1
|
Lissak IA, Edlow BL, Rosenthal E, Young MJ. Ethical Considerations in Neuroprognostication Following Acute Brain Injury. Semin Neurol 2023; 43:758-767. [PMID: 37802121 DOI: 10.1055/s-0043-1775597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Neuroprognostication following acute brain injury (ABI) is a complex process that involves integrating vast amounts of information to predict a patient's likely trajectory of neurologic recovery. In this setting, critically evaluating salient ethical questions is imperative, and the implications often inform high-stakes conversations about the continuation, limitation, or withdrawal of life-sustaining therapy. While neuroprognostication is central to these clinical "life-or-death" decisions, the ethical underpinnings of neuroprognostication itself have been underexplored for patients with ABI. In this article, we discuss the ethical challenges of individualized neuroprognostication including parsing and communicating its inherent uncertainty to surrogate decision-makers. We also explore the population-based ethical considerations that arise in the context of heterogenous prognostication practices. Finally, we examine the emergence of artificial intelligence-aided neuroprognostication, proposing an ethical framework relevant to both modern and longstanding prognostic tools.
Collapse
Affiliation(s)
- India A Lissak
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Eric Rosenthal
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael J Young
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Fortunato F, Ferlini A. Biomarkers in Duchenne Muscular Dystrophy: Current Status and Future Directions. J Neuromuscul Dis 2023; 10:987-1002. [PMID: 37545256 PMCID: PMC10657716 DOI: 10.3233/jnd-221666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Duchenne muscular dystrophy is a severe, X-linked disease characterized by decreased muscle mass and function in children. Genetic and biochemical research over the years has led to the characterization of the cause and the pathophysiology of the disease. Moreover, the elucidation of genetic mechanisms underlining Duchenne muscular dystrophy has allowed for the design of innovative personalized therapies.The identification of specific, accurate, and sensitive biomarkers is becoming crucial for evaluating muscle disease progression and response to therapies, disease monitoring, and the acceleration of drug development and related regulatory processes.This review illustrated the up-to-date progress in the development of candidate biomarkers in DMD at the level of proteins, metabolites, micro-RNAs (miRNAs) and genetic modifiers also highlighting the complexity of translating research results to clinical practice.We highlighted the challenges encountered in translating biomarkers into the clinical context and the existing bottlenecks hampering the adoption of biomarkers as surrogate endpoints. These challenges could be overcome by national and international collaborative efforts, multicenter data sharing, definition of public biobanks and patients' registries, and creation of large cohorts of patients. Novel statistical tools/ models suitable to analyze small patient numbers are also required.Finally, collaborations with pharmaceutical companies would greatly benefit biomarker discovery and their translation in clinical trials.
Collapse
Affiliation(s)
- Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Mafuika SN, Naicker T, Harrichandparsad R, Lazarus L. The potential of serum S100 calcium-binding protein B and glial fibrillary acidic protein as biomarkers for traumatic brain injury. TRANSLATIONAL RESEARCH IN ANATOMY 2022. [DOI: 10.1016/j.tria.2022.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Ma J, Wang J, Deng K, Gao Y, Xiao W, Hou J, Jiang C, Li J, Yu B. The Effect of MaxiK Channel on Regulating the Activation of NLRP3 Inflammasome in Rats of Blast-induced Traumatic Brain Injury. Neuroscience 2021; 482:132-142. [PMID: 34923036 DOI: 10.1016/j.neuroscience.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Abundant findings including our previous work proved that the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome exerts a key role in the process of neuroinflammation following blast-induced traumatic brain injury (bTBI). The opening of potassium channels leads to low K+ environment in cells, which appears to be an essential requirement for NLRP3 inflammasome activation. Notably, MaxiK (BK) channel is significant for K+ transport. The present study is aim to investigate the potential role of MaxiK in the activation of NLRP3 and to evaluate whether MaxiK channel blocker paxilline could confer beneficial effects on attenuating the severity of bTBI in rats. Rats were randomly assigned into five groups (n = 8). MaxiK channel expression was measured in bTBI rats. The effect of paxilline on the expression of NLRP3 inflammasome, the level of inflammatory cytokines, brain injury biomarkers in serum and brain edema were also evaluated in bTBI rats. The results showed that the expression of MaxiK was elevated significantly in the cerebral cortex of bTBI rats. The treatment of MaxiK channel blocker paxilline suppressed the NLRP3 inflammasome expression substantially. In addition, paxilline could also decrease the level of pro-inflammatory cytokines and the biomarkers of brain injury and alleviate brain edema of bTBI rats. Our findings have revealed that MaxiK channel might be involved in the process of neuroinflammation of bTBI. Paxilline could depress neuro-inflammation response and alleviate brain injury by blocking MaxiK channel and subsequently inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China.
| | - Junrui Wang
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Kaiwen Deng
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Yu Gao
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Jun Hou
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Changqing Jiang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Jing Li
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Botao Yu
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China.
| |
Collapse
|
5
|
Krausz AD, Korley FK, Burns MA. A Variable Height Microfluidic Device for Multiplexed Immunoassay Analysis of Traumatic Brain Injury Biomarkers. BIOSENSORS 2021; 11:320. [PMID: 34562910 PMCID: PMC8472232 DOI: 10.3390/bios11090320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of global morbidity and mortality, partially due to the lack of sensitive diagnostic methods and efficacious therapies. Panels of protein biomarkers have been proposed as a way of diagnosing and monitoring TBI. To measure multiple TBI biomarkers simultaneously, we present a variable height microfluidic device consisting of a single channel that varies in height between the inlet and outlet and can passively multiplex bead-based immunoassays by trapping assay beads at the point where their diameter matches the channel height. We developed bead-based quantum dot-linked immunosorbent assays (QLISAs) for interleukin-6 (IL-6), glial fibrillary acidic protein (GFAP), and interleukin-8 (IL-8) using DynabeadsTM M-450, M-270, and MyOneTM, respectively. The IL-6 and GFAP QLISAs were successfully multiplexed using a variable height channel that ranged in height from ~7.6 µm at the inlet to ~2.1 µm at the outlet. The IL-6, GFAP, and IL-8 QLISAs were also multiplexed using a channel that ranged in height from ~6.3 µm at the inlet to ~0.9 µm at the outlet. Our system can keep pace with TBI biomarker discovery and validation, as additional protein biomarkers can be multiplexed simply by adding in antibody-conjugated beads of different diameters.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Department of Emergency Medicine and Michigan Medicle, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Ojo JO, Crynen G, Reed JM, Ajoy R, Vallabhaneni P, Algamal M, Leary P, Rafi NG, Mouzon B, Mullan M, Crawford F. Unbiased Proteomic Approach Identifies Unique and Coincidental Plasma Biomarkers in Repetitive mTBI and AD Pathogenesis. Front Aging Neurosci 2018; 10:405. [PMID: 30618712 PMCID: PMC6305374 DOI: 10.3389/fnagi.2018.00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
The relationship between repetitive mild traumatic brain injury (r-mTBI) and Alzheimer's disease (AD) is well-recognized. However, the precise nature of how r-mTBI leads to or precipitates AD pathogenesis is currently not understood. Plasma biomarkers potentially provide non-invasive tools for detecting neurological changes in the brain, and can reveal overlaps between long-term consequences of r-mTBI and AD. In this study we address this by generating time-dependent molecular profiles of response to r-mTBI and AD pathogenesis in mouse models using unbiased proteomic analyses. To model AD, we used the well-validated hTau and PSAPP(APP/PS1) mouse models that develop age-related tau and amyloid pathological features, respectively, and our well-established model of r-mTBI in C57BL/6 mice. Plasma were collected at different ages (3, 9, and 15 months-old for hTau and PSAPP mice), encompassing pre-, peri- and post-"onset" of the cognitive and neuropathological phenotypes, or at different timepoints after r-mTBI (24 h, 3, 6, 9, and 12 months post-injury). Liquid chromatography/mass spectrometry (LC-MS) approaches coupled with Tandem Mass Tag labeling technology were applied to develop molecular profiles of protein species that were significantly differentially expressed as a consequence of mTBI or AD. Mixed model ANOVA after Benjamini-Hochberg correction, and a stringent cut-off identified 31 proteins significantly changing in r-mTBI groups over time and, when compared with changes over time in sham mice, 13 of these were unique to the injured mice. The canonical pathways predicted to be modulated by these changes were LXR/RXR activation, production of nitric oxide and reactive oxygen species and complement systems. We identified 18 proteins significantly changing in PSAPP mice and 19 proteins in hTau mice compared to their wild-type littermates with aging. Six proteins were found to be significantly regulated in all three models, i.e., r-mTBI, hTau, and PSAPP mice compared to their controls. The top canonical pathways coincidently changing in all three models were LXR/RXR activation, and production of nitric oxide and reactive oxygen species. This work suggests potential biomarkers for TBI and AD pathogenesis and for the overlap between these two, and warrant targeted investigation in human populations. Data are available via ProteomeXchange with identifier PXD010664.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Gogce Crynen
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Jon M. Reed
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Rosa Ajoy
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Prashanthi Vallabhaneni
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Moustafa Algamal
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Paige Leary
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Naomi G. Rafi
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Benoit Mouzon
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Michael Mullan
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
7
|
Karnati HK, Garcia JH, Tweedie D, Becker RE, Kapogiannis D, Greig NH. Neuronal Enriched Extracellular Vesicle Proteins as Biomarkers for Traumatic Brain Injury. J Neurotrauma 2018; 36:975-987. [PMID: 30039737 DOI: 10.1089/neu.2018.5898] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of injury-related death throughout the world and lacks effective treatment. Surviving TBI patients often develop neuropsychiatric symptoms, and the molecular mechanisms underlying the neuronal damage and recovery following TBI are not well understood. Extracellular vesicles (EVs) are membranous nanoparticles that are divided into exosomes (originating in the endosomal/multi-vesicular body [MVB] system) and microvesicles (larger EVs produced through budding of the plasma membrane). Both types of EVs are generated by all cells and are secreted into the extracellular environment, and participate in cell-to-cell communication and protein and RNA delivery. EVs enriched for neuronal origin can be harvested from peripheral blood samples and their contents quantitatively examined as a window to follow potential changes occurring in brain. Recent studies suggest that the levels of exosomal proteins and microRNAs (miRNAs) may represent novel biomarkers to support the clinical diagnosis and potential response to treatment for neurological disorders. In this review, we focus on the biogenesis of EVs, their molecular composition, and recent advances in research of their contents as potential diagnostic tools for TBI.
Collapse
Affiliation(s)
- Hanuma Kumar Karnati
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Joseph H Garcia
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - David Tweedie
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Robert E Becker
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland.,2 Aristea Translational Medicine Corporation, Park City, Utah
| | - Dimitrios Kapogiannis
- 3 Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Nigel H Greig
- 1 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
8
|
Chen L, Wang L, Zhuo Q, Zhang Q, Chen F, Li L, Lin L. Effect of Shenmai injection on cognitive function after cardiopulmonary bypass in cardiac surgical patients: a randomized controlled trial. BMC Anesthesiol 2018; 18:142. [PMID: 30309327 PMCID: PMC6182819 DOI: 10.1186/s12871-018-0604-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/24/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common complication after cardiac surgery that influences the clinical outcomes and quality of life of patients. This study aimed to evaluate the effects of Shenmai injection (SMI) on POCD of patients who underwent cardiac valve replacement under cardiopulmonary bypass (CPB). METHODS This prospective, randomized, controlled trial was conducted from September 2014 to January 2017. Eighty-eight patients receiving cardiac valve replacement under CPB were randomized into the control (C) or the SMI (S) group. SMI (0.6 mL/kg) was administered intravenously from the time of anesthesia induction to the beginning of CPB. Cognitive function was assessed at 3 days before surgery and 3 days, 7 days, and 1 month after surgery using the Beijing version of the Montreal Cognitive Assessment (MoCA-BJ) score. The serum levels of neuroglobin (Ngb), hypoxia-inducible factor-1α (HIF-1α), and neuron-specific enolase (NSE) were measured at 30 min after induction (T0), immediately after the endonasal temperature rewarmed to 36 °C (T1), and 1 h (T2), 6 h (T3), 24 h (T4), 48 h (T5), and 72 h (T6) after CPB. RESULTS Compared with the baseline values at T0, the serum Ngb levels in group C were significantly decreased at T1-2 and then increased at T3-6, while the levels in group S were decreased at T1-2 and increased at T4-6, compared to group C (p < 0.05). The serum HIF-1α levels at T1-4 and the serum NSE levels at T1-6 were significantly increased in both groups (p < 0.05). The serum levels of Ngb at T3, HIF-1α at T1-3, and NSE at T3-4,6 were lower in group S, compared to group C (p < 0.01). The MoCA-BJ scores were decreased at 3 and 7 days after surgery in both groups, and the MoCA-BJ scores in group S were higher than those in group C at 3 and 7 days after surgery (p < 0.01). CONCLUSION Cognitive function is impaired postoperatively in patients who have undergone cardiac valve replacement under CPB. In addition, treatment with the traditional Chinese medicine SMI decreases the serum levels of Ngb, HIF-1α, and NSE as well as attenuates cognitive dysfunction. TRIAL REGISTRATION This trial was registered with Clinicaltrials.gov as ChiCTR-TRC-14004373 on March 11, 2014.
Collapse
Affiliation(s)
- Lei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liangrong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qian Zhuo
- Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Qiong Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Feifei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liling Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lina Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
9
|
Kiiski H, Långsjö J, Tenhunen J, Ala-Peijari M, Huhtala H, Hämäläinen M, Moilanen E, Peltola J. S100B, NSE and MMP-9 fail to predict neurologic outcome while elevated S100B associates with milder initial clinical presentation after aneurysmal subarachnoid hemorrhage. J Neurol Sci 2018; 390:129-134. [PMID: 29801873 DOI: 10.1016/j.jns.2018.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/21/2018] [Accepted: 04/18/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Despite advances in the treatment of aneurysmal subarachnoid hemorrhage (aSAH) one-year mortality remains approximately 50%. Making an accurate prognosis at the early phase of the disease is notoriously difficult. A clinically reliable biomarker that could be used for better prediction of prognosis and/or as a surrogate for developing complications after aSAH is still lacking. In this study, we evaluated the prognostic values of three promising biomarkers, i.e. S100B, NSE, and MMP-9 in aSAH. METHODS In this prospective population-based study, S100B, NSE, and MMP-9 levels were measured in 47 aSAH patients for up to five days. Blood samples were taken at 0, 12 and 24 h after the admission to the intensive care unit (ICU) and daily after that until the patient was transferred from the ICU. The patients' neurological outcome was evaluated with the modified Rankin Scale (mRS) at six months after aSAH. RESULTS Biomarker-levels measured during the first 24 h were not associated with neurological outcome. S100B levels during the first 24 h were elevated in patients with a non-severe initial clinical presentation. Otherwise, there was no association between selected clinical variables and the early biomarker levels. In 22 patients, whose ICU follow-up lasted for up to five days, the total release of biomarkers was not associated with the neurological outcome. CONCLUSIONS None of the measured biomarkers were associated with the neurological outcome evaluated at six months after aSAH. Elevated levels of S100B in patients with non-severe initial presentation suggest an adaptive role of this biomarker in aSAH. Based on our findings it is not advisable to use these biomarkers to guide clinical decision-making in patients with aSAH.
Collapse
Affiliation(s)
- Heikki Kiiski
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland.
| | - Jaakko Långsjö
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Jyrki Tenhunen
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland; Department of Surgical Sciences, Division of Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Marika Ala-Peijari
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University Hospital, Tampere, Finland
| | - Jukka Peltola
- Department of Neurology, University of Tampere and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
10
|
Wright DK, O'Brien TJ, Mychasiuk R, Shultz SR. Telomere length and advanced diffusion MRI as biomarkers for repetitive mild traumatic brain injury in adolescent rats. Neuroimage Clin 2018; 18:315-324. [PMID: 29876252 PMCID: PMC5987845 DOI: 10.1016/j.nicl.2018.01.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Mild traumatic brain injuries (mTBI) are of worldwide concern in adolescents of both sexes, and repeated mTBI (RmTBI) may have serious long-term neurological consequences. As such, the study of RmTBI and discovery of objective biomarkers that can help guide medical decisions is an important undertaking. Diffusion-weighted MRI (DWI), which provides markers of axonal injury, and telomere length (TL) are two clinically relevant biomarkers that have been implicated in a number of neurological conditions, and may also be affected by RmTBI. Therefore, this study utilized the lateral impact injury model of RmTBI to investigate changes in diffusion MRI and TL, and how these changes relate to each other. Adolescent male and female rats received either three mTBIs or three sham injuries. The first injury was given on postnatal day 30 (P30), with the repeated injuries separated by four days each. Seven days after the final injury, a sample of ear tissue was collected for TL analysis. Rats were then euthanized and whole brains were collected and fixated for MRI analyses that included diffusion and high-resolution structural sequences. Compared to the sham-injured group, RmTBI rats had significantly shorter TL at seven days post-injury. Analysis of advanced DWI measures found that RmTBI rats had abnormalities in the corpus callosum and cortex at seven days post-injury. Notably, many of the DWI changes were correlated with TL. These findings demonstrate that TL and DWI measurements are changed by RmTBI and may represent clinically applicable biomarkers for this.
Collapse
Affiliation(s)
- David K Wright
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3010, Australia
| | - Richelle Mychasiuk
- Alberta Children's Hospital Research Institute, University of Calgary, Department of Psychology, Calgary, AB, Canada
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
11
|
Sharma R, Rosenberg A, Bennett ER, Laskowitz DT, Acheson SK. A blood-based biomarker panel to risk-stratify mild traumatic brain injury. PLoS One 2017; 12:e0173798. [PMID: 28355230 PMCID: PMC5371303 DOI: 10.1371/journal.pone.0173798] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/27/2017] [Indexed: 11/19/2022] Open
Abstract
Mild traumatic brain injury (TBI) accounts for the vast majority of the nearly two million brain injuries suffered in the United States each year. Mild TBI is commonly classified as complicated (radiographic evidence of intracranial injury) or uncomplicated (radiographically negative). Such a distinction is important because it helps to determine the need for further neuroimaging, potential admission, or neurosurgical intervention. Unfortunately, imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) are costly and not without some risk. The purpose of this study was to screen 87 serum biomarkers to identify a select panel of biomarkers that would predict the presence of intracranial injury as determined by initial brain CT. Serum was collected from 110 patients who sustained a mild TBI within 24 hours of blood draw. Two models were created. In the broad inclusive model, 72kDa type IV collagenase (MMP-2), C-reactive protein (CRP), creatine kinase B type (CKBB), fatty acid binding protein-heart (hFABP), granulocyte-macrophage colony-stimulating factor (GM-CSF) and malondialdehyde modified low density lipoprotein (MDA-LDL) significantly predicted injury visualized on CT, yielding an overall c-statistic of 0.975 and a negative predictive value (NPV) of 98.6. In the parsimonious model, MMP-2, CRP, and CKBB type significantly predicted injury visualized on CT, yielding an overall c-statistic of 0.964 and a negative predictive value (NPV) of 97.2. These results suggest that a serum based biomarker panel can accurately differentiate patients with complicated mild TBI from those with uncomplicated mild TBI. Such a panel could be useful to guide early triage decisions, including the need for further evaluation or admission, especially in those environments in which resources are limited.
Collapse
Affiliation(s)
- Richa Sharma
- School of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alexandra Rosenberg
- School of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ellen R. Bennett
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel T. Laskowitz
- School of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shawn K. Acheson
- Durham VA Medical Center, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
12
|
Lorenz K, Beck S, Keilani MM, Wasielica-Poslednik J, Pfeiffer N, Grus FH. Course of serum autoantibodies in patients after acute angle-closure glaucoma attack. Clin Exp Ophthalmol 2017; 45:280-287. [PMID: 27758063 DOI: 10.1111/ceo.12864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The aim of our investigation was to analyze the autoantibody -reactivities of patients after acute angle-closure glaucoma (AACG) by means of a protein microarray approach to identify intraocular pressure(IOP)-dependent antibodies. METHODS Collected sera from different study time points (AACG n = 6, 0, 2, 4 and 12 weeks) and control group (CTRL n = 11, 0 and 12 weeks) were analyzed. Protein-microarrays were incubated with sera, and occurring immunoreactivities were visualized with fluorescence labeled secondary antibodies. To detect changes, spot intensities were digitized and compared with statistical techniques. RESULTS Three autoantibodies with significant level-alteration in the time course of the survey could be identified. Immunoreactivities to heat shock 27-kDa protein (HSP27), tubulin-tyrosine ligase-like protein 12 (TTLL12), and neuron-specific enolase (NSE) show an increasing linear trend from week 0 up to week 12 with a positive correlation coefficient (P ≤ 0.05, r ≥ 0.4). In the CTRL- group, no significant alterations could be detected in corresponding autoantibody-level. Analysis of variance revealed significant changes of antibody-level between certain time points (anti-HSP27 antibody [week 0 vs. 2], anti-TTLL12 antibody [week 0 vs. 12], and anti-NSE antibody [week 4 vs. 12] [P ≤ 0.05, respectively]) in AACG group. CONCLUSIONS With this autoantibodies profiling approach, we were able to detect autoimmune reactivities in sera of patients without former indication for glaucomatous damage after rise of IOP due to AACG attack. After further validation in subsequent studies, this autoantibodies could give further insights into the pathogenesis of glaucoma and could possibly help to understand the effect of IOP on glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Katrin Lorenz
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Sabine Beck
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.,Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Germany
| | - Munir M Keilani
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.,Vision 100 Die Augenärzte, Gemeinschaftspraxis Mönchengladbach, Germany
| | - Joanna Wasielica-Poslednik
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Franz H Grus
- Department of Experimental Ophthalmology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
13
|
Ghoshal S, Bondada V, Saatman KE, Guttmann RP, Geddes JW. Phage display for identification of serum biomarkers of traumatic brain injury. J Neurosci Methods 2016; 272:33-37. [PMID: 27168498 DOI: 10.1016/j.jneumeth.2016.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND The extent and severity of traumatic brain injuries (TBIs) can be difficult to determine with current diagnostic methods. To address this, there has been increased interest in developing biomarkers to assist in the diagnosis, determination of injury severity, evaluation of recovery and therapeutic efficacy, and prediction of outcomes. Several promising serum TBI biomarkers have been identified using hypothesis-driven approaches, largely examining proteins that are abundant in neurons and non-neural cells in the CNS. NEW METHOD An unbiased approach, phage display, was used to identify serum TBI biomarkers. In this proof-of-concept study, mice received a TBI using the controlled cortical impact model of TBI (1mm injury depth, 3.5m/s velocity) and phage display was utilized to identify putative serum biomarkers at 6h postinjury. RESULTS An engineered phage which preferentially bound to injured serum was sequenced to identify the 12-mer 'recognizer' peptide expressed on the coat protein. Following synthesis of the recognizer peptide, pull down, and mass spectrometry analysis, the target protein was identified as glial fibrillary acidic protein (GFAP). COMPARISON WITH EXISTING METHODS AND CONCLUSIONS GFAP has previously been identified as a promising TBI biomarker. The results provide proof of concept regarding the ability of phage display to identify TBI serum biomarkers. This methodology is currently being applied to serum biomarkers of mild TBI.
Collapse
Affiliation(s)
- Sarbani Ghoshal
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Vimala Bondada
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Kathryn E Saatman
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Rodney P Guttmann
- Department of Gerontology, University of Kentucky, Lexington, KY, USA
| | - James W Geddes
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
14
|
Xu B, Tian R, Wang X, Zhan S, Wang R, Guo Y, Ge W. Protein profile changes in the frontotemporal lobes in human severe traumatic brain injury. Brain Res 2016; 1642:344-352. [PMID: 27067185 DOI: 10.1016/j.brainres.2016.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022]
Abstract
Severe traumatic brain injury (sTBI) is a serious public health issue with high morbidity and mortality rates. Previous proteomic studies on sTBI have mainly focused on human cerebrospinal fluid and serum, as well as on brain protein changes in murine models. However, human proteomic data in sTBI brain is still scarce. We used proteomic and bioinformatic strategies to investigate variations in protein expression levels in human brains after sTBI, using samples from the Department of Neurosurgery, Affiliated Hospital of Hebei University (Hebei, China). Our proteomic data identified 4031 proteins, of which 160 proteins were overexpressed and 5 proteins were downregulated. Bioinformatics analysis showed significant changes in biological pathways including glial cell differentiation, complement activation and apolipoprotein catalysis in the statin pathway. Western blot verification of protein changes in a subset of the available tissue samples showed results that were consistent with the proteomic data. This study is one of the first to investigate the whole proteome of human sTBI brains, and provide a characteristic signature and overall landscape of the sTBI brain proteome.
Collapse
Affiliation(s)
- Benhong Xu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, China; National Key Laboratory of Medical Molecular Biology and Department of Immunology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Rui Tian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xia Wang
- National Key Laboratory of Medical Molecular Biology and Department of Immunology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Shaohua Zhan
- National Key Laboratory of Medical Molecular Biology and Department of Immunology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yi Guo
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, China; Department of Neurosurgery, Tsinghua Changgung Hospital, Beijing 102218, China.
| | - Wei Ge
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 071000, China; National Key Laboratory of Medical Molecular Biology and Department of Immunology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
15
|
Hehar H, Mychasiuk R. The use of telomere length as a predictive biomarker for injury prognosis in juvenile rats following a concussion/mild traumatic brain injury. Neurobiol Dis 2016; 87:11-8. [DOI: 10.1016/j.nbd.2015.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023] Open
|
16
|
Wang KKW, Yang Z, Yue JK, Zhang Z, Winkler EA, Puccio AM, Diaz-Arrastia R, Lingsma HF, Yuh EL, Mukherjee P, Valadka AB, Gordon WA, Okonkwo DO, Manley GT, Cooper SR, Dams-O'Connor K, Hricik AJ, Inoue T, Maas AIR, Menon DK, Schnyer DM, Sinha TK, Vassar MJ. Plasma Anti-Glial Fibrillary Acidic Protein Autoantibody Levels during the Acute and Chronic Phases of Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study. J Neurotrauma 2016; 33:1270-7. [PMID: 26560343 DOI: 10.1089/neu.2015.3881] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We described recently a subacute serum autoantibody response toward glial fibrillary acidic protein (GFAP) and its breakdown products 5-10 days after severe traumatic brain injury (TBI). Here, we expanded our anti-GFAP autoantibody (AutoAb[GFAP]) investigation to the multicenter observational study Transforming Research and Clinical Knowledge in TBI Pilot (TRACK-TBI Pilot) to cover the full spectrum of TBI (Glasgow Coma Scale 3-15) by using acute (<24 h) plasma samples from 196 patients with acute TBI admitted to three Level I trauma centers, and a second cohort of 21 participants with chronic TBI admitted to inpatient TBI rehabilitation. We find that acute patients self-reporting previous TBI with loss of consciousness (LOC) (n = 43) had higher day 1 AutoAb[GFAP] (mean ± standard error: 9.11 ± 1.42; n = 43) than healthy controls (2.90 ± 0.92; n = 16; p = 0.032) and acute patients reporting no previous TBI (2.97 ± 0.37; n = 106; p < 0.001), but not acute patients reporting previous TBI without LOC (8.01 ± 1.80; n = 47; p = 0.906). These data suggest that while exposure to TBI may trigger the AutoAb[GFAP] response, circulating antibodies are elevated specifically in acute TBI patients with a history of TBI. AutoAb[GFAP] levels for participants with chronic TBI (average post-TBI time 176 days or 6.21 months) were also significantly higher (15.08 ± 2.82; n = 21) than healthy controls (p < 0.001). These data suggest a persistent upregulation of the autoimmune response to specific brain antigen(s) in the subacute to chronic phase after TBI, as well as after repeated TBI insults. Hence, AutoAb[GFAP] may be a sensitive assay to study the dynamic interactions between post-injury brain and patient-specific autoimmune responses across acute and chronic settings after TBI.
Collapse
Affiliation(s)
- Kevin K W Wang
- 1 Departments of Psychiatry and Neuroscience, University of Florida , Gainesville, Florida
| | - Zhihui Yang
- 1 Departments of Psychiatry and Neuroscience, University of Florida , Gainesville, Florida
| | - John K Yue
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - Zhiqun Zhang
- 1 Departments of Psychiatry and Neuroscience, University of Florida , Gainesville, Florida
| | - Ethan A Winkler
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - Ava M Puccio
- 4 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Ramon Diaz-Arrastia
- 5 Department of Neurology, Uniformed Services University of the Health Sciences , and Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland
| | - Hester F Lingsma
- 6 Department of Public Health, Erasmus Medical Center , Rotterdam, The Netherlands
| | - Esther L Yuh
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,7 Department of Radiology, University of California , San Francisco, San Francisco, California
| | - Pratik Mukherjee
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,7 Department of Radiology, University of California , San Francisco, San Francisco, California
| | | | - Wayne A Gordon
- 9 Department of Rehabilitation Medicine, Mount Sinai School of Medicine , New York, New York
| | - David O Okonkwo
- 4 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Geoffrey T Manley
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - Shelly R Cooper
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,6 Department of Public Health, Erasmus Medical Center , Rotterdam, The Netherlands
| | - Kristen Dams-O'Connor
- 9 Department of Rehabilitation Medicine, Mount Sinai School of Medicine , New York, New York
| | - Allison J Hricik
- 4 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Tomoo Inoue
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - Andrew I R Maas
- 10 Department of Neurosurgery, Antwerp University Hospital , Edegem, Belgium
| | - David K Menon
- 11 Division of Anaesthesia, University of Cambridge and Addenbrooke's Hospital , Cambridge, United Kingdom
| | - David M Schnyer
- 12 Department of Psychology, University of Texas , Austin, Texas
| | - Tuhin K Sinha
- 7 Department of Radiology, University of California , San Francisco, San Francisco, California
| | - Mary J Vassar
- 2 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California.,3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| |
Collapse
|
17
|
Kulbe JR, Geddes JW. Current status of fluid biomarkers in mild traumatic brain injury. Exp Neurol 2016; 275 Pt 3:334-352. [PMID: 25981889 PMCID: PMC4699183 DOI: 10.1016/j.expneurol.2015.05.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 01/07/2023]
Abstract
Mild traumatic brain injury (mTBI) affects millions of people annually and is difficult to diagnose. Mild injury is insensitive to conventional imaging techniques and diagnoses are often made using subjective criteria such as self-reported symptoms. Many people who sustain a mTBI develop persistent post-concussive symptoms. Athletes and military personnel are at great risk for repeat injury which can result in second impact syndrome or chronic traumatic encephalopathy. An objective and quantifiable measure, such as a serum biomarker, is needed to aid in mTBI diagnosis, prognosis, return to play/duty assessments, and would further elucidate mTBI pathophysiology. The majority of TBI biomarker research focuses on severe TBI with few studies specific to mild injury. Most studies use a hypothesis-driven approach, screening biofluids for markers known to be associated with TBI pathophysiology. This approach has yielded limited success in identifying markers that can be used clinically, additional candidate biomarkers are needed. Innovative and unbiased methods such as proteomics, microRNA arrays, urinary screens, autoantibody identification and phage display would complement more traditional approaches to aid in the discovery of novel mTBI biomarkers.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA,; Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA,; Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA.
| |
Collapse
|
18
|
Simon D, Nascimento RIMD, Filho EMR, Bencke J, Regner A. Plasma brain-derived neurotrophic factor levels after severe traumatic brain injury. Brain Inj 2015; 30:23-8. [PMID: 26555864 DOI: 10.3109/02699052.2015.1077993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Severe traumatic brain injury (TBI) is associated with a 30-70% mortality rate. Nevertheless, in clinical practice there are no effective biomarkers for the prediction of fatal outcome following severe TBI. Therefore, the aim was to determine whether brain-derived neurotrophic factor (BDNF) plasma levels are associated with intensive care unit (ICU) mortality in patients with severe TBI. METHODS This prospective study enrolled 120 male patients who suffered severe TBI (Glasgow Coma Scale 3-8 at emergency room admission). The plasma BDNF level was determined at ICU admission (mean 6.4 hours after emergency room admission). RESULTS Severe TBI was associated with a 35% mortality rate and 64% of the patients presented severe TBI with multi-trauma. The mean plasma BDNF concentration among the severe TBI victims was 704.2 ± 63.4 pg ml(-1) (±SEM). Nevertheless, there were no significant differences between BDNF levels in the survivor (700.2 ± 82.8 pg ml(-1)) or non-survivor (711.6 ± 97.4 pg ml(-1)) groups (p = 0.238) or in the isolated TBI (800.4 ± 117.4 pg ml(-1)) or TBI with multi-trauma groups (650.5 ± 73.9 pg ml(-1)) (p = 0.109). CONCLUSIONS Plasma BDNF concentrations did not correlate with either short-term fatal outcome or type of injury following severe TBI.
Collapse
Affiliation(s)
- Daniel Simon
- a Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde .,b Laboratório de Biomarcadores do Trauma , Universidade Luterana do Brasil , Canoas , Brazil , and.,c Curso de Medicina , Universidade Luterana do Brasil , Canoas , Brazil
| | | | | | - Jane Bencke
- b Laboratório de Biomarcadores do Trauma , Universidade Luterana do Brasil , Canoas , Brazil , and
| | - Andrea Regner
- a Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde .,b Laboratório de Biomarcadores do Trauma , Universidade Luterana do Brasil , Canoas , Brazil , and.,c Curso de Medicina , Universidade Luterana do Brasil , Canoas , Brazil
| |
Collapse
|
19
|
Mychasiuk R, Hehar H, Candy S, Ma I, Esser MJ. The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes. J Neurosci Methods 2015; 257:168-78. [PMID: 26484783 DOI: 10.1016/j.jneumeth.2015.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/04/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND The translation of research to clinical application is only as good as the modelling platforms employed. This study sought to improve understanding of mild traumatic brain injury (mTBI), by examining the importance of acceleration and rotational force directions on behavioural and molecular outcomes. It is believed that many symptoms associated with concussive forms of mTBI are related to white matter and fibre tract damage. Given that rodents have significantly less white matter, could changes in acceleration/rotational force directionality alter outcomes? NEW METHOD/COMPARISON WITH EXISTING METHODS Comparison of mTBIs with two distinct injury platforms, the lateral impact (LI) device, which produces horizontal acceleration/rotation; or the modified weight drop (WD) device, which produces sagittal or vertical acceleration/rotation. Male and female rats underwent a behavioural test battery followed by analysis of 5 TBI-associated biomarkers (BDNF, Eno2, GFAP, MAPT, TERT) from the prefrontal cortex and hippocampus. RESULTS Acute behavioural impairments were similar for both injury models; animals exhibited increased time-to-wake, and deficits of balance and motor control. However, as the post-injury interval increased LI animals displayed deficits on tasks related to emotional functioning, whereas WD animals showed impairment in cognitive measures. Biomarker expression varied as a function of injury platform, sex, and brain region. CONCLUSION Just as with humans, the direction of the acceleration and rotational forces produced injuries in different networks and connections, resulting in altered functional deficits for rodents as well. These findings suggest that rodents are a valuable resource for the study of mTBI, when appropriately modelled.
Collapse
Affiliation(s)
- Richelle Mychasiuk
- Alberta Children's Hospital Research Institute, University of Calgary, Faculty of Medicine, Heritage Medical Research Building Room 274, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 1N4.
| | - Harleen Hehar
- Alberta Children's Hospital Research Institute, University of Calgary, Faculty of Medicine, Heritage Medical Research Building Room 274, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Sydeny Candy
- Alberta Children's Hospital Research Institute, University of Calgary, Faculty of Medicine, Heritage Medical Research Building Room 274, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Irene Ma
- Alberta Children's Hospital Research Institute, University of Calgary, Faculty of Medicine, Heritage Medical Research Building Room 274, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Michael J Esser
- Alberta Children's Hospital Research Institute, University of Calgary, Faculty of Medicine, Heritage Medical Research Building Room 274, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 1N4
| |
Collapse
|
20
|
Young GB, Owen AM. Evaluating the Potential for Recovery of Consciousness in the Intensive Care Unit. Continuum (Minneap Minn) 2015; 21:1397-410. [DOI: 10.1212/con.0000000000000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Ferguson DP, Dangott LJ, Vellers HL, Schmitt EE, Lightfoot JT. Differential protein expression in the nucleus accumbens of high and low active mice. Behav Brain Res 2015; 291:283-288. [DOI: 10.1016/j.bbr.2015.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 02/02/2023]
|
22
|
Role and Importance of IGF-1 in Traumatic Brain Injuries. BIOMED RESEARCH INTERNATIONAL 2015; 2015:736104. [PMID: 26417600 PMCID: PMC4568328 DOI: 10.1155/2015/736104] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/24/2014] [Indexed: 01/02/2023]
Abstract
It is increasingly affirmed that most of the long-term consequences of TBI are due to molecular and cellular changes occurring during the acute phase of the injury and which may, afterwards, persist or progress. Understanding how to prevent secondary damage and improve outcome in trauma patients, has been always a target of scientific interest. Plans of studies focused their attention on the posttraumatic neuroendocrine dysfunction in order to achieve a correlation between hormone blood level and TBI outcomes. The somatotropic axis (GH and IGF-1) seems to be the most affected, with different alterations between the acute and late phases. IGF-1 plays an important role in brain growth and development, and it is related to repair responses to damage for both the central and peripheral nervous system. The IGF-1 blood levels result prone to decrease during both the early and late phases after TBI. Despite this, experimental studies on animals have shown that the CNS responds to the injury upregulating the expression of IGF-1; thus it appears to be related to the secondary mechanisms of response to posttraumatic damage. We review the mechanisms involving IGF-1 in TBI, analyzing how its expression and metabolism may affect prognosis and outcome in head trauma patients.
Collapse
|
23
|
Roy MJ, Costanzo M, Gill J, Leaman S, Law W, Ndiongue R, Taylor P, Kim HS, Bieler GS, Garge N, Rapp PE, Keyser D, Nathan D, Xydakis M, Pham D, Wassermann E. Predictors of Neurocognitive Syndromes in Combat Veterans. Cureus 2015; 7:e293. [PMID: 26251769 PMCID: PMC4524772 DOI: 10.7759/cureus.293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/30/2015] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury, depression and posttraumatic stress disorder (PTSD) are neurocognitive syndromes often associated with impairment of physical and mental health, as well as functional status. These syndromes are also frequent in military service members (SMs) after combat, although their presentation is often delayed until months after their return. The objective of this prospective cohort study was the identification of independent predictors of neurocognitive syndromes upon return from deployment could facilitate early intervention to prevent disability. We completed a comprehensive baseline assessment, followed by serial evaluations at three, six, and 12 months, to assess for new-onset PTSD, depression, or postconcussive syndrome (PCS) in order to identify baseline factors most strongly associated with subsequent neurocognitive syndromes. On serial follow-up, seven participants developed at least one neurocognitive syndrome: five with PTSD, one with depression and PTSD, and one with PCS. On univariate analysis, 60 items were associated with syndrome development at p < 0.15. Decision trees and ensemble tree multivariate models yielded four common independent predictors of PTSD: right superior longitudinal fasciculus tract volume on MRI; resting state connectivity between the right amygdala and left superior temporal gyrus (BA41/42) on functional MRI; and single nucleotide polymorphisms in the genes coding for myelin basic protein as well as brain-derived neurotrophic factor. Our findings require follow-up studies with greater sample size and suggest that neuroimaging and molecular biomarkers may help distinguish those at high risk for post-deployment neurocognitive syndromes.
Collapse
Affiliation(s)
- Michael J Roy
- Department of Medicine, Uniformed Services University of the Health Sciences
| | - Michelle Costanzo
- Department of Medicine, Uniformed Services University of the Health Sciences
| | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health
| | - Suzanne Leaman
- Department of Medicine, Uniformed Services University of the Health Sciences
| | - Wendy Law
- Traumatic Brain Injury Service, Walter Reed National Military Medical Center
| | - Rochelle Ndiongue
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center
| | - Patricia Taylor
- Department of Medicine, Uniformed Services University of the Health Sciences
| | - Hyung-Suk Kim
- National Institute of Nursing Research , National Institutes of Health
| | | | | | - Paul E Rapp
- Traumatic Injury Research Program, Uniformed Services University of the Health Sciences
| | - David Keyser
- Traumatic Injury Research Program, Uniformed Services University of the Health Sciences
| | - Dominic Nathan
- Traumatic Brain Injury Service, Uniformed Services University of the Health Sciences
| | - Michael Xydakis
- Department of Surgery , Uniformed Services University of the Health Sciences
| | - Dzung Pham
- Image Processing Core, Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation
| | - Eric Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW In recent years, we have begun to better understand how to monitor the injured brain, look for less common complications and importantly, reduce unnecessary and potentially harmful intervention. However, the lack of consensus regarding triggers for intervention, best neuromonitoring techniques and standardization of therapeutic approach is in need of more careful study. This review covers the most recent evidence within this exciting and dynamic field. RECENT FINDINGS The role of intracranial pressure monitoring has been challenged; however, it still remains a cornerstone in the management of the severely brain-injured patient and should be used to compliment other techniques, such as clinical examination and serial imaging.The use of multimodal monitoring continues to be refined and it may be possible to use them to guide novel brain resuscitation techniques, such as the use of exogenous lactate supplementation in the future. SUMMARY Neurocritical care management of traumatic brain injury continues to evolve. However, it is important not to use a 'one-treatment-fits-all' approach, and perhaps look to use targeted therapies to individualize treatment.
Collapse
|
25
|
Krieg SM, Sonanini S, Plesnila N, Trabold R. Effect of small molecule vasopressin V1a and V2 receptor antagonists on brain edema formation and secondary brain damage following traumatic brain injury in mice. J Neurotrauma 2014; 32:221-7. [PMID: 25111427 DOI: 10.1089/neu.2013.3274] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The attenuation of brain edema is a major therapeutic target after traumatic brain injury (TBI). Vasopressin (AVP) is well known to play a major role in the regulation of brain water content and vasoendothelial functions and to be involved in brain edema formation. Therefore, the aim of the current study was to analyze the antiedematous efficacy of a clinically relevant, nonpeptidic AVP V1a and V2 receptor antagonists. C57Bl6 mice were subjected to controlled cortical impact (CCI) and V1a or V2 receptors were inhibited by using the highly selective antagonists SR-49059 or SR-121463A either by systemic (intraperitoneal, IP) or intracerebroventricular (ICV) application. After 24 h, brain edema, intracranial pressure (ICP), and contusion volume were assessed. Systemically applied AVP receptor antagonists could not reduce secondary lesion growth. In contrast, ICV administration of AVP V1a receptor antagonist decreased brain edema formation by 68%, diminished post-traumatic increase of ICP by 46%, and reduced secondary contusion expansion by 43% 24 h after CCI. The ICV inhibition of V2 receptors resulted in significant reduction of post-traumatic brain edema by 41% 24 h after CCI, but failed to show further influence on ICP and lesion growth. Hence, centrally applied vasopressin V1a receptor antagonists may be used to reduce brain edema formation after TBI.
Collapse
Affiliation(s)
- Sandro M Krieg
- 1 Laboratory of Experimental Neurosurgery, University of Munich Medical Center-Grosshadern, Ludwig-Maximilians-University , Munich, Germany
| | | | | | | |
Collapse
|
26
|
Cheng F, Yuan Q, Yang J, Wang W, Liu H. The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis. PLoS One 2014; 9:e106680. [PMID: 25188406 PMCID: PMC4154726 DOI: 10.1371/journal.pone.0106680] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/30/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Several studies have suggested that neuron-specific enolase (NSE) in serum may be a biomarker of traumatic brain injury. However, whether serum NSE levels correlate with outcomes remains unclear. The purpose of this review was to evaluate the prognostic value of serum NSE protein after traumatic brain injury. METHODS PubMed and Embase were searched for relevant studies published up to October 2013. Full-text publications on the relationship of NSE to TBI were included if the studies concerned patients with closed head injury, NSE levels in serum after injury, and Glasgow Outcome Scale (GOS) or Extended GOS (GOSE) scores or mortality. Study design, inclusion criteria, assay, blood sample collection time, NSE cutoff, sensitivity and specificity of NSE for mortality prediction (if sufficient information was provided to calculate these values), and main outcomes were recorded. RESULTS Sixteen studies were eligible for the current meta-analysis. In the six studies comparing NSE concentrations between TBI patients who died and those who survived, NSE concentrations correlated with mortality (M.D. 0.28, 95% confidence interval (CI), 0.21 to 0.34; I2 55%). In the eight studies evaluating GOS or GOSE, patients with unfavorable outcomes had significantly higher NSE concentrations than those with favorable outcomes (M.D. 0.24, 95% CI, 0.17 to 0.31; I2 64%). From the studies providing sufficient data, the pooled sensitivity and specificity for mortality were 0.79 and 0.50, and 0.72 and 0.66 for unfavorable neurological prognosis, respectively. The areas under the SROC curve (AUC) of NSE concentrations were 0.73 (95% CI, 0.66-0.80) for unfavorable outcome and 0.76 (95% CI, 0.62-0.90) for mortality. CONCLUSIONS Mortality and unfavorable outcome were significantly associated with greater NSE concentrations. In addition, NSE has moderate discriminatory ability to predict mortality and neurological outcome in TBI patients. The optimal discrimination cutoff values and optimal sampling time remain uncertain because of significant variations between studies.
Collapse
Affiliation(s)
- Feng Cheng
- Department of Neurosurgery, The First People's Hospital of Kunshan, affiliated with Jiangsu University, Suzhou, PR China
| | - Qiang Yuan
- Department of Neurosurgery, Huashan Hospital, affiliated to Fudan University, Shanghai, PR China
| | - Jian Yang
- Department of Neurosurgery, The First People's Hospital of Kunshan, affiliated with Jiangsu University, Suzhou, PR China
| | - Wenming Wang
- Department of Neurosurgery, The First People's Hospital of Kunshan, affiliated with Jiangsu University, Suzhou, PR China
| | - Hua Liu
- Department of Neurosurgery, The First People's Hospital of Kunshan, affiliated with Jiangsu University, Suzhou, PR China
- * E-mail:
| |
Collapse
|
27
|
MLC901, a Traditional Chinese Medicine induces neuroprotective and neuroregenerative benefits after traumatic brain injury in rats. Neuroscience 2014; 277:72-86. [PMID: 24993477 DOI: 10.1016/j.neuroscience.2014.06.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/05/2014] [Accepted: 06/19/2014] [Indexed: 11/22/2022]
Abstract
Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic consequences. NeuroAid (MLC601 and MLC901), a Traditional Medicine used in China for patients after stroke has been previously reported to induce neuroprotection and neuroplasticity. This study was designed to evaluate the neuroprotective and neuroregenerative effects of MLC901 in a rat model of TBI. TBI was induced by a moderate lateral fluid percussion applied to the right parietal cortex. MLC901 was injected intraperitoneally at 2h post-TBI, and then administered in drinking water at a concentration of 10mg/ml until sacrifice of the animals. The cognitive deficits induced by TBI were followed by using the "what-where-when" task, which allows the measurement of episodic-like memory. MLC901 treatment decreased brain lesions induced by TBI. It prevented the serum increase of S-100 beta (S100B) and neuron-specific enolase (NSE), which may be markers to predict the neurologic outcome in human patients with TBI. MLC901 reduced the infarct volume when injected up to 2h post-TBI, prevented edema formation and assisted its resolution, probably via the regulation of aquaporin 4. These positive MLC901 effects were associated with an upregulation of vascular endothelial growth factor (VEGF) as well as an increase of endogenous hippocampal neurogenesis and gliogenesis around the lesion. Furthermore, MLC901 reduced cognitive deficits induced by TBI. Rats subjected to TBI displayed a suppression of temporal order memory, which was restored by MLC901. This work provides evidence that MLC901 has neuroprotective and neurorestorative actions, which lead to an improvement in the recovery of cognitive functions in a model of traumatic brain injury.
Collapse
|
28
|
Mendes Arent A, de Souza LF, Walz R, Dafre AL. Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:723060. [PMID: 24689052 PMCID: PMC3943200 DOI: 10.1155/2014/723060] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 11/23/2022]
Abstract
Traumatic brain injury (TBI) is frequently associated with abnormal blood-brain barrier function, resulting in the release of factors that can be used as molecular biomarkers of TBI, among them GFAP, UCH-L1, S100B, and NSE. Although many experimental studies have been conducted, clinical consolidation of these biomarkers is still needed to increase the predictive power and reduce the poor outcome of TBI. Interestingly, several of these TBI biomarkers are oxidatively modified to carbonyl groups, indicating that markers of oxidative stress could be of predictive value for the selection of therapeutic strategies. Some drugs such as corticosteroids and progesterone have already been investigated in TBI neuroprotection but failed to demonstrate clinical applicability in advanced phases of the studies. Dietary antioxidants, such as curcumin, resveratrol, and sulforaphane, have been shown to attenuate TBI-induced damage in preclinical studies. These dietary antioxidants can increase antioxidant defenses via transcriptional activation of NRF2 and are also known as carbonyl scavengers, two potential mechanisms for neuroprotection. This paper reviews the relevance of redox biology in TBI, highlighting perspectives for future studies.
Collapse
Affiliation(s)
- André Mendes Arent
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
- Faculty of Medicine, University of South Santa Catarina (Unisul), 88137-270 Palhoça, SC, Brazil
- Neurosurgery Service, São José Regional Hospital (HRSJ-HMG), 88103-901 São José, SC, Brazil
| | - Luiz Felipe de Souza
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| | - Roger Walz
- Applied Neurosciences Centre (CeNAp) and Department of Medical Clinics, University Hospital, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Early prognostication in acute brain damage remains a challenge in the realm of critical care. There remains controversy over the most optimal methods that can be utilized to predict outcome. The utility of recently reported prognostic biomarkers and clinical methods will be reviewed. RECENT FINDINGS Recent guidelines touch upon prognostication techniques as part of management recommendations. In addition to novel laboratory values, there have been few reports on the use of clinical parameters, diagnostic imaging techniques, and electrophysiological techniques to assist in prognostication. SUMMARY Although encouraging, newer markers are not capable of providing accurate estimates on outcomes in acute injuries of the central nervous system. Traditional markers of prognostication may not be applicable in the light of newer and effective therapies (i.e. hypothermia). Substantial research in the field of outcome determination is in progress, but these studies need to be interpreted with caution.
Collapse
|
30
|
Jin Z, Fu Z, Yang J, Troncosco J, Everett AD, Van Eyk JE. Identification and characterization of citrulline-modified brain proteins by combining HCD and CID fragmentation. Proteomics 2013; 13:2682-91. [PMID: 23828821 PMCID: PMC4864592 DOI: 10.1002/pmic.201300064] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/01/2013] [Accepted: 06/26/2013] [Indexed: 11/09/2022]
Abstract
Citrullination is a protein PTM of arginine residues catalyzed by peptidylarginine deiminase. Protein citrullination has been detected in the CNS and associated with a number of neurological diseases. However, identifying citrullinated proteins from complex mixtures and pinpointing citrullinated residues have been limited. Using RP LC and high-resolution MS, this study determined in vitro citrullination sites of glial fibrillary acid protein (GFAP), neurogranin (NRGN/RC3), and myelin basic protein (MBP) and in vivo sites in brain protein extract. Human GFAP has five endogenous citrullination sites, R30, R36, R270, R406, and R416, and MBP has 14 in vivo citrullination sites. Human NRGN/RC3 was found citrullinated at residue R68. The sequence of citrullinated peptides and citrullination sites were confirmed from peptides identified in trypsin, Lys-C, and Glu-C digests. The relative ratio of citrullination was estimated by simultaneous identification of citrullinated and unmodified peptides from Alzheimer's and control brain samples. The site occupancy of citrullination at the residue R68 of NRGN ranged from 1.6 to 9.5%. Compared to CID, higher-energy collisional dissociation (HCD) mainly produced protein backbone fragmentation for citrullinated peptides. CID-triggered HCD fragmentation is an optimal approach for the identification of citrullinated peptides in complex protein digests.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of Medicine, Cardiology, Johns Hopkins University, Baltimore, MD
| | - Zongming Fu
- Department of Pediatrics, Hematology, Johns Hopkins University, Baltimore, MD
| | - Jun Yang
- Department of Pediatrics, Cardiology, Johns Hopkins University, Baltimore, MD
| | - Juan Troncosco
- Department of Pathology, Neuropathology, Johns Hopkins University, Baltimore, MD
| | - Allen D. Everett
- Department of Pediatrics, Cardiology, Johns Hopkins University, Baltimore, MD
| | - Jennifer E. Van Eyk
- Department of Medicine, Cardiology, Johns Hopkins University, Baltimore, MD
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
31
|
Altered protein networks and cellular pathways in severe west nile disease in mice. PLoS One 2013; 8:e68318. [PMID: 23874584 PMCID: PMC3707916 DOI: 10.1371/journal.pone.0068318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/28/2013] [Indexed: 01/25/2023] Open
Abstract
Background The recent West Nile virus (WNV) outbreaks in developed countries, including Europe and the United States, have been associated with significantly higher neuropathology incidence and mortality rate than previously documented. The changing epidemiology, the constant risk of (re-)emergence of more virulent WNV strains, and the lack of effective human antiviral therapy or vaccines makes understanding the pathogenesis of severe disease a priority. Thus, to gain insight into the pathophysiological processes in severe WNV infection, a kinetic analysis of protein expression profiles in the brain of WNV-infected mice was conducted using samples prior to and after the onset of clinical symptoms. Methodology/Principal Findings To this end, 2D-DIGE and gel-free iTRAQ labeling approaches were combined, followed by protein identification by mass spectrometry. Using these quantitative proteomic approaches, a set of 148 proteins with modified abundance was identified. The bioinformatics analysis (Ingenuity Pathway Analysis) of each protein dataset originating from the different time-point comparisons revealed that four major functions were altered during the course of WNV-infection in mouse brain tissue: i) modification of cytoskeleton maintenance associated with virus circulation; ii) deregulation of the protein ubiquitination pathway; iii) modulation of the inflammatory response; and iv) alteration of neurological development and neuronal cell death. The differential regulation of selected host protein candidates as being representative of these biological processes were validated by western blotting using an original fluorescence-based method. Conclusion/Significance This study provides novel insights into the in vivo kinetic host reactions against WNV infection and the pathophysiologic processes involved, according to clinical symptoms. This work offers useful clues for anti-viral research and further evaluation of early biomarkers for the diagnosis and prevention of severe neurological disease caused by WNV.
Collapse
|
32
|
Di Battista AP, Rhind SG, Baker AJ. Application of blood-based biomarkers in human mild traumatic brain injury. Front Neurol 2013; 4:44. [PMID: 23641234 PMCID: PMC3640204 DOI: 10.3389/fneur.2013.00044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/18/2013] [Indexed: 12/12/2022] Open
Abstract
Traumatic Brain Injury (TBI) is a global health concern. The majority of TBI's are mild, yet our ability to diagnose and treat mild traumatic brain injury (mTBI) is lacking. This deficiency results from a variety of issues including the difficulty in interpreting ambiguous clinically presented symptoms, and ineffective imaging techniques. Thus, researchers have begun to explore cellular and molecular based approaches to improve both diagnosis and prognosis. This has been met with a variety of challenges, including difficulty in relating biological markers to current clinical symptoms, and overcoming our lack of fundamental understanding of the pathophysiology of mTBI. However, recent adoption of high throughput technologies and a change in focus from the identification of single to multiple markers has given just optimism to mTBI research. The purpose of this review is to highlight a number of current experimental peripheral blood biomarkers of mTBI, as well as comment on the issues surrounding their clinical application and utility.
Collapse
Affiliation(s)
- Alex P. Di Battista
- Faculty of Medicine, Institute of Medical Science, University of TorontoToronto, ON, Canada
| | - Shawn G. Rhind
- Physiology Group, Individual Behaviour and Performance Section, Defence Research and Development Canada TorontoToronto, ON, Canada
| | - Andrew J. Baker
- Faculty of Medicine, Institute of Medical Science, University of TorontoToronto, ON, Canada
- Department of Anesthesia, University of TorontoToronto, ON, Canada
- Department of Surgery, University of TorontoToronto, ON, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s HospitalToronto, ON, Canada
| |
Collapse
|