1
|
Teshnizi SH, Mirzazadeh S, Mashhadi N, Meri S, Kabelitz D, Kalantar K. Association study between killer immunoglobulin-like receptor polymorphisms and susceptibility to COVID-19 disease: a systematic review and meta-analysis. Immunol Res 2024; 72:175-184. [PMID: 37874432 DOI: 10.1007/s12026-023-09428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a known virus that leads to a respiratory disease called coronavirus disease 19 (COVID-19). Natural killer (NK) cells, as members of innate immunity, possess crucial roles in restricting viral infections, including COVID-19. Their functions and development depend on receiving signals through various receptors, of which killer cell immunoglobulin-like receptors (KIRs) belong to the most effective ones. Different studies investigated the association between KIR gene content and susceptibility to COVID-19. Since previous studies have yielded contradictory results, we designed this meta-analysis study to draw comprehensive conclusions about COVID-19 risk and KIR gene association. According to PRISMA guidelines, a systematic search was performed in the electronic databases to find all studies investigating KIR gene contents in COVID-19 patients before March 2023. Any association between KIR genes and COVID-19 risk was determined by calculating pooled odds ratio (OR) and 95% confidence interval (CI). After applying the inclusion and exclusion criteria, 1673 COVID-19 patients and 1526 healthy controls from eight studies were included in this meta-analysis. As the main results, we observed a positive association between the 2DL3 (OR = 1.48, 95% CI = 1.17-1.88, P < 0.001) and susceptibility to COVID-19 and a negative association between the 2DP1 and the risk for COVID-19 (OR = 0.48, 95% CI = 0.23-0.99, P = 0.049). This meta-analysis demonstrated that KIR2DL3, as a member of iKIRs, might be associated with an increased risk of COVID-19 disease.
Collapse
Affiliation(s)
| | - Sara Mirzazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1798, Shiraz, Iran
| | - Niloofar Mashhadi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1798, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig, Holstein Campus Kiel, 24105, Kiel, Germany
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1798, Shiraz, Iran.
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland.
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Wu MM, Li Y, Jiang HQ, Ma Y. Epidemiological survey of elderly patients diagnosed with COVID-19 at mobile field hospitals. Technol Health Care 2024; 32:2243-2250. [PMID: 38251074 DOI: 10.3233/thc-230973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND During the COVID-19 pandemic, the mobile field hospital, a rapidly deployable healthcare facility for emergency care, was effective in ensuring rapid diagnosis and treatment of patients with mild or asymptomatic SARS-CoV2 infections, effectively preventing the spread of COVID-19. OBJECTIVE We conducted a survey to gain a thorough understanding of the epidemiological traits among the elderly who contracted the Omicron variant of the SARS-CoV-2 virus at a mobile field hospital set up at the National Exhibition and Convention Center (Shanghai). METHODS A cross-sectional study approach was employed to examine various factors such as demographic characteristics, clinical features, vaccination status, and nucleic acid testing. We utilized the DezhenTech Integrated Electronic Medical Record Platform (Municipal Isolation Hospital) to collect data and focused on elderly individuals infected with COVID-19 in the fifth isolation zone of the mobile field hospital set up at the National Exhibition and Convention Center (Shanghai). The patients were categorized into different age groups for analysis. RESULTS Among the 3,183 elderly patients, 54.7% were males and 45.3% were females, with an average age of 65.32 ± 4.41 years. Among them, 47.8% (1523/3183) were 60-64 years old, 34.0% (1082/3183) were 65-69 years old, 14.0% (444/3183) were 70-74 years old, 3.2% (103/3183) were 75-79 years old, and 1.0% (31/3183) were ⩾ 80 years old. The majority (95.7%) of the elderly patients with chronic conditions had hypertension, diabetes, and coronary heart disease. The first viral nucleic acid screening showed a higher positive rate in the community and hospital fever clinics. The cumulative positive rate of the nucleic acid test in the mobile field hospital was 38.7%. The average CT value of the COVID-19 ORF1ab gene was 34.56 ± 5.98, while the average CT value of the N gene was 33.10 ± 6.50. The patients took an average of 3.40 ± 0.45 days to test negative, with a positive rate of 15.4% and an average hospital stay of 7.45 ± 0.53 days. The overall rate of COVID-19 vaccine coverage was 68.0%, with an enhanced coverage rate of 40% and a non-coverage rate of 29.3%. CONCLUSIONS The overall prognosis for elderly patients who experienced a mild or asymptomatic SARS-CoV-2 Omicron infection at the mobile field hospital was favorable, although the vaccination rate in general was not high. By effectively managing underlying health conditions, the duration of their hospital stay in the mobile field hospital was reduced.
Collapse
Affiliation(s)
- Mei-Mei Wu
- Department of Geriatrics, The 900th Hospital of the Joint Logistics Support Force, Fujian, China
- Department of Geriatrics, The 900th Hospital of the Joint Logistics Support Force, Fujian, China
| | - Yao Li
- Department of Geriatrics, The 900th Hospital of the Joint Logistics Support Force, Fujian, China
- Department of Geriatrics, The 900th Hospital of the Joint Logistics Support Force, Fujian, China
| | - He-Qun Jiang
- Department of Anaesthesia, The 900th Hospital of the Joint Logistics Support Force, Fujian, China
| | - Ye Ma
- Department of Geriatrics, The 900th Hospital of the Joint Logistics Support Force, Fujian, China
| |
Collapse
|
3
|
Assar S, Dastbaz M, Amini K, Roghani SA, Lotfi R, Taghadosi M, Kafi H, Abdan Z, Allahyari H, Rostampour R, Shahrokhvand SZ. Assessing the gene expression of the adenosine 5'-monophosphate-activated protein kinase (AMPK) and its relation with the IL-6 and IL-10 plasma levels in COVID-19 patients. Mol Biol Rep 2023; 50:9925-9933. [PMID: 37874507 DOI: 10.1007/s11033-023-08835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Metabolic dysregulation and excessive inflammation are implicated in the pathogenesis of the highly infectious disease of coronavirus disease 2019 (COVID-19), which is caused by a newly emerging coronavirus (i.e., severe acute respiratory syndrome-coronavirus 2; SARS-CoV-2). The adenosine 5'-monophosphate-activated protein kinase (AMPK), an energy sensor regulating the metabolic pathways in diverse cells, exerts a regulatory role in the immune system. This study aims to examine the mRNA expression level of AMPK and the plasma levels of interleukin-6 (IL-6) and IL-10 cytokines in patients with different grades of COVID-19. METHODS Peripheral blood was collected from 60 patients with COVID-19 (Moderate, severe, and critical). The plasma levels of IL-6 and IL-10 were quantified by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression level of AMPK was determined using real-time PCR. RESULTS The results showed that the plasma levels of IL-6 increased significantly in critical and severe patients compared to moderate cases of COVID-19 (P < 0.001). Moreover, IL-10 plasma concentrations were significantly higher in critical and severe cases than in moderate cases of COVID-19 (P < 0.01 and P < 0.05, respectively). Also, the gene expression of AMPK was meaningfully enhanced in critical patients relative to moderate and severe cases of COVID-19, in order (P < 0.001 and P < 0.01, respectively). There was a positive association between AMPK gene expression and plasma levels of IL-6 and IL-10 (P = 0.006, r = 0.348, P = 0.028, r = 0.283, respectively). CONCLUSION Increasing AMPK gene expression is likely a necessary effort of the immune system to inhibit inflammation in critical COVID-19. However, this effort seems to be inadequate, probably due to factors that induce inflammation, like erythrocyte sedimentation rate (ESR) and IL-6.
Collapse
Affiliation(s)
- Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Dastbaz
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Komail Amini
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Askar Roghani
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, 6617713446, Iran.
| | - Mahdi Taghadosi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamidreza Kafi
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Zahra Abdan
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hosna Allahyari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Rostampour
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyedeh Zahra Shahrokhvand
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Tolmacheva AS, Onvumere MK, Sedykh SE, Timofeeva AM, Nevinsky GA. Catalase Activity of IgGs of Patients Infected with SARS-CoV-2. Int J Mol Sci 2023; 24:10081. [PMID: 37373231 DOI: 10.3390/ijms241210081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by the SARS-CoV-2 coronavirus, leads to various manifestations of the post-COVID syndrome, including diabetes, heart and kidney disease, thrombosis, neurological and autoimmune diseases and, therefore, remains, so far, a significant public health problem. In addition, SARS-CoV-2 infection can lead to the hyperproduction of reactive oxygen species (ROS), causing adverse effects on oxygen transfer efficiency, iron homeostasis, and erythrocytes deformation, contributing to thrombus formation. In this work, the relative catalase activity of the serum IgGs of patients recovered from COVID-19, healthy volunteers vaccinated with Sputnik V, vaccinated with Sputnik V after recovering from COVID-19, and conditionally healthy donors were analyzed for the first time. Previous reports show that along with canonical antioxidant enzymes, the antibodies of mammals with superoxide dismutase, peroxidase, and catalase activities are involved in controlling reactive oxygen species levels. We here show that the IgGs from patients who recovered from COVID-19 had the highest catalase activity, and this was statistically significantly higher each compared to the healthy donors (1.9-fold), healthy volunteers vaccinated with Sputnik V (1.4-fold), and patients vaccinated after recovering from COVID-19 (2.1-fold). These data indicate that COVID-19 infection may stimulate the production of antibodies that degrade hydrogen peroxide, which is harmful at elevated concentrations.
Collapse
Affiliation(s)
- Anna S Tolmacheva
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Margarita K Onvumere
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Sergey E Sedykh
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Anna M Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Tu B, Gao Y, An X, Wang H, Huang Y. Localized delivery of nanomedicine and antibodies for combating COVID-19. Acta Pharm Sin B 2023; 13:1828-1846. [PMID: 36168329 PMCID: PMC9502448 DOI: 10.1016/j.apsb.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been a major health burden in the world. So far, many strategies have been investigated to control the spread of COVID-19, including social distancing, disinfection protocols, vaccines, and antiviral treatments. Despite the significant achievement, due to the constantly emerging new variants, COVID-19 is still a great challenge to the global healthcare system. It is an urgent demand for the development of new therapeutics and technologies for containing the wild spread of SARS-CoV-2. Inhaled administration is useful for the treatment of lung and respiratory diseases, and enables the drugs to reach the site of action directly with benefits of decreased dose, improved safety, and enhanced patient compliance. Nanotechnology has been extensively applied in the prevention and treatment of COVID-19. In this review, the inhaled nanomedicines and antibodies, as well as intranasal nanodrugs, for the prevention and treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanrong Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran An
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- Taizhou University, School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou 318000, China
| |
Collapse
|
6
|
Saadedine M, El Sabeh M, Borahay MA, Daoud G. The influence of COVID-19 infection-associated immune response on the female reproductive system†. Biol Reprod 2023; 108:172-182. [PMID: 36173920 PMCID: PMC9620712 DOI: 10.1093/biolre/ioac187] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a multi-system disease that has led to a pandemic with unprecedented ramifications. The pandemic has challenged scientists for the past 2 years and brought back previously abandoned research topics. COVID-19 infection causes a myriad of symptoms ranging from mild flu-like symptoms to severe illness requiring hospitalization. Case reports showed multiple systemic effects of COVID-19 infection, including acute respiratory distress syndrome, fibrosis, colitis, thyroiditis, demyelinating syndromes, and mania, indicating that COVID-19 can affect most human body systems. Unsurprisingly, a major concern for women all over the globe is whether a COVID-19 infection has any long-term effects on their menstrual cycle, fertility, or pregnancy. Published data have suggested an effect on the reproductive health, and we hypothesize that the reported reproductive adverse effects are due to the robust immune reaction against COVID-19 and the associated cytokine storm. While the COVID-19 receptor (angiotensin converting enzyme, ACE2) is expressed in the ovaries, uterus, vagina, and placenta, we hypothesize that it plays a less important role in the adverse effects on the reproductive system. Cytokines and glucocorticoids act on the hypothalamo-pituitary gonadal axis, arachidonic acid pathways, and the uterus, which leads to menstrual disturbances and pregnancy-related adverse events such as preterm labor and miscarriages. This hypothesis is further supported by the apparent lack of long-term effects on the reproductive health in females, indicating that when the cytokine storm and its effects are dampened, the reproductive health of women is no longer affected.
Collapse
Affiliation(s)
- Mariam Saadedine
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Malak El Sabeh
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
Scola L, Ferraro D, Sanfilippo GL, De Grazia S, Lio D, Giammanco GM. Age and Cytokine Gene Variants Modulate the Immunogenicity and Protective Effect of SARS-CoV-2 mRNA-Based Vaccination. Vaccines (Basel) 2023; 11:vaccines11020413. [PMID: 36851291 PMCID: PMC9962548 DOI: 10.3390/vaccines11020413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The introduction of anti-SARS-CoV-2 vaccines in late 2020 substantially changed the pandemic picture, inducing effective protection in the population. However, individual variability was observed with different levels of cellular response and neutralizing antibodies. We report data on the impact of age, gender, and 16 single nucleotide polymorphisms (SNPs) of cytokine genes on the anti-SARS-CoV-2 IgG titers measured 31 and 105 days after administration of the second dose of BNT162b2 vaccine to 122 healthy subjects from the health care staff of the Palermo University Hospital, Italy. The higher titers at 31 days were measured in the younger subjects and in subjects bearing T-positive genotypes of IL-1R1 rs2234650 or the GG homozygous genotype of IL-6 rs1800795 SNP. T-positive genotypes are also significantly more common in subjects with higher titers at day 105. In addition, in this group of subjects, the frequency of the CT genotype of IL-4 rs2243250 is higher among those vaccinated with higher titers. Moreover, these SNPs and TNFA rs1800629 are differently distributed in a group of subjects that were found infected by SARS-CoV-2 at day 105 of evaluation. Finally, subjects that were found to be infected by SARS-CoV-2 at day 105 were significantly older than the uninfected subjects. Taken together, these data seem to suggest that age and polymorphisms of key cytokines, which regulate inflammation and humoral immune response, might influence the magnitude of the antibody response to vaccination with BNT162B2, prompting speculation about the possible benefit of a genetic background-based assessment of a personalized approach to the anti-COVID vaccination schedule.
Collapse
Affiliation(s)
- Letizia Scola
- Clinical Pathology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Corso Tukory, 211, 90134 Palermo, Italy
| | - Donatella Ferraro
- Microbiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Giuseppa Luisa Sanfilippo
- Microbiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Simona De Grazia
- Microbiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| | - Domenico Lio
- Interdepartmental Research Center “Migrate”, University of Palermo, 90133 Palermo, Italy
- Correspondence: ; Tel.: +39-91-6555913
| | - Giovanni Maurizio Giammanco
- Microbiology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
8
|
Blood leukocyte transcriptional modules and differentially expressed genes associated with disease severity and age in COVID-19 patients. Sci Rep 2023; 13:898. [PMID: 36650374 PMCID: PMC9844197 DOI: 10.1038/s41598-023-28227-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Since the molecular mechanisms determining COVID-19 severity are not yet well understood, there is a demand for biomarkers derived from comparative transcriptome analyses of mild and severe cases, combined with patients' clinico-demographic and laboratory data. Here the transcriptomic response of human leukocytes to SARS-CoV-2 infection was investigated by focusing on the differences between mild and severe cases and between age subgroups (younger and older adults). Three transcriptional modules correlated with these traits were functionally characterized, as well as 23 differentially expressed genes (DEGs) associated to disease severity. One module, correlated with severe cases and older patients, had an overrepresentation of genes involved in innate immune response and in neutrophil activation, whereas two other modules, correlated with disease severity and younger patients, harbored genes involved in the innate immune response to viral infections, and in the regulation of this response. This transcriptomic mechanism could be related to the better outcome observed in younger COVID-19 patients. The DEGs, all hyper-expressed in the group of severe cases, were mostly involved in neutrophil activation and in the p53 pathway, therefore related to inflammation and lymphopenia. These biomarkers may be useful for getting a better stratification of risk factors in COVID-19.
Collapse
|
9
|
Ferraro JJ, Reynolds A, Edoigiawerie S, Seu MY, Horen SR, Aminzada A, Hamidian Jahromi A. Impact of gender-affirming hormone therapy on the development of COVID-19 infections and associated complications: A systematic review. World J Methodol 2022; 12:465-475. [PMID: 36479311 PMCID: PMC9720351 DOI: 10.5662/wjm.v12.i6.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can produce a wide range of clinical manifestations from asymptomatic to life-threatening. Various researchers have worked to elucidate the pathogenic mechanisms underlying these variable presentations. Differences in individual responses to systemic inflammation and coagulopathy appear to be modulated by several factors, including sex steroid hormones. Transgender men or non-binary individuals who undergo gender-affirming hormone therapy (GAHT) are a unique population of interest for exploring the androgen-mediated coronavirus disease 2019 (COVID-19) hypothesis. As the search for reliable and effective COVID-19 treatments continues, understanding the risks and benefits of GAHT may mitigate COVID-19 related morbidity and mortality in this patient population. AIM To investigate the potential role of GAHT in the development of COVID-19 infections and complications. METHODS This systematic review implemented an algorithmic approach using PRISMA guidelines. PubMed, Scopus, Google Scholar top 100 results, and archives of Plastic and Reconstructive Surgery was on January 12, 2022 using the key words "gender" AND "hormone" AND "therapy" AND "COVID-19" as well as associated terms. Non-English articles, articles published prior to 2019 (prior to COVID-19), and manuscripts in the form of reviews, commentaries, or letters were excluded. References of the selected publications were screened as well. RESULTS The database search resulted in the final inclusion of 14 studies related to GAHT COVID-19. Of the included studies, only two studies directly involved and reported on COVID-19 in transgender patients. Several clinical trials looked at the relationship between testosterone, estrogen, and progesterone in COVID-19 infected cis-gender men and women. It has been proposed that androgens may facilitate initial COVID-19 infection, however, once this occurs, testosterone may have a protective effect. Multiple clinical studies have shown that low baseline testosterone levels in men with COVID-19 are associated with worsening outcomes. The role of female sex hormones, including estrogen and progesterone have also been proposed as potential protective factors in COVID-19 infection. This was exemplified in multiple studies investigating different outcomes in pre- and post-menopausal women as well as those taking hormone replacement therapy. Two studies related specifically to transgender patients and GAHT found that estrogen and progesterone could help protect men against COVID-19, and that testosterone hormone therapy may increase the risk of contracting COVID-19. CONCLUSION Few studies were found related to the role of GAHT in COVID-19 infections. Additional research is necessary to enhance our understanding of this relationship and provide better care for transgender patients.
Collapse
Affiliation(s)
- Jennifer J Ferraro
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, United States
| | - Allie Reynolds
- Undergraduate Studies, Princeton University, Princeton, NJ 08544, United States
| | - Sylvia Edoigiawerie
- Medical School, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States
| | - Michelle Y Seu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, United States
| | - Sydney R Horen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, United States
| | - Amir Aminzada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, United States
| | - Alireza Hamidian Jahromi
- Division of Plastic and Reconstructive Surgery, Temple University Health System, Philadelphia, PA 19140, United States
| |
Collapse
|
10
|
Casenaz A, Grosjean S, Aho-Glélé LS, Bour JB, Auvray C, Manoha C. Humoral and cellular immune response after severe acute respiratory syndrome coronavirus 2 messenger ribonucleic acid vaccination in heart transplant recipients: An observational study in France. Front Med (Lausanne) 2022; 9:1027708. [PMID: 36388890 PMCID: PMC9643719 DOI: 10.3389/fmed.2022.1027708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Heart transplant (HT) recipients have a high risk of developing severe COVID-19. Immunoglobulin G antibodies are considered to provide protective immunity and T-cell activity is thought to confer protection from severe disease. However, data on T-cell response to mRNA vaccination in a context of HT remains limited. METHODS In 96 HT patients, a IFN-γ release assay and an anti-Spike antibody test were used to evaluate the ability of SARS-CoV-2 mRNA vaccines to generate cellular and humoral immune response. Blood samples were collected few weeks to 7 months after vaccination. Multiple fractional polynomial and LASSO regression models were used to define predictors of T-cell response. RESULTS Three to five months after vaccination, three doses of vaccine induced a positive SARS-CoV-2 T-cell response in 47% of recipients and a positive humoral response in 83% of recipients, 11.1% of patients remained negative for both T and B cell responses. Three doses were necessary to reach high IgG response levels (>590 BAU/mL), which were obtained in a third of patients. Immunity was greatly amplified in the group who had three vaccine doses plus COVID-19 infection. CONCLUSION Our study revealed that T and B immunity decreases over time, leading us to suggest the interest of a booster vaccination at 5 months after the third dose. Moreover, a close follow-up of immune response following vaccination is needed to ensure ongoing immune protection. We also found that significant predictors of higher cellular response were infection and active smoking, regardless of immunosuppressive treatment with mycophenolate mofetil (MMF).
Collapse
Affiliation(s)
- Alice Casenaz
- Virology Laboratory, Department of Microbiology, Dijon Bourgogne University Hospital, Dijon, France
| | - Sandrine Grosjean
- Department of Anaesthesiology and Critical Care Medicine, Dijon Bourgogne University Hospital, Dijon, France
| | - Ludwig-Serge Aho-Glélé
- Epidemiology and Infection Control Unit, Dijon Bourgogne University Hospital, Dijon, France
| | - Jean-Baptiste Bour
- Virology Laboratory, Department of Microbiology, Dijon Bourgogne University Hospital, Dijon, France
| | - Christelle Auvray
- Virology Laboratory, Department of Microbiology, Dijon Bourgogne University Hospital, Dijon, France
| | - Catherine Manoha
- Virology Laboratory, Department of Microbiology, Dijon Bourgogne University Hospital, Dijon, France
| |
Collapse
|
11
|
Silva MJA, Ribeiro LR, Lima KVB, Lima LNGC. Adaptive immunity to SARS-CoV-2 infection: A systematic review. Front Immunol 2022; 13:1001198. [PMID: 36300105 PMCID: PMC9589156 DOI: 10.3389/fimmu.2022.1001198] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 01/08/2023] Open
Abstract
Background There is evidence that the adaptive or acquired immune system is one of the crucial variables in differentiating the course of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work aimed to analyze the immunopathological aspects of adaptive immunity that are involved in the progression of this disease. Methods This is a systematic review based on articles that included experimental evidence from in vitro assays, cohort studies, reviews, cross-sectional and case-control studies from PubMed, SciELO, MEDLINE, and Lilacs databases in English, Portuguese, or Spanish between January 2020 and July 2022. Results Fifty-six articles were finalized for this review. CD4+ T cells were the most resolutive in the health-disease process compared with B cells and CD8+ T lymphocytes. The predominant subpopulations of T helper lymphocytes (Th) in critically ill patients are Th1, Th2, Th17 (without their main characteristics) and regulatory T cells (Treg), while in mild cases there is an influx of Th1, Th2, Th17 and follicular T helper cells (Tfh). These cells are responsible for the secretion of cytokines, including interleukin (IL) - 6, IL-4, IL-10, IL-7, IL-22, IL-21, IL-15, IL-1α, IL-23, IL-5, IL-13, IL-2, IL-17, tumor necrosis factor alpha (TNF-α), CXC motivating ligand (CXCL) 8, CXCL9 and tumor growth factor beta (TGF-β), with the abovementioned first 8 inflammatory mediators related to clinical benefits, while the others to a poor prognosis. Some CD8+ T lymphocyte markers are associated with the severity of the disease, such as human leukocyte antigen (HLA-DR) and programmed cell death protein 1 (PD-1). Among the antibodies produced by SARS-CoV-2, Immunoglobulin (Ig) A stood out due to its potent release associated with a more severe clinical form. Conclusions It is concluded that through this study it is possible to have a brief overview of the main immunological biomarkers and their function during SARS-CoV-2 infection in particular cell types. In critically ill individuals, adaptive immunity is varied, aberrantly compromised, and late. In particular, the T-cell response is also an essential and necessary component in immunological memory and therefore should be addressed in vaccine formulation strategies.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- *Correspondence: Marcos Jessé Abrahão Silva,
| | - Layana Rufino Ribeiro
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Luana Nepomuceno Gondim Costa Lima
- Graduate Program in Epidemiology and Health Surveillance (PPGEVS), Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| |
Collapse
|
12
|
Demoliou C, Papaneophytou C, Nicolaidou V. SARS-CoV-2 and HIV-1: So Different yet so Alike . Immune Response at the Cellular and Molecular Level. Int J Med Sci 2022; 19:1787-1795. [PMID: 36313221 PMCID: PMC9608044 DOI: 10.7150/ijms.73134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023] Open
Abstract
In the past half century, humanity has experienced two devastating pandemics; the HIV-1 pandemic and the recent pandemic caused by SARS-CoV-2. Both emerged as zoonotic pathogens. Interestingly, SARS-CoV-2 has rapidly migrated all over the world in less than two years, much as HIV-1 did almost 40 years ago. Despite these two RNA viruses being different in their mode of transmission as well as the symptoms they generate, recent evidence suggests that they cause similar immune responses. In this mini review, we compare the molecular basis for CD4+ T cell lymphopenia and other effects on the immune system induced by SARS-CoV-2 and HIV-1 infections. We considered features of the host immune response that are shared with HIV-1 and could account for the lymphopenia and other immune effects observed in COVID-19. The information provided herein, may cast the virus-induced lymphopenia and cytokine storm associated with the acute SARS-CoV-2 infection and pathogenesis in a different light for further research on host immune responses. It can also provide opportunities for the identification of novel therapeutic targets for COVID-19. Furthermore, we provide some basic information to enable a comparative framework for considering the overlapping sets of immune responses caused by HIV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Vicky Nicolaidou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 46 Makedonitissas Avenue, 2417, Nicosia, Cyprus
| |
Collapse
|
13
|
Yi J, Miao J, Zuo Q, Owusu F, Dong Q, Lin P, Wang Q, Gao R, Kong X, Yang L. COVID-19 pandemic: A multidisciplinary perspective on the pathogenesis of a novel coronavirus from infection, immunity and pathological responses. Front Immunol 2022; 13:978619. [PMID: 36091053 PMCID: PMC9459044 DOI: 10.3389/fimmu.2022.978619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus2 (SARS-CoV-2), has spread to more than 200 countries and regions, having a huge impact on human health, hygiene, and economic activities. The epidemiological and clinical phenotypes of COVID-19 have increased since the onset of the epidemic era, and studies into its pathogenic mechanisms have played an essential role in clinical treatment, drug development, and prognosis prevention. This paper reviews the research progress on the pathogenesis of the novel coronavirus (SARS-CoV-2), focusing on the pathogenic characteristics, loci of action, and pathogenic mechanisms leading to immune response malfunction of SARS-CoV-2, as well as summarizing the pathological damage and pathological manifestations it causes. This will update researchers on the latest SARS-CoV-2 research and provide directions for future therapeutic drug development.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiameng Miao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingwei Zuo
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiutong Dong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peizhe Lin
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Xia Y, Yao RQ, Zhao PY, Tao ZB, Zheng LY, Zhou HT, Yao YM, Song XM. Publication trends of research on COVID-19 and host immune response: A bibliometric analysis. Front Public Health 2022; 10:939053. [PMID: 36003630 PMCID: PMC9394856 DOI: 10.3389/fpubh.2022.939053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/18/2022] [Indexed: 01/08/2023] Open
Abstract
IntroductionAs the first bibliometric analysis of COVID-19 and immune responses, this study will provide a comprehensive overview of the latest research advances. We attempt to summarize the scientific productivity and cooperation across countries and institutions using the bibliometric methodology. Meanwhile, using clustering analysis of keywords, we revealed the evolution of research hotspots and predicted future research focuses, thereby providing valuable information for the follow-up studies.MethodsWe selected publications on COVID-19 and immune response using our pre-designed search strategy. Web of Science was applied to screen the eligible publications for subsequent bibliometric analyses. GraphPad Prism 8.0, VOSviewer, and CiteSpace were applied to analyze the research trends and compared the contributions of countries, authors, institutions, and journals to the global publications in this field.ResultsWe identified 2,200 publications on COVID-19 and immune response published between December 1, 2019, and April 25, 2022, with a total of 3,154 citations. The United States (611), China (353), and Germany (209) ranked the top three in terms of the number of publications, accounting for 53.3% of the total articles. Among the top 15 institutions publishing articles in this area, four were from France, four were from the United States, and three were from China. The journal Frontiers in Immunology published the most articles (178) related to COVID-19 and immune response. Alessandro Sette (31 publications) from the United States were the most productive and influential scholar in this field, whose publications with the most citation frequency (3,633). Furthermore, the development and evaluation of vaccines might become a hotspot in relevant scope.ConclusionsThe United States makes the most indispensable contribution in this field in terms of publication numbers, total citations, and H-index. Although publications from China also take the lead regarding quality and quantity, their international cooperation and preclinical research need to be further strengthened. Regarding the citation frequency and the total number of published articles, the latest research progress might be tracked in the top-ranking journals in this field. By analyzing the chronological order of the appearance of retrieved keywords, we speculated that vaccine-related research might be the novel focus in this field.
Collapse
Affiliation(s)
- Yun Xia
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Ren-qi Yao
| | - Peng-yue Zhao
- Department of General Surgery, First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zheng-bo Tao
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li-yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hui-ting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yong-ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
- Yong-ming Yao
| | - Xue-min Song
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xue-min Song
| |
Collapse
|
15
|
Kolosova EA, Shaprova ON, Shanshin DV, Nesmeyanova VS, Merkuleva IA, Belenkaya SV, Isaeva AA, Nikitin AO, Volosnikova EA, Nikulina YA, Nikonorova MA, Shcherbakov DN, Elchaninova SA. Antibodies to the Spike Protein Receptor-Binding Domain of SARS-CoV-2 at 4-13 Months after COVID-19. J Clin Med 2022; 11:4053. [PMID: 35887818 PMCID: PMC9322357 DOI: 10.3390/jcm11144053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Identification of factors behind the level and duration of persistence of the SARS-CoV-2 antibodies in the blood is assumed to set the direction for studying humoral immunity mechanisms against COVID-19, optimizing the strategy for vaccine use, antibody-based drugs, and epidemiological control of COVID-19. Objective: This study aimed to study the relationship between clinical and demographic characteristics and the level of IgG antibodies to the RBD of SARS-CoV-2 spike protein after COVID-19 in the long term. Residents of the Altai Region of Western Siberia of Russia, Caucasians, aged from 27 to 93 years (median 53.0 years), who recovered from COVID-19 between May 2020 and February 2021 (n = 44) took part in this prospective observational study. The titer of IgG antibodies to the RBD of SARS-CoV-2 spike protein was measured repeatedly in the blood at 4-13 months from the beginning of the clinical manifestation of COVID-19 via the method of enzyme-linked immunosorbent assay. The antibody titer positively correlated with age (p = 0.013) and COVID-19 pneumonia (p = 0.002) at 20-40 and 20-24 weeks from the onset of COVID-19 symptoms, respectively. Age was positively associated with antibody titer regardless of history of COVID-19 pneumonia (beta regression coefficient p = 0.009). The antibody titer decreased in 15 (34.1%) patients, increased in 10 (22.7%) patients, and did not change in 19 (43.2%) patients from the baseline to 48-49 weeks from the onset of COVID-19 symptoms, with seropositivity persisting in all patients. Age and COVID-19 pneumonia are possibly associated with higher IgG antibodies to the spike protein RBD of SARS-CoV-2 following COVID-19 in the long term. Divergent trends of anti-RBD IgG levels in adults illustrate inter-individual differences at 4-13 months from the onset of COVID-19 symptoms.
Collapse
Affiliation(s)
- Evgeniia A. Kolosova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia
| | - Olga N. Shaprova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Svetlana V. Belenkaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Artem O. Nikitin
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Yuliya A. Nikulina
- Department of Infectious Diseases, Altai State Medical University, 656038 Barnaul, Russia; (Y.A.N.); (M.A.N.)
| | - Marina A. Nikonorova
- Department of Infectious Diseases, Altai State Medical University, 656038 Barnaul, Russia; (Y.A.N.); (M.A.N.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia
| | - Svetlana A. Elchaninova
- Department of Biochemistry and Clinical Laboratory Diagnostics, Altai State Medical University, 656038 Barnaul, Russia;
| |
Collapse
|
16
|
SCD14-ST and New Generation Inflammatory Biomarkers in the Prediction of COVID-19 Outcome. Biomolecules 2022; 12:biom12060826. [PMID: 35740951 PMCID: PMC9220996 DOI: 10.3390/biom12060826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 12/18/2022] Open
Abstract
Since no definitive cure for COVID-19 is available so far, one of the challenges against the disease is understanding the clinical features and the laboratory inflammatory markers that can differentiate among different severity grades of the disease. The aim of the present study is a comprehensive and longitudinal evaluation of SCD14-ST and other new inflammatory markers, as well as cytokine storm molecules and current inflammatory parameters, in order to define a panel of biomarkers that could be useful for a better prognostic prediction of COVID-19 mortality. SCD14-ST, as well as the inflammatory markers IL-6, IL-10, SuPAR and sRAGE, were measured in plasma-EDTA of ICU COVID-19 positive patients. In this longitudinal study, SCD14-ST resulted significantly higher in patients who eventually died compared to those who were discharged from the ICU. The results suggest that the new infection biomarker SCD14-ST, in addition to new generation inflammatory biomarkers, such as SuPAR, sRAGE and the cytokines IL-6 and IL-10, can be a useful prognostic tool associated with canonical inflammatory parameters, such as CRP, to predict SARS-CoV-2 outcome in ICU patients.
Collapse
|
17
|
Valarezo-Sevilla D, Sarzosa-Terán V. The enemy is the virus, not the vaccine. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
If we remember very superficially a little about the complex human immune system, a part of this immune system is made up of leukocytes (especially phagocytes and lymphocytes) that are responsible for detecting invaders and sending them defensive markers that adhere to them (the antibodies) and also to destroy the invaders identified by the system; In addition to the already mentioned leukocytes, our immune system is made up of various other elements such as cells, proteins, tissues and organs, which defend us against germs and microorganisms. 1, 2
Speaking specifically about the immune system and COVID-19, the events mainly involved in the immunopathogenesis of COVID-19 and the dysregulation of the immune response include lymphopenia and increased neutrophil-to-lymphocyte ratio, cytokines, lymphocyte depletion and dysfunction, antibody-dependent enhancement, and monocyte and granulocyte abnormalities. It must be emphasized that lymphopenia is an essential finding in most patients with COVID-19, particularly in those with a severe phenotype.3 It has been shown that multiple viral proteins induce T cells after infection and that T cells that have antiviral signatures related to safety and protection can be achieved by vaccination.4
Collapse
|
18
|
Ning Q, Wu D, Wang X, Xi D, Chen T, Chen G, Wang H, Lu H, Wang M, Zhu L, Hu J, Liu T, Ma K, Han M, Luo X. The mechanism underlying extrapulmonary complications of the coronavirus disease 2019 and its therapeutic implication. Signal Transduct Target Ther 2022; 7:57. [PMID: 35197452 PMCID: PMC8863906 DOI: 10.1038/s41392-022-00907-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a highly transmissible disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that poses a major threat to global public health. Although COVID-19 primarily affects the respiratory system, causing severe pneumonia and acute respiratory distress syndrome in severe cases, it can also result in multiple extrapulmonary complications. The pathogenesis of extrapulmonary damage in patients with COVID-19 is probably multifactorial, involving both the direct effects of SARS-CoV-2 and the indirect mechanisms associated with the host inflammatory response. Recognition of features and pathogenesis of extrapulmonary complications has clinical implications for identifying disease progression and designing therapeutic strategies. This review provides an overview of the extrapulmonary complications of COVID-19 from immunological and pathophysiologic perspectives and focuses on the pathogenesis and potential therapeutic targets for the management of COVID-19.
Collapse
Affiliation(s)
- Qin Ning
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Di Wu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xi
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Chen
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwu Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiling Lu
- National Medical Center for Major Public Health Events, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Zhu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjian Hu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Liu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Ma
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meifang Han
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Luo
- National Medical Center for Major Public Health Events, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Deravi N, Ahsan E, Fathi M, Hosseini P, Yaghoobpoor S, Lotfi R, Pourbagheri-Sigaroodi A, Bashash D. Complement inhibition: A possible therapeutic approach in the fight against Covid-19. Rev Med Virol 2021; 32:e2316. [PMID: 34873779 DOI: 10.1002/rmv.2316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 01/08/2023]
Abstract
The complement system, as a vital part of innate immunity, has an important role in the clearance of pathogens; however, unregulated activation of this system probably has a key role in the pathogenesis of acute lung injury, which is induced by highly pathogenic viruses (i.e. influenza A viruses and severe acute respiratory syndrome [SARS] coronavirus). The novel coronavirus SARS-CoV-2, which is the causal agent for the ongoing global pandemic of the coronavirus disease 2019 (Covid-19), has recently been spread to almost all countries around the world. Although most people are immunocompetent to SARS-CoV-2, a small group develops hyper-inflammation that leads to complications like acute respiratory distress syndrome, disseminated intravascular coagulation, and multi-organ failure. Emerging evidence demonstrates that the complement system exerts a crucial role in this inflammatory reaction. Additionally, patients with the severe form of Covid-19 show over-activation of the complement in their skin, sera, and lungs. This study aims to summarise current knowledge concerning the interaction of SARS-CoV-2 with the complement system and to critically appraise complement inhibition as a potential new approach for Covid-19 treatment.
Collapse
Affiliation(s)
- Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Ahsan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Campos KR, Sacchi CT, Abbud A, Caterino-de-Araujo A. SARS-CoV-2 variants in severely symptomatic and deceased persons who had been vaccinated against COVID-19 in São Paulo, Brazil. Rev Panam Salud Publica 2021; 45:e126. [PMID: 34707647 PMCID: PMC8544615 DOI: 10.26633/rpsp.2021.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
COVID-19 vaccination began in São Paulo, Brazil in January 2021, first targeting healthcare workers (HCWs) and the elderly, using the CoronaVac vaccine (Sinovac/Butantan) and subsequently the Oxford/AstraZeneca (ChAdOx1) vaccine (AstraZeneca/FIOCRUZ-RJ). Studies on such vaccines have shown efficacy in preventing severe cases and deaths, but there is a lack of information regarding their effectiveness. This manuscript presents data from the Instituto Adolfo Lutz (IAL), a public health laboratory located in São Paulo City that receives samples from 17 Regional Health Departments under the Secretary of Health of São Paulo, for SARS-CoV-2 genomic surveillance. Through May 15, 2021 IAL received 20 samples for analysis from COVID-19 vaccinated individuals who needed hospitalization and/or died from COVID-19. Next-generation sequencing was performed on an Ion Torrent S5 platform using the AmpliSeq™ SARS-CoV-2 kit. Almost all cases were vaccinated with CoronaVac and presented the gamma variant of concern (VOC). Cases of death were observed mostly in the elderly in nursing homes, and severe cases in younger frontline HCWs. This data confirmed that the SARS-CoV-2 gamma variant is highly transmissible, severe, and lethal for COVID-19 in these groups of individuals, thereby highlighting the importance of continuous vaccination and non-pharmacological prevention measures to avoid virus dissemination and the emergence of new VOCs.
Collapse
Affiliation(s)
- Karoline Rodrigues Campos
- Laboratório Estratégico Centro de Respostas Rápidas Instituto Adolfo Lutz São Paulo, SP Brasil Laboratório Estratégico, Centro de Respostas Rápidas, Instituto Adolfo Lutz, São Paulo, SP, Brasil
| | - Cláudio Tavares Sacchi
- Laboratório Estratégico Centro de Respostas Rápidas Instituto Adolfo Lutz São Paulo, SP Brasil Laboratório Estratégico, Centro de Respostas Rápidas, Instituto Adolfo Lutz, São Paulo, SP, Brasil
| | - Adriano Abbud
- Centro de Respostas Rápidas Instituto Adolfo Lutz São Paulo, SP Brasil Centro de Respostas Rápidas, Instituto Adolfo Lutz, São Paulo, SP, Brasil
| | - Adele Caterino-de-Araujo
- Centro de Imunologia Instituto Adolfo Lutz São Paulo, SP Brasil Centro de Imunologia, Instituto Adolfo Lutz, São Paulo, SP, Brasil
| |
Collapse
|
21
|
Cheng ZJ, Xue M, Zheng P, Lyu J, Zhan Z, Hu H, Zhang Y, Zhang XD, Sun B. Factors Affecting the Antibody Immunogenicity of Vaccines against SARS-CoV-2: A Focused Review. Vaccines (Basel) 2021; 9:869. [PMID: 34451994 PMCID: PMC8402513 DOI: 10.3390/vaccines9080869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/11/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
Vaccines are a crucial part of the global anti-pandemic effort against COVID-19. The effects of vaccines, as well as their common influencing factors, are the most important issues that we should focus on at this time. To this end, we review statistics on immunogenicity after vaccination, using neutralizing antibodies as the main reference index. Age, infection history, and virus variants are compared, and vaccination program recommendations are made accordingly. Suggestions are made to address concerns raised by the vaccines' shortened development cycle, as well as the emergence of immunity escape of viral variants. Finally, a brief description and future prospects are provided based on the principle of the ADE effect and previous experience with similar viruses.
Collapse
Affiliation(s)
- Zhangkai Jason Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510623, China; (Z.J.C.); (M.X.); (P.Z.); (J.L.); (H.H.); (Y.Z.)
| | - Mingshan Xue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510623, China; (Z.J.C.); (M.X.); (P.Z.); (J.L.); (H.H.); (Y.Z.)
| | - Peiyan Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510623, China; (Z.J.C.); (M.X.); (P.Z.); (J.L.); (H.H.); (Y.Z.)
| | - Jiali Lyu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510623, China; (Z.J.C.); (M.X.); (P.Z.); (J.L.); (H.H.); (Y.Z.)
| | - Zhiqing Zhan
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 510182, China;
| | - Haisheng Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510623, China; (Z.J.C.); (M.X.); (P.Z.); (J.L.); (H.H.); (Y.Z.)
| | - Yong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510623, China; (Z.J.C.); (M.X.); (P.Z.); (J.L.); (H.H.); (Y.Z.)
| | | | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510623, China; (Z.J.C.); (M.X.); (P.Z.); (J.L.); (H.H.); (Y.Z.)
| |
Collapse
|
22
|
Mohanty MC, Varose SY, Sawant UP, Fernandes MM. Expression of innate immune response genes in upper airway samples of SARS-CoV-2 infected patients: A preliminary study. Indian J Med Res 2021; 153:677-683. [PMID: 34528526 PMCID: PMC8555587 DOI: 10.4103/ijmr.ijmr_131_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background & objectives Upper respiratory mucosa is the entryway for SARS-CoV-2, and cells at this site form the first line of resistance against the pathogens. Innate immune response at this point is crucial for managing the replication and early stage symptoms of virus infection. This study was aimed to evaluate the expression of pattern recognition receptors and cytokines in upper airway cells of SARS-CoV-2 infected patients. Methods Forty seven nasopharyngeal swab (NPS) specimens from 25 SARS-CoV-2 infected patients and 22 SARS-CoV-2 negative individuals were investigated for expression of toll-like receptors (TLRs), melanoma differentiation-associated protein 5 (MDA5), NOD-like receptors family pyrin domain containing 3 (NLRP3), angiotensin-converting enzyme 2 (ACE2), interleukin (IL) - 6, tumour necrosis factor alpha (TNFα) and type-1 interferons (IFNs) by real time reverse transcription polymerase chain reaction. Results Increased expression of TLR2, MDA5 and ACE2 was detected in SARS-CoV-2 infected patients in comparison with controls. MDA5 expression was significantly higher in asymptomatic and mildly symptomatic SARS-CoV-2 positive patients than the patients with severe symptoms. The asymptomatic group showed significant induction of type 1 IFNs than the symptomatic group. Non-specific induction of TLR7 could be observed in nasopharyngeal (NP) cells irrespective of symptoms and SARS-CoV-2 positivity. Interpretation & conclusions The findings suggest that increased MDA5 in NP cells of asymptomatic SARS-CoV-2 positive patients may subsequently induce type 1 IFNs to protect the individuals from further clinical severity of SARS-CoV-2 infection. A future prospective study in NPS of larger cohort needs to be performed to confirm our findings.
Collapse
Affiliation(s)
- Madhu Chhanda Mohanty
- ICMR-National Institute of Virology, Mumbai Unit, Indian Council of Medical Research, Haffkine Institute Campus, Mumbai, Maharashtra, India
| | - Swapnil Yashwant Varose
- ICMR-National Institute of Virology, Mumbai Unit, Indian Council of Medical Research, Haffkine Institute Campus, Mumbai, Maharashtra, India
| | - Unnati Prashant Sawant
- ICMR-National Institute of Virology, Mumbai Unit, Indian Council of Medical Research, Haffkine Institute Campus, Mumbai, Maharashtra, India
| | - Mevis Minin Fernandes
- ICMR-National Institute of Virology, Mumbai Unit, Indian Council of Medical Research, Haffkine Institute Campus, Mumbai, Maharashtra, India
| |
Collapse
|