregs have been described in various tissues, including the BM. In this study, we comprehensively phenotyped marrow Tregs, elucidating their key features and tissue-specific functions. We show that marrow Tregs are migratory and home back to the marrow. For trafficking, marrow Tregs use S1P gradients, and disruption of this axis allows for specific targeting of the marrow Treg pool. Following Treg depletion, the function and phenotype of both mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) was impaired. Transplantation also revealed that a Treg-depleted niche has a reduced capacity to support hematopoiesis. Finally, we found that marrow Tregs are high producers of IL-10 and that Treg-secreted IL-10 has direct effects on MSC function. This is the first report to our knowledge revealing that Treg-secreted IL-10 is necessary for stromal cell maintenance, and our work outlines an alternative mechanism by which this cytokine regulates hematopoiesis.
Collapse
Affiliation(s)
| | | | | | - Jeremie M. Lever
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, and
| | - Zhengqin Yang
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Ying
- Cancer Science Institute of Singapore & Department of Biochemistry, National University of Singapore, Singapore
| | - Ashley E. Landuyt
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Emma C. Dean
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James F. George
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Henry Yang
- Cancer Science Institute of Singapore & Department of Biochemistry, National University of Singapore, Singapore
| | - Paul Brent Ferrell
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Craig L. Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Heth R. Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
19
|
Beldi G, Khosravi M, Abdelgawad ME, Salomon BL, Uzan G, Haouas H, Naserian S. TNFα/TNFR2 signaling pathway: an active immune checkpoint for mesenchymal stem cell immunoregulatory function. Stem Cell Res Ther 2020; 11:281. [PMID: 32669116 PMCID: PMC7364521 DOI: 10.1186/s13287-020-01740-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In addition to their multilineage potential, mesenchymal stem cells (MSCs) have a broad range of functions from tissue regeneration to immunomodulation. MSCs have the ability to modulate the immune response and change the progression of different inflammatory and autoimmune disorders. However, there are still many challenges to overcome before their widespread clinical administration including the mechanisms behind their immunoregulatory function. MSCs inhibit effector T cells and other immune cells, while inducing regulatory T cells (T regs), thus, reducing directly and indirectly the production of pro-inflammatory cytokines. TNF/TNFR signaling plays a dual role: while the interaction of TNFα with TNFR1 mediates pro-inflammatory effects and cell death, its interaction with TNFR2 mediates anti-inflammatory effects and cell survival. Many immunosuppressive cells like T regs, regulatory B cells (B regs), endothelial progenitor cells (EPCs), and myeloid-derived suppressor cells (MDSCs) express TNFR2, and this is directly related to their immunosuppression efficiency. In this article, we investigated the role of the TNFα/TNFR2 immune checkpoint signaling pathway in the immunomodulatory capacities of MSCs. METHODS Co-cultures of MSCs from wild-type (WT) and TNFR2 knocked-out (TNFR2 KO) mice with T cells (WT and TNFα KO) were performed under various experimental conditions. RESULTS We demonstrate that TNFR2 is a key regulatory molecule which is strongly involved in the immunomodulatory properties of MSCs. This includes their ability to suppress T cell proliferation, activation, and pro-inflammatory cytokine production, in addition to their capacity to induce active T regs. CONCLUSIONS Our results reveal for the first time the importance of the TNFα/TNFR2 axis as an active immune checkpoint regulating MSC immunological functions.
Collapse
Affiliation(s)
- Ghada Beldi
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,National Institute of Applied Sciences and Technology (INSAT), Carthage University, LR18ES40, Inflammation, environment and signalization pathologies, Tunis, Tunisia
| | - Maryam Khosravi
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Mohamed Essameldin Abdelgawad
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Biochemistry Division, Chemistry department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Houda Haouas
- National Institute of Applied Sciences and Technology (INSAT), Carthage University, LR18ES40, Inflammation, environment and signalization pathologies, Tunis, Tunisia.
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France. .,Paris-Saclay University, Villejuif, France. .,CellMedEx, Saint Maur Des Fossés, France.
| |
Collapse
|
20
|
Naserian S, Abdelgawad ME, Afshar Bakshloo M, Ha G, Arouche N, Cohen JL, Salomon BL, Uzan G. The TNF/TNFR2 signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. Cell Commun Signal 2020; 18:94. [PMID: 32546175 PMCID: PMC7298859 DOI: 10.1186/s12964-020-00564-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) are non-differentiated endothelial cells (ECs) present in blood circulation that are involved in neo-vascularization and correction of damaged endothelial sites. Since EPCs from patients with vascular disorders are impaired and inefficient, allogenic sources from adult or cord blood are considered as good alternatives. However, due to the reaction of immune system against allogenic cells which usually lead to their elimination, we focused on the exact role of EPCs on immune cells, particularly, T cells which are the most important cells applied in immune rejection. TNFα is one of the main activators of EPCs that recognizes two distinct receptors. TNFR1 is expressed ubiquitously and its interaction with TNFα leads to differentiation and apoptosis, whereas, TNFR2 is expressed predominantly on ECs, immune cells and neural cells and is involved in cell survival and proliferation. Interestingly, it has been shown that different immunosuppressive cells express TNFR2 and this is directly related to their immunosuppressive efficiency. However, little is known about immunological profile and function of TNFR2 in EPCs. Methods Using different in-vitro combinations, we performed co-cultures of ECs and T cells to investigate the immunological effect of EPCs on T cells. We interrupted in the TNFα/TNFR2 axis either by blocking the receptor using TNFR2 antagonist or blocking the ligand using T cells derived from TNFα KO mice. Results We demonstrated that EPCs are able to suppress T cell proliferation and modulate them towards less pro-inflammatory and active phenotypes. Moreover, we showed that TNFα/TNFR2 immune-checkpoint pathway is critical in EPC immunomodulatory effect. Conclusions Our results reveal for the first time a mechanism that EPCs use to suppress immune cells, therefore, enabling them to form new immunosuppressive vessels. Furthermore, we have shown the importance of TNFα/TNFR2 axis in EPCs as an immune checkpoint pathway. We believe that targeting TNFR2 is especially crucial in cancer immune therapy since it controls two crucial aspects of tumor microenvironment: 1) Immunosuppression and 2) Angiogenesis. Video Abstract. (MP4 46355 kb)
Collapse
Affiliation(s)
- Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France. .,CellMedEx, Saint Maur Des Fossés, France. .,Paris-Saclay University, Villejuif, France.
| | - Mohamed Essameldin Abdelgawad
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France.,Biochemistry Division, Chemistry department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Guillaume Ha
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Nassim Arouche
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - José L Cohen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,AP-HP, Hopital Henri Mondor, Centre d'investigation clinique biothérapie, F-94010, Creteil, France
| | - Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France. .,Paris-Saclay University, Villejuif, France.
| |
Collapse
|
21
|
Zhou X, Jin N, Wang F, Chen B. Mesenchymal stem cells: a promising way in therapies of graft-versus-host disease. Cancer Cell Int 2020; 20:114. [PMID: 32280306 PMCID: PMC7137413 DOI: 10.1186/s12935-020-01193-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
It is well acknowledged that allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for numerous malignant blood diseases, which has also been applied to autoimmune diseases for more than a decade. Whereas graft-versus-host disease (GVHD) occurs after allogeneic hematopoietic stem cell transplantation (allo-HSCT) as a common serious complication, seriously affecting the efficacy of transplantation. Mesenchymal stem cells (MSCs) derived from a wealth of sources can easily isolate and expand with low immunogenicity. MSCs also have paracrine and immune regulatory functions, leading to a broad application prospect in treatment and tissue engineering. This review focuses on immunoregulatory function of MSCs, factors affecting mesenchymal stem cells to exert immunosuppressive effects, clinical application of MSCs in GVHD and researches on MSC-derived extracellular vesicles (EVs). The latest research progress on MSC in related fields is reviewed as well. The relevant literature from PubMed databases is reviewed in this article.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Nan Jin
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Fei Wang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Dingjiaqiao 87, Gulou District, Nanjing, 210009 Jiangsu People's Republic of China
| |
Collapse
|
22
|
Kim JH, Hwang J, Jung JH, Lee HJ, Lee DY, Kim SH. Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer 2019; 18:180. [PMID: 31815635 PMCID: PMC6900861 DOI: 10.1186/s12943-019-1110-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Though Forkhead box P (FOXP) transcription factors comprising of FOXP1, FOXP2, FOXP3 and FOXP4 are involved in the embryonic development, immune disorders and cancer progression, the underlying function of FOXP3 targeting CD4 + CD25+ regulatory T (Treg) cells and the dual roles of FOXP proteins as an oncogene or a tumor suppressor are unclear and controversial in cancers to date. Thus, the present review highlighted research history, dual roles of FOXP proteins as a tumor suppressor or an oncogene, their molecular networks with other proteins and noncoding RNAs, cellular immunotherapy targeting FOXP3, and clinical implications in cancer progression.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ji Hoon Jung
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
23
|
You Y, Wen DG, Gong JP, Liu ZJ. Research Status of Mesenchymal Stem Cells in Liver Transplantation. Cell Transplant 2019; 28:1490-1506. [PMID: 31512503 PMCID: PMC6923564 DOI: 10.1177/0963689719874786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation has been deemed the best choice for end-stage liver disease
patients but immune rejection after surgery is still a serious problem. Patients have to
take immunosuppressive drugs for a long time after liver transplantation, and this often
leads to many side effects. Mesenchymal stem cells (MSCs) gradually became of interest to
researchers because of their powerful immunomodulatory effects. In the past, a large
number of in vitro and in vivo studies have demonstrated the great potential of MSCs for
participation in posttransplant immunomodulation. In addition, MSCs also have properties
that may potentially benefit patients undergoing liver transplantation. This article aims
to provide an overview of the current understanding of the immunomodulation achieved by
the application of MSCs in liver transplantation, to discuss the problems that may be
encountered when using MSCs in clinical practice, and to describe some of the underlying
capabilities of MSCs in liver transplantation. Cell–cell contact, soluble molecules, and
exosomes have been suggested to be critical approaches to MSCs’ immunoregulation in vitro;
however, the exact mechanism, especially in vivo, is still unclear. In recent years, the
clinical safety of MSCs has been proven by a series of clinical trials. The obstacles to
the clinical application of MSCs are decreasing, but large sample clinical trials
involving MSCs are still needed to further study their clinical effects.
Collapse
Affiliation(s)
- Yu You
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Di-Guang Wen
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Jian-Ping Gong
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| | - Zuo-Jin Liu
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
24
|
Khosravi M, Bidmeshkipour A, Cohen JL, Moravej A, Hojjat-Assari S, Naserian S, Karimi MH. Induction of CD4 +CD25 +FOXP3 + regulatory T cells by mesenchymal stem cells is associated with modulation of ubiquitination factors and TSDR demethylation. Stem Cell Res Ther 2018; 9:273. [PMID: 30359308 PMCID: PMC6203284 DOI: 10.1186/s13287-018-0991-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are known for their ability to induce the conversion of conventional T cells (Tconvs) into induced regulatory T cells (iTregs) in specific inflammatory contexts. Stable Foxp3 expression plays a major role in the phenotypic and functional stability of iTregs. However, how MSCs induce stable Foxp3 expression remains unknown. Methods We first investigated the role of cell–cell contact and cytokine secretion by bone marrow-derived MSCs (BM-MSCs) on the induction, stability, and suppressive functions of Tregs under various experimental conditions that lead to Foxp3 generation by flow cytometry and ELISA respectively. Second, we studied the effect of MSCs on TRAF6, GRAIL, USP7, STUB1, and UBC13 mRNA expression in CD4+ T cells in correlation with the suppressive function of iTregs by real-time PCR; also, we investigated Foxp3 Treg-specific demethylated region (TSDR) methylation in correlation with Foxp3 stability by the high-resolution melting technique. Third, we studied the effect of ex-vivo-expanded BM-MSCs on the induction of transplant tolerance in a model of fully allogeneic skin transplantation. We further analyzed the cytokine secretion patterns in grafted mice as well as the mRNA expression of ubiquitination genes in CD4+ T cells collected from the spleens of protected mice. Results We found that in-vitro MSC-induced Tregs express high mRNA levels of ubiquitination genes such as TRAF6, GRAIL, and USP7 and low levels of STUB1. Moreover, they have enhanced TSDR demethylation. Infusion of MSCs in a murine model of allogeneic skin transplantation prolonged allograft survival. When CD4+ T cells were harvested from the spleens of grafted mice, we observed that mRNA expression of the Foxp3 gene was elevated. Furthermore, Foxp3 mRNA expression was associated with increased TRAF6, GRAIL, UBC13, and USP7 and decreased STUB1 mRNA levels compared with the levels observed in vitro. Conclusions Our data suggest a possible ubiquitination mechanism by which MSCs convert Tconvs to suppressive and stable iTregs. Electronic supplementary material The online version of this article (10.1186/s13287-018-0991-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Khosravi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.,Inserm, U955, Equipe 21, F-94000, Créteil, France
| | - Ali Bidmeshkipour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - José L Cohen
- Université Paris-Est, UMR_S955, UPEC, F-94000, Créteil, France.,Inserm, U955, Equipe 21, F-94000, Créteil, France.,UPEC, APHP, Inserm, CIC Biothérapie, Hôpital Henri Mondor, 94010, Créteil, France
| | - Ali Moravej
- Noncommunicable Diseases Research Centre, Fasa University of Medical Sciences, Fasa, Iran
| | - Suzzan Hojjat-Assari
- Institut Français de Recherche et d'Enseignement Supérieur à l'International (IFRES-INT), Paris, France
| | - Sina Naserian
- Université Paris-Est, UMR_S955, UPEC, F-94000, Créteil, France.,Inserm, U955, Equipe 21, F-94000, Créteil, France.,Inserm, U1197, Hôpital Paul Brousse, 94807, Villejuif, France.,SivanCell, Alborz University of Medical Sciences, Alborz, Iran
| | | |
Collapse
|