1
|
Oladapo A, Deshetty UM, Callen S, Buch S, Periyasamy P. Single-Cell RNA-Seq Uncovers Robust Glial Cell Transcriptional Changes in Methamphetamine-Administered Mice. Int J Mol Sci 2025; 26:649. [PMID: 39859365 PMCID: PMC11766323 DOI: 10.3390/ijms26020649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/30/2025] Open
Abstract
Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes. Using single-cell RNA sequencing (scRNA-seq), we analyzed the transcriptomes of 4000 glial cell-associated genes from the cortical regions of mice chronically administered methamphetamine. Methamphetamine exposure altered the key pathways in astrocytes, including the circadian rhythm and cAMP signaling; in microglia, affecting autophagy, ubiquitin-mediated proteolysis, and mitophagy; and in oligodendrocytes, disrupting lysosomal function, cytoskeletal regulation, and protein processing. Notably, several transcription factors, such as Zbtb16, Hif3a, Foxo1, and Klf9, were significantly dysregulated in the glial cells. These findings reveal profound methamphetamine-induced changes in the glial transcriptomes, particularly in the cortical regions, highlighting potential molecular pathways and transcription factors as targets for therapeutic intervention. This study provides novel insights into the glial-mediated mechanisms of methamphetamine toxicity, contributing to our understanding of its effects on the central nervous system and laying the groundwork for future strategies to mitigate its neurotoxic consequences.
Collapse
Affiliation(s)
| | | | | | | | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.O.); (U.M.D.); (S.C.); (S.B.)
| |
Collapse
|
2
|
Wu H, Chen X, Yu B, Zhang J, Gu X, Liu W, Mei F, Ye J, Xiao L. Deficient deposition of new myelin impairs adult optic nerve function in a murine model of diabetes. Glia 2023; 71:1333-1345. [PMID: 36661098 DOI: 10.1002/glia.24341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023]
Abstract
Visual impairment in diabetes is a growing public health concern. Apart from the well-defined diabetic retinopathy, disturbed optic nerve function, which is dependent on the myelin sheath, has recently been recognized as an early feature of visual impairment in diabetes. However, the underlying cellular mechanisms remain unclear. Using a streptozotocin-induced diabetic mouse model, we observed a myelin deficiency along with a disturbed composition of oligodendroglial lineage cells in diabetic optic nerve. We found that new myelin deposition, a continuous process that lasts throughout adulthood, was diminished during pathogenesis. Genetically dampening newly generated myelin by conditionally deleting olig2 in oligodendrocyte precursor cells within this short time window extensively delayed the signal transmission of the adult optic nerve. In addition, clemastine, an antimuscarinic compound that enhances myelination, significantly restored oligodendroglia, and promoted the functional recovery of the optic nerve in diabetic mice. Together, our results point to the role of new myelin deposition in optic neuropathy under diabetic insult and provide a promising therapeutic target for restoring visual function.
Collapse
Affiliation(s)
- Haoqian Wu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Xianjun Chen
- Department of Physiology, Research Center of Neuroscience, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Bin Yu
- Department of Neurosurgery, 2nd Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jieqiong Zhang
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Xingmei Gu
- Department of Histology and Embryology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing, China
| | - Wei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Feng Mei
- Department of Histology and Embryology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Lan Xiao
- Department of Neurosurgery, 2nd Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Histology and Embryology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Macintosh J, Michell-Robinson M, Chen X, Bernard G. Decreased RNA polymerase III subunit expression leads to defects in oligodendrocyte development. Front Neurosci 2023; 17:1167047. [PMID: 37179550 PMCID: PMC10167296 DOI: 10.3389/fnins.2023.1167047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction RNA polymerase III (Pol III) is a critical enzymatic complex tasked with the transcription of ubiquitous non-coding RNAs including 5S rRNA and all tRNA genes. Despite the constitutive nature of this enzyme, hypomorphic biallelic pathogenic variants in genes encoding subunits of Pol III lead to tissue-specific features and cause a hypomyelinating leukodystrophy, characterized by a severe and permanent deficit in myelin. The pathophysiological mechanisms in POLR3- related leukodystrophy and specifically, how reduced Pol III function impacts oligodendrocyte development to account for the devastating hypomyelination seen in the disease, remain poorly understood. Methods In this study, we characterize how reducing endogenous transcript levels of leukodystrophy-associated Pol III subunits affects oligodendrocyte maturation at the level of their migration, proliferation, differentiation, and myelination. Results Our results show that decreasing Pol III expression altered the proliferation rate of oligodendrocyte precursor cells but had no impact on migration. Additionally, reducing Pol III activity impaired the differentiation of these precursor cells into mature oligodendrocytes, evident at both the level of OL-lineage marker expression and on morphological assessment, with Pol III knockdown cells displaying a drastically more immature branching complexity. Myelination was hindered in the Pol III knockdown cells, as determined in both organotypic shiverer slice cultures and co-cultures with nanofibers. Analysis of Pol III transcriptional activity revealed a decrease in the expression of distinct tRNAs, which was significant in the siPolr3a condition. Discussion In turn, our findings provide insight into the role of Pol III in oligodendrocyte development and shed light on the pathophysiological mechanisms of hypomyelination in POLR3-related leukodystrophy.
Collapse
Affiliation(s)
- Julia Macintosh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Mackenzie Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Xiaoru Chen
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
4
|
Tubulin Cytoskeleton in Neurodegenerative Diseases–not Only Primary Tubulinopathies. Cell Mol Neurobiol 2022:10.1007/s10571-022-01304-6. [DOI: 10.1007/s10571-022-01304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
AbstractNeurodegenerative diseases represent a large group of disorders characterized by gradual loss of neurons and functions of the central nervous systems. Their course is usually severe, leading to high morbidity and subsequent inability of patients to independent functioning. Vast majority of neurodegenerative diseases is currently untreatable, and only some symptomatic drugs are available which efficacy is usually very limited. To develop novel therapies for this group of diseases, it is crucial to understand their pathogenesis and to recognize factors which can influence the disease course. One of cellular structures which dysfunction appears to be relatively poorly understood in the light of neurodegenerative diseases is tubulin cytoskeleton. On the other hand, its changes, both structural and functional, can considerably influence cell physiology, leading to pathological processes occurring also in neurons. In this review, we summarize and discuss dysfunctions of tubulin cytoskeleton in various neurodegenerative diseases different than primary tubulinopathies (caused by mutations in genes encoding the components of the tubulin cytoskeleton), especially Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, prion diseases, and neuronopathic mucopolysaccharidoses. It is also proposed that correction of these disorders might attenuate the progress of specific diseases, thus, finding newly recognized molecular targets for potential drugs might become possible.
Collapse
|
5
|
Schuster KH, Putka AF, McLoughlin HS. Pathogenetic Mechanisms Underlying Spinocerebellar Ataxia Type 3 Are Altered in Primary Oligodendrocyte Culture. Cells 2022; 11:2615. [PMID: 36010688 PMCID: PMC9406561 DOI: 10.3390/cells11162615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022] Open
Abstract
Emerging evidence has implicated non-neuronal cells, particularly oligodendrocytes, in the pathophysiology of many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and Spinocerebellar ataxia type 3 (SCA3). We recently demonstrated that cell-autonomous dysfunction of oligodendrocyte maturation is one of the of the earliest and most robust changes in vulnerable regions of the SCA3 mouse brain. However, the cell- and disease-specific mechanisms that underlie oligodendrocyte dysfunction remain poorly understood and are difficult to isolate in vivo. In this study, we used primary oligodendrocyte cultures to determine how known pathogenic SCA3 mechanisms affect this cell type. We isolated oligodendrocyte progenitor cells from 5- to 7-day-old mice that overexpress human mutant ATXN3 or lack mouse ATXN3 and differentiated them for up to 5 days in vitro. Utilizing immunocytochemistry, we characterized the contributions of ATXN3 toxic gain-of-function and loss-of-function in oligodendrocyte maturation, protein quality pathways, DNA damage signaling, and methylation status. We illustrate the utility of primary oligodendrocyte culture for elucidating cell-specific pathway dysregulation relevant to SCA3. Given recent work demonstrating disease-associated oligodendrocyte signatures in other neurodegenerative diseases, this novel model has broad applicability in revealing mechanistic insights of oligodendrocyte contribution to pathogenesis.
Collapse
Affiliation(s)
| | - Alexandra F. Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
6
|
Specific phosphorylation of microtubule-associated protein 2c by extracellular signal-regulated kinase reduces interactions at its Pro-rich regions. J Biol Chem 2022; 298:102384. [PMID: 35987383 PMCID: PMC9520037 DOI: 10.1016/j.jbc.2022.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubule-associated protein 2 (MAP2) is an important neuronal target of extracellular signal-regulated kinase 2 (ERK2) involved in Raf signaling pathways, but mechanistic details of MAP2 phosphorylation are unclear. Here, we used NMR spectroscopy to quantitatively describe the kinetics of phosphorylation of individual serines and threonines in the embryonic MAP2 variant MAP2c. We carried out real-time monitoring of phosphorylation to discover major phosphorylation sites that were not identified in previous studies relying on specific antibodies. Our comparison with phosphorylation of MAP2c by a model cyclin-dependent kinase CDK2 and with phosphorylation of the MAP2c homolog Tau revealed differences in phosphorylation profiles that explain specificity of regulation of biological functions of MAP2c and Tau. To probe the molecular basis of the regulatory effect of ERK2, we investigated the interactions of phosphorylated and unphosphorylated MAP2c by NMR with single-residue resolution. As ERK2 phosphorylates mostly outside the regions binding microtubules, we studied the binding of proteins other than tubulin, namely regulatory subunit RIIα of cAMP-dependent protein kinase (PKA), adaptor protein Grb2, Src homology domain 3 of tyrosine kinases Fyn and Abl, and ERK2 itself. We found ERK2 phosphorylation interfered mostly with binding to proline-rich regions of MAP2c. Furthermore, our NMR experiments in SH-SY5Y neuroblastoma cell lysates showed that the kinetics of dephosphorylation are compatible with in-cell NMR studies and that residues targeted by ERK2 and PKA are efficiently phosphorylated in the cell lysates. Taken together, our results provide a deeper characterization of MAP2c phosphorylation and its effects on interactions with other proteins.
Collapse
|
7
|
Sen S, Lagas S, Roy A, Kumar H. Cytoskeleton saga: Its regulation in normal physiology and modulation in neurodegenerative disorders. Eur J Pharmacol 2022; 925:175001. [PMID: 35525310 DOI: 10.1016/j.ejphar.2022.175001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Cells are fundamental units of life. To ensure the maintenance of homeostasis, integrity of structural and functional counterparts is needed to be essentially balanced. The cytoskeleton plays a vital role in regulating the cellular morphology, signalling and other factors involved in pathological conditions. Microtubules, actin (microfilaments), intermediate filaments (IF) and their interactions are required for these activities. Various proteins associated with these components are primary requirements for directing their functions. Disruption of this organization due to faulty genetics, oxidative stress or impaired transport mechanisms are the major causes of dysregulated signalling cascades leading to various pathological conditions like Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD) or amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP) or any traumatic injury like spinal cord injury (SCI). Novel or conventional therapeutic approaches may be specific or non-specific, targeting either three basic components of the cytoskeleton or various cascades that serve as a cue to numerous pathways like ROCK signalling or the GSK-3β pathway. An enormous number of drugs have been redirected for modulating the cytoskeletal dynamics and thereby may pave the way for inhibiting the progression of these diseases and their complications.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Sheetal Lagas
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
8
|
Khandker L, Jeffries MA, Chang YJ, Mather ML, Evangelou AV, Bourne JN, Tafreshi AK, Ornelas IM, Bozdagi-Gunal O, Macklin WB, Wood TL. Cholesterol biosynthesis defines oligodendrocyte precursor heterogeneity between brain and spinal cord. Cell Rep 2022; 38:110423. [PMID: 35235799 PMCID: PMC8988216 DOI: 10.1016/j.celrep.2022.110423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 12/28/2022] Open
Abstract
Brain and spinal cord oligodendroglia have distinct functional characteristics, and cell-autonomous loss of individual genes can result in different regional phenotypes. However, a molecular basis for these distinctions is unknown. Using single-cell analysis of oligodendroglia during developmental myelination, we demonstrate that brain and spinal cord precursors are transcriptionally distinct, defined predominantly by cholesterol biosynthesis. We further identify the mechanistic target of rapamycin (mTOR) as a major regulator promoting cholesterol biosynthesis in oligodendroglia. Oligodendroglia-specific loss of mTOR decreases cholesterol biosynthesis in both the brain and the spinal cord, but mTOR loss in spinal cord oligodendroglia has a greater impact on cholesterol biosynthesis, consistent with more pronounced deficits in developmental myelination. In the brain, mTOR loss results in a later adult myelin deficit, including oligodendrocyte death, spontaneous demyelination, and impaired axonal function, demonstrating that mTOR is required for myelin maintenance in the adult brain. Using single-cell RNA sequencing, Khandker et al. reveal that oligodendroglia in the brain and spinal cord are distinct. These differences arise from mechanisms regulating cholesterol acquisition, necessary for maintenance of the lipid-rich myelin sheath, and involve mTOR in the regulation of cholesterol biosynthesis in oligodendroglia.
Collapse
Affiliation(s)
- Luipa Khandker
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Marisa A Jeffries
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers University, Piscataway, NJ 08854, USA
| | - Marie L Mather
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Angelina V Evangelou
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Azadeh K Tafreshi
- Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Isis M Ornelas
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ozlem Bozdagi-Gunal
- Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| |
Collapse
|
9
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
10
|
Guglietti B, Sivasankar S, Mustafa S, Corrigan F, Collins-Praino LE. Fyn Kinase Activity and Its Role in Neurodegenerative Disease Pathology: a Potential Universal Target? Mol Neurobiol 2021; 58:5986-6005. [PMID: 34432266 DOI: 10.1007/s12035-021-02518-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Fyn is a non-receptor tyrosine kinase belonging to the Src family of kinases (SFKs) which has been implicated in several integral functions throughout the central nervous system (CNS), including myelination and synaptic transmission. More recently, Fyn dysfunction has been associated with pathological processes observed in neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Neurodegenerative diseases are amongst the leading cause of death and disability worldwide and, due to the ageing population, prevalence is predicted to rise in the coming years. Symptoms across neurodegenerative diseases are both debilitating and degenerative in nature and, concerningly, there are currently no disease-modifying therapies to prevent their progression. As such, it is important to identify potential new therapeutic targets. This review will outline the role of Fyn in normal/homeostatic processes, as well as degenerative/pathological mechanisms associated with neurodegenerative diseases, such as demyelination, pathological protein aggregation, neuroinflammation and cognitive dysfunction.
Collapse
Affiliation(s)
- Bianca Guglietti
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Srisankavi Sivasankar
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Sanam Mustafa
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Lyndsey E Collins-Praino
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
11
|
Bajic V, Misic N, Stankovic I, Zaric B, Perry G. Alzheimer's and Consciousness: How Much Subjectivity Is Objective? Neurosci Insights 2021; 16:26331055211033869. [PMID: 34350401 PMCID: PMC8295942 DOI: 10.1177/26331055211033869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/02/2021] [Indexed: 01/03/2023] Open
Abstract
Does Alzheimer Disease show a decline in cognitive functions that relate to the awareness of external reality? In this paper, we will propose a perspective that patients with increasing symptoms of AD show a change in the awareness of subjective versus objective representative axis of reality thus consequently move to a more internal like perception of reality. This paradigm shift suggests that new insights into the dynamicity of the conscious representation of reality in the AD brain may give us new clues to the very early signs of memory and self-awareness impairment that originates from, in our view the microtubules. Dialog between Adso and William, in Umberto Eco's The Name of the Rose, Third Day: Vespers. "But how does it happen," I said with admiration, "that you were able to solve the mystery of the library looking at it from the outside, and you were unable to solve it when you were inside?" "Thus, God knows the world, because He conceived it in His mind, as if it was from the outside, before it was created, and we do not know its rule, because we live inside it, having found it already made."
Collapse
Affiliation(s)
- Vladan Bajic
- Department of Radiobiology and
Molecular Genetics, Vinca Institute, University of Belgrade, Belgrade, Serbia
| | | | - Ivana Stankovic
- Institute of Chemistry, Technology and
Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Bozidarka Zaric
- Department of Radiobiology and
Molecular Genetics, Vinca Institute, University of Belgrade, Belgrade, Serbia
| | - George Perry
- Department of Biology, The University
of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
12
|
Duquette A, Pernègre C, Veilleux Carpentier A, Leclerc N. Similarities and Differences in the Pattern of Tau Hyperphosphorylation in Physiological and Pathological Conditions: Impacts on the Elaboration of Therapies to Prevent Tau Pathology. Front Neurol 2021; 11:607680. [PMID: 33488502 PMCID: PMC7817657 DOI: 10.3389/fneur.2020.607680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Tau protein, a neuronal microtubule-associated protein, becomes hyperphosphorylated in several neurodegenerative diseases called tauopathies. Hyperphosphorylation of tau is correlated to its redistribution from the axon to the somato-dendritic compartment at early stages of tauopathies. Interestingly, tau hyperphosphorylation begins in different regions of the brain in each tauopathy. In some regions, both neurons and glial cells develop tau hyperphosphorylation. Tau hyperphosphorylation is also observed in physiological conditions such as hibernation and brain development. In the first section of present article, we will review the spatiotemporal and cellular distribution of hyperphosphorylated tau in the most frequent tauopathies. In the second section, we will compare the pattern of tau hyperphosphorylation in physiological and pathological conditions and discuss the sites that could play a pivotal role in the conversion of non-toxic to toxic forms of hyperphosphorylated tau. Furthermore, we will discuss the role of hyperphosphorylated tau in physiological and pathological conditions and the fact that tau hyperphosphorylation is reversible in physiological conditions but not in a pathological ones. In the third section, we will speculate how the differences and similarities between hyperphosphorylated tau in physiological and pathological conditions could impact the elaboration of therapies to prevent tau pathology. In the fourth section, the different therapeutic approaches using tau as a direct or indirect therapeutic target will be presented.
Collapse
Affiliation(s)
- Antoine Duquette
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Camille Pernègre
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ariane Veilleux Carpentier
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
13
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
14
|
Forbes TA, Goldstein EZ, Dupree JL, Jablonska B, Scafidi J, Adams KL, Imamura Y, Hashimoto-Torii K, Gallo V. Environmental enrichment ameliorates perinatal brain injury and promotes functional white matter recovery. Nat Commun 2020; 11:964. [PMID: 32075970 PMCID: PMC7031237 DOI: 10.1038/s41467-020-14762-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Hypoxic damage to the developing brain due to preterm birth causes many anatomical changes, including damage to the periventricular white matter. This results in the loss of glial cells, significant disruptions in myelination, and thereby cognitive and behavioral disabilities seen throughout life. Encouragingly, these neurological morbidities can be improved by environmental factors; however, the underlying cellular mechanisms remain unknown. We found that early and continuous environmental enrichment selectively enhances endogenous repair of the developing white matter by promoting oligodendroglial maturation, myelination, and functional recovery after perinatal brain injury. These effects require increased exposure to socialization, physical activity, and cognitive enhancement of surroundings-a complete enriched environment. Using RNA-sequencing, we identified oligodendroglial-specific responses to hypoxic brain injury, and uncovered molecular mechanisms involved in enrichment-induced recovery. Together, these results indicate that myelin plasticity induced by modulation of the neonatal environment can be targeted as a therapeutic strategy for preterm birth.
Collapse
Affiliation(s)
- Thomas A Forbes
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Evan Z Goldstein
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Beata Jablonska
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Joseph Scafidi
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Katrina L Adams
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Yuka Imamura
- Institute for Personalized Medicine, Penn State University, College of Medicine, Hershey, PA, 17033, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA. .,Institute for Biomedical Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
15
|
A Role of Microtubules in Oligodendrocyte Differentiation. Int J Mol Sci 2020; 21:ijms21031062. [PMID: 32033476 PMCID: PMC7037135 DOI: 10.3390/ijms21031062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Oligodendrocytes are specialized cells that myelinate axons in the central nervous system. Defects in oligodendrocyte function and failure to form or maintain myelin sheaths can cause a number of neurological disorders. Oligodendrocytes are differentiated from oligodendrocyte progenitor cells (OPCs), which extend several processes that contact, elaborate, and eventually wrap axonal segments to form multilayered myelin sheaths. These processes require extensive changes in the cytoarchitecture and must be regulated by reorganization of the cytoskeleton. Here, we established a simple protocol to isolate and differentiate mouse OPCs, and by using this method, we investigated a role of microtubules (MTs) in oligodendrocyte differentiation. Oligodendrocytes developed a complex network of MTs during differentiation, and treatment of differentiating oligodendrocytes with nanomolar concentrations of MT-targeting agents (MTAs) markedly affected oligodendrocyte survival and differentiation. We found that acute exposure to vincristine and nocodazole at early stages of oligodendrocyte differentiation markedly increased MT arborization and enhanced differentiation, whereas taxol and epothilone B treatment produced opposing outcomes. Furthermore, treatment of myelinating co-cultures of oligodendrocytes and neurons with nanomolar concentrations of MTAs at late stages of oligodendrocyte differentiation induced dysmyelination. Together, these results suggest that MTs play an important role in the survival, differentiation, and myelination of oligodendrocytes.
Collapse
|
16
|
Zhou Y, Song WM, Andhey PS, Swain A, Levy T, Miller KR, Poliani PL, Cominelli M, Grover S, Gilfillan S, Cella M, Ulland TK, Zaitsev K, Miyashita A, Ikeuchi T, Sainouchi M, Kakita A, Bennett DA, Schneider JA, Nichols MR, Beausoleil SA, Ulrich JD, Holtzman DM, Artyomov MN, Colonna M. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. Nat Med 2020; 26:131-142. [PMID: 31932797 PMCID: PMC6980793 DOI: 10.1038/s41591-019-0695-9] [Citation(s) in RCA: 639] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
Glia have been implicated in Alzheimer's disease (AD) pathogenesis. Variants of the microglia receptor triggering receptor expressed on myeloid cells 2 (TREM2) increase AD risk, and activation of disease-associated microglia (DAM) is dependent on TREM2 in mouse models of AD. We surveyed gene-expression changes associated with AD pathology and TREM2 in 5XFAD mice and in human AD by single-nucleus RNA sequencing. We confirmed the presence of Trem2-dependent DAM and identified a previously undiscovered Serpina3n+C4b+ reactive oligodendrocyte population in mice. Interestingly, remarkably different glial phenotypes were evident in human AD. Microglia signature was reminiscent of IRF8-driven reactive microglia in peripheral-nerve injury. Oligodendrocyte signatures suggested impaired axonal myelination and metabolic adaptation to neuronal degeneration. Astrocyte profiles indicated weakened metabolic coordination with neurons. Notably, the reactive phenotype of microglia was less evident in TREM2-R47H and TREM2-R62H carriers than in non-carriers, demonstrating a TREM2 requirement in both mouse and human AD, despite the marked species-specific differences.
Collapse
Affiliation(s)
- Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wilbur M Song
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Prabhakar S Andhey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Pietro L Poliani
- Pathology Unit, Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| | - Manuela Cominelli
- Pathology Unit, Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| | - Shikha Grover
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Konstantin Zaitsev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Computer Technologies Department, ITMO University, Saint Petersburg, Russia
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Makoto Sainouchi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - David A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Michael R Nichols
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, MO, USA
| | | | - Jason D Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Thomason EJ, Escalante M, Osterhout DJ, Fuss B. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia 2019; 68:1329-1346. [PMID: 31696982 DOI: 10.1002/glia.23735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Cells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone. Accordingly, coordinated stoichiometries of actin filament (F-actin) assembly and disassembly at these OLG/OPC growth cones have been implicated in directing process outgrowth and guidance, and the initiation of myelination. Nonetheless, the functional importance of the OLG/OPC growth cone still remains to be fully understood, and, as a unique aspect of actin cytoskeletal dynamics, F-actin depolymerization and disassembly start to predominate at the transition from myelination initiation to myelin wrapping. This review provides an overview of the current knowledge about OLG/OPC growth cones, and it proposes a model in which actin cytoskeletal dynamics in OLG/OPC growth cones are a main driver for morphological transformations and motile behaviors. Remarkably, these activities, at least at the later stages of OLG maturation, may be regulated independently from the transcriptional gene expression changes typically associated with CNS myelination.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
18
|
Thomas L, Pasquini LA. Galectin-3 Exerts a Pro-differentiating and Pro-myelinating Effect Within a Temporal Window Spanning Precursors and Pre-oligodendrocytes: Insights into the Mechanisms of Action. Mol Neurobiol 2019; 57:976-987. [PMID: 31654317 DOI: 10.1007/s12035-019-01787-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes (OLG) are the cells resident in the CNS responsible for myelination. OLG undergo a succession of morphological and molecular changes along several maturational stages. Galectin-3 (Gal-3) is a 25- to 35-KDa protein belonging to the family of carbohydrate-binding galectins, which bind to glycoconjugates containing β-galactosides. Gal-3 lacks a specific receptor and its binding is thus rather unspecific, as it depends on the cellular environment and the repertoire of glycomolecules at the time when Gal-3 is present. Our previous work revealed that recombinant Gal-3 (rGal-3)-treated OLG showed accelerated differentiation, evidenced by an increase in the number of mature cells to the detriment of immature ones and accelerated actin cytoskeleton dynamics. These changes were a consequence of rGal-3 influence on Akt, Erk 1/2, and β-catenin signaling pathways. Considering this previous evidence, the aim of this study was to identify the temporal window of rGal-3 action on the OLG lineage to induce OLG maturation by using specific single pulses of rGal-3 over the different maturational stages of OLG, and to unravel its main direct targets promoting OLG differentiation by mass spectrometry analysis. Our results reveal a key temporal window spanning between OPC and pre-OLG states in which rGal-3 action promotes OLG differentiation, and identify several targets for rGal-3 binding including proteins related to the cytoskeleton, signaling pathways, metabolism and intracellular trafficking, among others. These results highlight the relevance of Gal-3 in signaling pathways regulating oligodendroglial differentiation and support a potential therapeutic role for rGal-3 in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Kang M, Yao Y. Oligodendrocytes in intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1075-1084. [PMID: 31410988 PMCID: PMC6776757 DOI: 10.1111/cns.13193] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a cerebrovascular disorder with high mortality and disability rates. Although a lot of effort has been put in ICH, there is still no effective treatment for this devastating disease. Recent studies suggest that oligodendrocytes play an important role in brain repair after ICH and thus may be targeted for the therapies of ICH. Here in this review, we first introduce the origin, migration, proliferation, differentiation, and myelination of oligodendrocytes under physiological condition. Second, recent findings on how ICH affects oligodendrocyte biology and function are reviewed. Third, potential crosstalk between oligodendrocytes and other cells in the brain is also summarized. Last, we discuss the therapeutic potential of oligodendrocyte‐based treatments in ICH. Our goal is to provide a comprehensive review on the biology and function of oligodendrocytes under both physiological and ICH conditions.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
20
|
Ferrer I, Aguiló García M, Carmona M, Andrés-Benito P, Torrejón-Escribano B, Garcia-Esparcia P, Del Rio JA. Involvement of Oligodendrocytes in Tau Seeding and Spreading in Tauopathies. Front Aging Neurosci 2019; 11:112. [PMID: 31191295 PMCID: PMC6546889 DOI: 10.3389/fnagi.2019.00112] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction: Human tau seeding and spreading occur following intracerebral inoculation into different gray matter regions of brain homogenates obtained from tauopathies in transgenic mice expressing wild or mutant tau, and in wild-type (WT) mice. However, little is known about tau propagation following inoculation in the white matter. Objectives: The present study is geared to learning about the patterns of tau seeding and cells involved following unilateral inoculation in the corpus callosum of homogenates from sporadic Alzheimer's disease (AD), primary age-related tauopathy (PART: neuronal 4Rtau and 3Rtau), pure aging-related tau astrogliopathy (ARTAG: astroglial 4Rtau with thorn-shaped astrocytes TSAs), globular glial tauopathy (GGT: 4Rtau with neuronal tau and specific tau inclusions in astrocytes and oligodendrocytes, GAIs and GOIs, respectively), progressive supranuclear palsy (PSP: 4Rtau with neuronal inclusions, tufted astrocytes and coiled bodies), Pick's disease (PiD: 3Rtau with characteristic Pick bodies in neurons and tau containing fibrillar astrocytes), and frontotemporal lobar degeneration linked to P301L mutation (FTLD-P301L: 4Rtau familial tauopathy). Methods: Adult WT mice were inoculated unilaterally in the lateral corpus callosum with sarkosyl-insoluble fractions or with sarkosyl-soluble fractions from the mentioned tauopathies; mice were killed from 4 to 7 months after inoculation. Brains were fixed in paraformaldehyde, embedded in paraffin and processed for immunohistochemistry. Results: Tau seeding occurred in the ipsilateral corpus callosum and was also detected in the contralateral corpus callosum. Phospho-tau deposits were found in oligodendrocytes similar to coiled bodies and in threads. Moreover, tau deposits co-localized with active (phosphorylated) tau kinases p38 and ERK 1/2, suggesting active tau phosphorylation of murine tau. TSAs, GAIs, GOIs, tufted astrocytes, and tau-containing fibrillar astrocytes were not seen in any case. Tau deposits were often associated with slight myelin disruption and the presence of small PLP1-immunoreactive globules and dots in the ipsilateral corpus callosum 6 months after inoculation of sarkosyl-insoluble fractions from every tauopathy. Conclusions: Seeding and spreading of human tau in the corpus callosum of WT mice occurs in oligodendrocytes, thereby supporting the idea of a role of oligodendrogliopathy in tau seeding and spreading in the white matter in tauopathies. Slight differences in the predominance of threads or oligodendroglial deposits suggest disease differences in the capacity of tau seeding and spreading among tauopathies.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Senior Consultant, Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Meritxell Aguiló García
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Margarita Carmona
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Benjamin Torrejón-Escribano
- Biology Unit, Scientific and Technical Services, Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Paula Garcia-Esparcia
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - José Antonio Del Rio
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Curiel J, Rodríguez Bey G, Takanohashi A, Bugiani M, Fu X, Wolf NI, Nmezi B, Schiffmann R, Bugaighis M, Pierson T, Helman G, Simons C, van der Knaap MS, Liu J, Padiath Q, Vanderver A. TUBB4A mutations result in specific neuronal and oligodendrocytic defects that closely match clinically distinct phenotypes. Hum Mol Genet 2018; 26:4506-4518. [PMID: 28973395 DOI: 10.1093/hmg/ddx338] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022] Open
Abstract
Hypomyelinating leukodystrophies are heritable disorders defined by lack of development of brain myelin, but the cellular mechanisms of hypomyelination are often poorly understood. Mutations in TUBB4A, encoding the tubulin isoform tubulin beta class IVA (Tubb4a), result in the symptom complex of hypomyelination with atrophy of basal ganglia and cerebellum (H-ABC). Additionally, TUBB4A mutations are known to result in a broad phenotypic spectrum, ranging from primary dystonia (DYT4), isolated hypomyelination with spastic quadriplegia, and an infantile onset encephalopathy, suggesting multiple cell types may be involved. We present a study of the cellular effects of TUBB4A mutations responsible for H-ABC (p.Asp249Asn), DYT4 (p.Arg2Gly), a severe combined phenotype with hypomyelination and encephalopathy (p.Asn414Lys), as well as milder phenotypes causing isolated hypomyelination (p.Val255Ile and p.Arg282Pro). We used a combination of histopathological, biochemical and cellular approaches to determine how these different mutations may have variable cellular effects in neurons and/or oligodendrocytes. Our results demonstrate that specific mutations lead to either purely neuronal, combined neuronal and oligodendrocytic or purely oligodendrocytic defects that closely match their respective clinical phenotypes. Thus, the DYT4 mutation that leads to phenotypes attributable to neuronal dysfunction results in altered neuronal morphology, but with unchanged tubulin quantity and polymerization, with normal oligodendrocyte morphology and myelin gene expression. Conversely, mutations associated with isolated hypomyelination (p.Val255Ile and p.Arg282Pro) and the severe combined phenotype (p.Asn414Lys) resulted in normal neuronal morphology but were associated with altered oligodendrocyte morphology, myelin gene expression, and microtubule dysfunction. The H-ABC mutation (p.Asp249Asn) that exhibits a combined neuronal and myelin phenotype had overlapping cellular defects involving both neuronal and oligodendrocyte cell types in vitro. Only mutations causing hypomyelination phenotypes showed altered microtubule dynamics and acted through a dominant toxic gain of function mechanism. The DYT4 mutation had no impact on microtubule dynamics suggesting a distinct mechanism of action. In summary, the different clinical phenotypes associated with TUBB4A reflect the selective and specific cellular effects of the causative mutations. Cellular specificity of disease pathogenesis is relevant to developing targeted treatments for this disabling condition.
Collapse
Affiliation(s)
- Julian Curiel
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | | | - Asako Takanohashi
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA.,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Xiaoqin Fu
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Nicole I Wolf
- VU University Medical Center, Amsterdam, The Netherlands
| | - Bruce Nmezi
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| | - Mona Bugaighis
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Tyler Pierson
- Departments of Pediatrics and Neurology, Cedar Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Guy Helman
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Department of Neurology, Children's National Health System, Washington, DC 20010, USA
| | - Cas Simons
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Judy Liu
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Quasar Padiath
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Adeline Vanderver
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA.,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Neurology, Children's National Health System, Washington, DC 20010, USA.,Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Calogero AM, Viganò M, Budelli S, Galimberti D, Fenoglio C, Cartelli D, Lazzari L, Lehenkari P, Canesi M, Giordano R, Cappelletti G, Pezzoli G. Microtubule defects in mesenchymal stromal cells distinguish patients with Progressive Supranuclear Palsy. J Cell Mol Med 2018; 22:2670-2679. [PMID: 29502334 PMCID: PMC5908108 DOI: 10.1111/jcmm.13545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023] Open
Abstract
Progressive Supranuclear Palsy (PSP) is a rare neurodegenerative disease whose etiopathogenesis remains elusive. The intraneuronal accumulation of hyperphosphorylated Tau, a pivotal protein in regulating microtubules (MT), leads to include PSP into tauopathies. Pathological hallmarks are well known in neural cells but no word yet if PSP‐linked dysfunctions occur also in other cell types. We focused on bone marrow mesenchymal stromal cells (MSCs) that have recently gained attention for therapeutic interventions due to their anti‐inflammatory, antiapoptotic and trophic properties. Here, we aimed to investigate MSCs biology and to disclose if any disease‐linked defect occurs in this non‐neuronal compartment. First, we found that cells obtained from patients showed altered morphology and growth. Next, Western blotting analysis unravelled the imbalance in α‐tubulin post‐translational modifications and in MT stability. Interestingly, MT mass is significantly decreased in patient cells at baseline and differently changes overtime compared to controls, suggesting their inability to efficiently remodel MT cytoskeleton during ageing in culture. Thus, our results provide the first evidence that defects in MT regulation and stability occur and are detectable in a non‐neuronal compartment in patients with PSP. We suggest that MSCs could be a novel model system for unravelling cellular processes implicated in this neurodegenerative disorder.
Collapse
Affiliation(s)
| | - Mariele Viganò
- Department of Services and Preventive Medicine, Laboratory of Regenerative Medicine - Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Budelli
- Department of Services and Preventive Medicine, Laboratory of Regenerative Medicine - Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Parkinson Institute, ASST G.Pini-CTO, ex ICP, Milan, Italy
| | - Daniela Galimberti
- Department of Physiopathology and Transplantation, Dino Ferrari Center, Neurodegenerative Disease Unit, Fondazione Ca' Granda, IRCCS Ospedale Policlinico, University of Milan, Milan, Italy
| | - Chiara Fenoglio
- Department of Physiopathology and Transplantation, Dino Ferrari Center, Neurodegenerative Disease Unit, Fondazione Ca' Granda, IRCCS Ospedale Policlinico, University of Milan, Milan, Italy
| | - Daniele Cartelli
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Lorenza Lazzari
- Department of Services and Preventive Medicine, Laboratory of Regenerative Medicine - Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Petri Lehenkari
- Department of Surgery and Anatomy, Medical Research Center, University of Oulu and University of Oulu Hospital, Oulu, Finland
| | | | - Rosaria Giordano
- Department of Services and Preventive Medicine, Laboratory of Regenerative Medicine - Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Gianni Pezzoli
- Parkinson Institute, ASST G.Pini-CTO, ex ICP, Milan, Italy
| |
Collapse
|
23
|
Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang T. Microglia: Housekeeper of the Central Nervous System. Cell Mol Neurobiol 2018; 38:53-71. [PMID: 28534246 DOI: 10.1007/s10571-017-0504-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
Microglia, of myeloid origin, play fundamental roles in the control of immune responses and the maintenance of central nervous system homeostasis. These cells, just like peripheral macrophages, may be activated into M1 pro-inflammatory or M2 anti-inflammatory phenotypes by appropriate stimuli. Microglia do not respond in isolation, but form part of complex networks of cells influencing each other. This review addresses the complex interaction of microglia with each cell type in the brain: neurons, astrocytes, cerebrovascular endothelial cells, and oligodendrocytes. We also highlight the participation of microglia in the maintenance of homeostasis in the brain, and their roles in the development and progression of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- John Alimamy Kabba
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yazhou Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Handson Christian
- Department of Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wenchen Ruan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Kitchen Chenai
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, People's Republic of China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA.
| |
Collapse
|
24
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [PMID: 27615390 DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
25
|
Kahlson MA, Colodner KJ. Glial Tau Pathology in Tauopathies: Functional Consequences. J Exp Neurosci 2016; 9:43-50. [PMID: 26884683 PMCID: PMC4750898 DOI: 10.4137/jen.s25515] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases characterized by the presence of hyperphosphorylated and aggregated tau pathology in neuronal and glial cells. Though the ratio of neuronal and glial tau aggregates varies across diseases, glial tau aggregates can populate the same degenerating brain regions as neuronal tau aggregates. While much is known about the deleterious consequences of tau pathology in neurons, the relative contribution of glial tau pathology to these diseases is less clear. Recent studies using a number of model systems implicate glial tau pathology in contributing to tauopathy pathogenesis. This review aims to highlight the functional consequences of tau overexpression in glial cells and explore the potential contribution of glial tau pathology in the pathogenesis of neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Martha A Kahlson
- Department of Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, USA
| | - Kenneth J Colodner
- Department of Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, USA
| |
Collapse
|
26
|
Inducible Expression of a Truncated Form of Tau in Oligodendrocytes Elicits Gait Abnormalities and a Decrease in Myelin: Implications for Selective CNS Degenerative Diseases. Neurochem Res 2015; 40:2188-99. [DOI: 10.1007/s11064-015-1707-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022]
|
27
|
The Deleterious Effects of Oxidative and Nitrosative Stress on Palmitoylation, Membrane Lipid Rafts and Lipid-Based Cellular Signalling: New Drug Targets in Neuroimmune Disorders. Mol Neurobiol 2015; 53:4638-58. [PMID: 26310971 DOI: 10.1007/s12035-015-9392-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer's and Parkinson's disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.
Collapse
|
28
|
Seiberlich V, Bauer NG, Schwarz L, Ffrench-Constant C, Goldbaum O, Richter-Landsberg C. Downregulation of the microtubule associated protein Tau impairs process outgrowth and myelin basic protein mRNA transport in oligodendrocytes. Glia 2015; 63:1621-35. [DOI: 10.1002/glia.22832] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/17/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Veronika Seiberlich
- Department for Neuroscience; Molecular Neurobiology; University of Oldenburg; Oldenburg Germany
| | - Nina G. Bauer
- Department for Neuroscience; Molecular Neurobiology; University of Oldenburg; Oldenburg Germany
- MRC Centre for Regenerative Medicine; The University of Edinburgh, Edinburgh BioQuarter; Edinburgh United Kingdom
| | - Lisa Schwarz
- Department for Neuroscience; Molecular Neurobiology; University of Oldenburg; Oldenburg Germany
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine; The University of Edinburgh, Edinburgh BioQuarter; Edinburgh United Kingdom
| | - Olaf Goldbaum
- Department for Neuroscience; Molecular Neurobiology; University of Oldenburg; Oldenburg Germany
| | | |
Collapse
|
29
|
Leyk J, Goldbaum O, Noack M, Richter-Landsberg C. Inhibition of HDAC6 modifies tau inclusion body formation and impairs autophagic clearance. J Mol Neurosci 2014; 55:1031-46. [PMID: 25434725 DOI: 10.1007/s12031-014-0460-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
Proteinaceous inclusions in nerve cells and glia are a defining neuropathological hallmark in a variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Their occurrence may be related to malfunctions of the proteolytic degradation systems. In cultured oligodendrocytes, proteasomal inhibition leads to protein aggregate formation resembling coiled bodies, which are characteristic for PSP and CBD. Large protein aggregates are excluded from the proteasome and can only be degraded by autophagy, a lysosomal pathway. Autophagy is a highly selective process, which requires a variety of receptor proteins for ubiquitinated proteins, such as p62 and histone deacetylase 6 (HDAC6). HDAC6 is mainly localized in the cytoplasm, and alpha-tubulin is its major substrate. HDAC6 is considered as a sensor of proteasomal stress; it is involved in the autophagosomal pathway and can mediate the retrograde transport of ubiquitinated proteins along the microtubules. As we have shown recently, HDAC6 is present in oligodendrocytes and its inhibition leads to morphological alterations, microtubule bundling, modulation of acetylation, and phosphorylation of the microtubule-associated protein tau. The present study was undertaken to investigate whether HDAC6 is involved in protein aggregate formation in oligodendrocytes and whether its inhibition modifies the consequences of MG-132-induced inhibition of the ubiquitin proteasome system (UPS). The data show that HDAC6 and acetylated tau are recruited to protein aggregates after proteasomal inhibition. Pharmacological inhibition of HDAC6 by the selective inhibitor tubastatin A (TST) and its small hairpin RNA (shRNA)-mediated downregulation alters the assembly of MG-132-induced compact protein aggregates. After TST treatment, they appear more diffusely dispersed throughout the cytoplasm. This is not a protective means but promotes the onset of apoptotic cell death. Furthermore, the heat shock response is altered, and TST suppresses the MG-132-stimulated induction of HSP70. To test whether the alteration of protein aggregate formation is related to the influence of HDAC6 on the autophagic degradation system, an oligodendroglial cell line, i.e., OLN-93 cells stably expressing green fluorescent protein (GFP)-microtubule associated protein light chain 3 (LC3) and tau, was used. During autophagosome formation, endogenous LC3 is processed to LC3-I, which is then converted to LC3-II. An increase of LC3-II is used as a reliable marker for autophagosome formation and abundance. It is demonstrated that inhibition of HDAC6 leads to the accumulation of LC3-positive autophagosomal vacuoles and an increase in LC3-II immunoreactivity, but the autophagic flux is rather impaired. Hence, the inhibition or dysregulation of HDAC6 contributes to stress responses and pathological processes in oligodendrocytes.
Collapse
Affiliation(s)
- Janina Leyk
- Department of Neurosciences, Molecular Neurobiology, University of Oldenburg, POB 2503, 26111, Oldenburg, Germany
| | | | | | | |
Collapse
|
30
|
Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 2014; 37:721-32. [PMID: 25223701 DOI: 10.1016/j.tins.2014.08.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 12/19/2022]
Abstract
Tau is a microtubule-associated-protein that is sorted into neuronal axons in physiological conditions. In Alzheimer disease (AD) and other tauopathies, Tau sorting mechanisms fail and Tau becomes missorted into the somatodendritic compartment. In AD, aberrant amyloid-β (Aβ) production might trigger Tau missorting. The physiological axonal sorting of Tau depends on the developmental stage of the neuron, the phosphorylation state of Tau and the microtubule cytoskeleton. Disease-associated missorting of Tau is connected to increased phosphorylation and aggregation of Tau, and impaired microtubule interactions. Disease-causing mechanisms involve impaired transport, aberrant kinase activation, non-physiological interactions of Tau, and prion-like spreading. In this review we focus on the physiological and pathological (mis)sorting of Tau, the underlying mechanisms, and effects in disease.
Collapse
|
31
|
Noack M, Richter-Landsberg C. Activation of autophagy by rapamycin does not protect oligodendrocytes against protein aggregate formation and cell death induced by proteasomal inhibition. J Mol Neurosci 2014; 55:99-108. [PMID: 25069858 DOI: 10.1007/s12031-014-0380-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 12/12/2022]
Abstract
Pathological protein inclusions containing the microtubule-associated protein tau, ubiquitin, and a variety of heat shock proteins, originating in oligodendrocytes, are consistent features observed in a number of neurodegenerative diseases. Defects in the proteolytic degradation systems have been associated with protein aggregate formation. The ubiquitin proteasome system (UPS) and autophagy are critically involved in the maintenance of cellular homeostasis and their activities need to be carefully balanced. A genuine crosstalk exists between the UPS and the autophagosomal system, and when the UPS is impaired, autophagy might act as a compensatory mechanism. Autophagy represents a lysosomal degradation system for degrading long-lived proteins and organelles, including damaged mitochondria. As we have shown before, proteasomal impairment by the reversible proteasomal inhibitor MG-132 (carbobenzoxy-L-leucyl-L-leucyl-L-leucinal) in oligodendrocytes leads to protein aggregate formation and apoptotic cell death, caused by activation of caspases and the mitochondrial pathway. The present study was undertaken to elucidate whether upregulation of the autophagic pathway by rapamycin can protect oligodendrocytes and ameliorate the consequences of MG-132-induced protein aggregate formation. The data show that rapamycin attenuated the formation of dense protein aggregates, but did not enhance the survival capability of oligodendrocytes after proteasomal inhibition. After activation of the autophagic pathway in combination with proteasomal inhibition, caspase 3 activation and poly(ADP-ribose) polymerase-1 cleavage were even more pronounced than after proteasomal inhibition alone. Furthermore, rapamycin augmented MG-132-induced activation of extracellular signal-regulated kinases 1 and 2, which are involved in the regulation of cell death and survival. In summary, depending on the cellular context and system, rapamycin may promote cell survival or, under other conditions in concert with apoptosis, may augment cell death, which seems to be the case in oligodendrocytes. Its therapeutic use for neurodegenerative disorders is most likely limited, since long-term administration may impair neuronal survival and specifically damage the myelin forming cells of the CNS.
Collapse
Affiliation(s)
- Monika Noack
- Department of Neurosciences, Molecular Neurobiology, University of Oldenburg, POB 2503, 26111, Oldenburg, Germany
| | - Christiane Richter-Landsberg
- Department of Neurosciences, Molecular Neurobiology, University of Oldenburg, POB 2503, 26111, Oldenburg, Germany.
| |
Collapse
|
32
|
Boggs JM, Homchaudhuri L, Ranagaraj G, Liu Y, Smith GST, Harauz G. Interaction of myelin basic protein with cytoskeletal and signaling proteins in cultured primary oligodendrocytes and N19 oligodendroglial cells. BMC Res Notes 2014; 7:387. [PMID: 24956930 PMCID: PMC4078013 DOI: 10.1186/1756-0500-7-387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background The classic myelin basic protein (MBP) isoforms are intrinsically-disordered proteins of 14–21.5 kDa in size arising from the Golli (Gene in the Oligodendrocyte Lineage) gene complex, and are responsible for formation of the multilayered myelin sheath in the central nervous system. The predominant membrane-associated isoform of MBP is not simply a structural component of compact myelin but is highly post-translationally modified and multi-functional, having interactions with numerous proteins such as Ca2+-calmodulin, and with actin, tubulin, and proteins with SH3-domains, which it can tether to a lipid membrane in vitro. It co-localizes with such proteins in primary oligodendrocytes (OLGs) and in early developmental N19-OLGs transfected with fluorescently-tagged MBP. Results To provide further evidence for MBP associations with these proteins in vivo, we show here that MBP isoforms are co-immunoprecipitated from detergent extracts of primary OLGs together with actin, tubulin, zonula occludens 1 (ZO-1), cortactin, and Fyn kinase. We also carry out live-cell imaging of N19-OLGs co-transfected with fluorescent MBP and actin, and show that when actin filaments re-assemble after recovery from cytochalasin D treatment, MBP and actin are rapidly enriched and co-localized at certain sites at the plasma membrane and in newly-formed membrane ruffles. The MBP and actin distributions change similarly with time, suggesting a specific and dynamic association. Conclusions These results provide more direct evidence for association of the predominant 18.5-kDa MBP isoform with these proteins in primary OLGs and in live cells than previously could be inferred from co-localization observations. This study supports further a role for classic MBP isoforms in protein-protein interactions during membrane and cytoskeletal extension and remodeling in OLGs.
Collapse
Affiliation(s)
- Joan M Boggs
- Molecular Structure and Function Program, Research Institute, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Noack M, Leyk J, Richter-Landsberg C. HDAC6 inhibition results in tau acetylation and modulates tau phosphorylation and degradation in oligodendrocytes. Glia 2014; 62:535-47. [PMID: 24464872 DOI: 10.1002/glia.22624] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 01/06/2023]
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family. It is localized within the cytoplasm and has unique substrate specificities for nonhistone proteins, such as α-tubulin. Furthermore, it plays a major role in protein aggregate formation and recently was demonstrated to interact with the microtubule associated protein tau and tau was identified as a possible substrate for HDAC6 in neurons. This study was undertaken to investigate whether HDAC6 is present in oligodendrocytes and whether it is involved in tubulin and tau acetylation in these cells. We show for the first time that HDAC6 is expressed in cultured rat brain oligodendrocytes. Its inhibition by the specific HDAC6 inhibitor tubastatin A (TST) leads to morphological alterations, microtubule bundling, and tubulin acetylation, and changes in tau-isoform expression and phosphorylation. Furthermore, the microtubule binding activity of tau was reduced. Using the oligodendroglial cell lines OLN-t40 and OLN-t44, which were genetically engineered to express either the longest human tau isoform with four microtubule binding repeats (4R-tau), or the shortest tau isoform with three repeats (3R-tau), respectively, we demonstrate that tau is acetylated by HDAC6 within the 4R-binding domain. Tau acetylation reduced its turnover rate and acetylated tau was degraded slower in these cells. TST and shRNA-mediated knockdown of HDAC6 in oligodendroglia cells caused an increase in pathological hyperphosphorylated tau detectable with the 12E8 antibody. Hence HDAC6 and dysregulation of the deacetylation and acetylation process in oligodendrocytes may contribute to diseases with oligodendroglial pathology.
Collapse
Affiliation(s)
- Monika Noack
- Department of Biology, Molecular Neurobiology, University of Oldenburg, D-26111, Oldenburg, Germany
| | | | | |
Collapse
|
34
|
White R, Krämer-Albers EM. Axon-glia interaction and membrane traffic in myelin formation. Front Cell Neurosci 2014; 7:284. [PMID: 24431989 PMCID: PMC3880936 DOI: 10.3389/fncel.2013.00284] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasizing the central role of the Src-family kinase Fyn during central nervous system (CNS) myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of proteolipid protein (PLP) transport by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.
Collapse
Affiliation(s)
- Robin White
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | |
Collapse
|
35
|
Martins-de-Souza D, Carvalho PC, Schmitt A, Junqueira M, Nogueira FCS, Turck CW, Domont GB. Deciphering the human brain proteome: characterization of the anterior temporal lobe and corpus callosum as part of the Chromosome 15-centric Human Proteome Project. J Proteome Res 2013; 13:147-57. [PMID: 24274931 DOI: 10.1021/pr4009157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Defining the proteomes encoded by each chromosome and characterizing proteins related to human illnesses are among the goals of the Chromosome-centric Human Proteome Project (C-HPP) and the Biology and Disease-driven HPP. Following these objectives, we investigated the proteomes of the human anterior temporal lobe (ATL) and corpus callosum (CC) collected post-mortem from eight subjects. Using a label-free GeLC-MS/MS approach, we identified 2454 proteins in the ATL and 1887 in the CC through roughly 7500 and 5500 peptides, respectively. Considering that the ATL is a gray-matter region while the CC is a white-matter region, they presented proteomes specific to their functions. Besides, 38 proteins were found to be differentially expressed between the two regions. Furthermore, the proteome data sets were classified according to their chromosomal origin, and five proteins were evidenced at the MS level for the first time. We identified 70 proteins of the chromosome 15 - one of them for the first time by MS - which were submitted to an in silico pathway analysis. These revealed branch point proteins associated with Prader-Willi and Angelman syndromes and dyskeratosis congenita, which are chromosome-15-associated diseases. Data presented here can be a useful for brain disorder studies as well as for contributing to the C-HPP initiative. Our data are publicly available as resource data to C-HPP participant groups at http://yoda.iq.ufrj.br/Daniel/chpp2013. Additionally, the mass spectrometry proteomics data have been deposited to the ProteomeXchange with identifier PXD000547 for the corpus callosum and PXD000548 for the anterior temporal lobe.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Research Group of Proteomics, Department of Psychiatry and Psychotherapy, Ludwig Maximilians University of Munich (LMU) , Nußbaumstraße 7, Munich D-80336, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Inclusion body formation, macroautophagy, and the role of HDAC6 in neurodegeneration. Acta Neuropathol 2013; 126:793-807. [PMID: 23912309 DOI: 10.1007/s00401-013-1158-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/23/2013] [Indexed: 12/25/2022]
Abstract
The failure to clear misfolded or aggregated proteins from the cytoplasm of nerve cells and glia is a common pathogenic event in a variety of neurodegenerative disorders. This might be causally related to defects in the major proteolytic systems, i.e., the ubiquitin-proteasomal system and the autophagic pathway. Large protein aggregates and defective organelles are excluded from the proteasome. They can be degraded only by macroautophagy, which is a highly selective process. It requires p62 to act as a bridge connecting ubiquitinated protein aggregates and autophagosomes, and the tubulin deacetylase histone deacetylase 6 (HDAC6). HDAC6 has recently been identified as a constituent in Lewy bodies of Parkinson disease and glial cytoplasmic inclusions of multiple system atrophy. It is considered a sensor of proteasomal inhibition and a cellular stress surveillance factor, and plays a central role in autophagy by controlling the fusion process of autophagosomes with lysosomes. Upon proteasomal inhibition, HDAC6 is relocated and recruited to polyubiquitin-positive aggresomes. Tubulin acetylation is a major consequence of HDAC6 inhibition, and HDAC6 inhibition restores microtubule (MT)-dependent transport mechanisms in neurons. This suggests the involvement of HDAC6 in neurodegenerative diseases. Furthermore, the protein tau seems to be a substrate for HDAC6. Tau acetylation impairs MT assembly and promotes tau fibrillization in vitro. It has been suggested that acetylation and phosphorylation of tau at multiples sites may act synergistically in the pathogenesis of tau fibrillization. In this review, we will survey the process of aggresome formation, macroautophagy and the role of autophagosomal proteins and HDAC6 in inclusion body formation.
Collapse
|
37
|
Oláh J, Tőkési N, Lehotzky A, Orosz F, Ovádi J. Moonlighting microtubule-associated proteins: regulatory functions by day and pathological functions at night. Cytoskeleton (Hoboken) 2013; 70:677-85. [PMID: 24039085 DOI: 10.1002/cm.21137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/09/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022]
Abstract
The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeletal network. Cytoskeleton comprises fibrous protein networks of microtubules, actin, and intermediate filaments. These filamentous polymer structures are highly dynamic and undergo constant and rapid reorganization during cellular processes. The microtubular system plays a crucial role in the brain, as it is involved in an enormous number of cellular events including cell differentiation and pathological inclusion formation. These multifarious functions of microtubules can be achieved by their decoration with proteins/enzymes that exert specific effects on the dynamics and organization of the cytoskeleton and mediate distinct functions due to their moonlighting features. This mini-review focuses on two aspects of the microtubule cytoskeleton. On the one hand, we describe the heteroassociation of tubulin/microtubules with metabolic enzymes, which in addition to their catalytic activities stabilize microtubule structures via their cross-linking functions. On the other hand, we focus on the recently identified moonlighting tubulin polymerization promoting protein, TPPP/p25. TPPP/p25 is a microtubule-associated protein and it displays distinct physiological or pathological (aberrant) functions; thus it is a prototype of Neomorphic Moonlighting Proteins. The expression of TPPP/p25 is finely controlled in the human brain; this protein is indispensable for the development of projections of oligodendrocytes that are responsible for the ensheathment of axons. The nonphysiological, higher or lower TPPP/p25 level leads to distinct CNS diseases. Mechanisms contributing to the control of microtubule stability and dynamics by metabolic enzymes and TPPP/p25 will be discussed.
Collapse
Affiliation(s)
- J Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
38
|
Qi LM, Wade J. Sexually dimorphic and developmentally regulated expression of tubulin-specific chaperone protein A in the LMAN of zebra finches. Neuroscience 2013; 247:182-90. [PMID: 23727504 DOI: 10.1016/j.neuroscience.2013.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 01/06/2023]
Abstract
Sex differences in brain and behavior exist across vertebrates, but the molecular factors regulating their development are largely unknown. Songbirds exhibit substantial sexual dimorphisms. In zebra finches, only males sing, and the brain areas regulating song learning and production are much larger in males. Recent data suggest that sex chromosome genes (males ZZ; females ZW) may play roles in sexual differentiation. The present studies tested the hypothesis that a Z-gene, tubulin-specific chaperone protein A (TBCA), contributes to sexual differentiation of the song system. This taxonomically conserved gene is integral to microtubule synthesis, and within the song system, its mRNA is specifically increased in males compared to females in the lateral magnocellular nucleus of the anterior nidopallium (LMAN), a region critical for song learning and plasticity. Using in situ hybridization, Western blot analysis, and immunohistochemistry, we observed effects of both age and sex on TBCA mRNA and protein expression. The transcript is increased in males compared to females at three juvenile ages, but not in adults. TBCA protein, both the number of immunoreactive cells and relative concentration in LMAN, is diminished in adults compared to juveniles. The latter was also increased in males compared to females at post-hatching day 25. With double-label immunofluorescence and retrograde tract tracing, we also document that the majority of TBCA+ cells in LMAN are neurons, and that they include robust nucleus of the arcopallium-projecting cells. These results indicate that TBCA is both temporally and spatially primed to facilitate the development of a sexually dimorphic neural pathway critical for song.
Collapse
Affiliation(s)
- L M Qi
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, USA.
| | | |
Collapse
|
39
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
40
|
Hirahara Y, Matsuda KI, Liu YF, Yamada H, Kawata M, Boggs JM. 17β-Estradiol and 17α-estradiol induce rapid changes in cytoskeletal organization in cultured oligodendrocytes. Neuroscience 2013; 235:187-99. [PMID: 23337538 DOI: 10.1016/j.neuroscience.2012.12.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/22/2012] [Accepted: 12/15/2012] [Indexed: 12/12/2022]
Abstract
Dramatic changes in the cytoskeleton and the morphology of oligodendrocytes (OLs) occur during various stages of the myelination process. OLs in culture produce large membrane sheets containing cytoskeletal veins of microtubules and actin filaments. We recently showed that estrogen receptors (ER) related to ERα/β were expressed in the membrane sheets of mature OLs in culture. Ligation of these or other membrane ERs in OLs with both 17β- and 17α-estradiol mediated rapid non-genomic signaling. Here, we show that estrogens also mediate rapid non-genomic remodeling of the cytoskeleton in mature OLs in culture. 17β-Estradiol caused a rapid loss of microtubules and the actin cytoskeleton in the OL membrane sheets. It also increased phosphorylation of the actin filament-severing protein cofilin, thus inactivating it. Staining for actin barbed ends with rhodamine-actin showed that it decreased the amount of actin barbed ends. 17α-Estradiol, on the other hand, increased the percentage of cells with abundant staining of actin filaments and actin barbed ends, suggesting that it stabilized and/or increased the dynamics of the actin cytoskeleton. The specific ERα and ERβ agonists, 4,4',4″-(4-propyl-(1H)-pyrazole-1,3,5-triyl) trisphenol (PPT) and diarylpropionitrile 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN), respectively, also caused the rapid phosphorylation of cofilin. Estrogen-induced phosphorylation of cofilin was inhibited by Y-27632, a specific inhibitor of the Rho-associated protein serine/threonine kinase (ROCK). The Rho/ROCK/cofilin pathway is therefore implicated in actin rearrangement via estrogen ligation of membrane ERs, which may include forms of ERα and ERβ. These results indicate a role for estrogens in modulation of the cytoskeleton in mature OLs, and thus in various processes required for myelinogenesis.
Collapse
Affiliation(s)
- Y Hirahara
- Department of Anatomy and Cell Science, Kansai Medical University, Moriguchi-City, 570-8506 Osaka, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Iacobas S, Neal-Perry G, Iacobas DA. Analyzing the Cytoskeletal Transcriptome: Sex Differences in Rat Hypothalamus. THE CYTOSKELETON 2013. [DOI: 10.1007/978-1-62703-266-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Shen Y, Sun A, Wang Y, Cha D, Wang H, Wang F, Feng L, Fang S, Shen Y. Upregulation of mesencephalic astrocyte-derived neurotrophic factor in glial cells is associated with ischemia-induced glial activation. J Neuroinflammation 2012; 9:254. [PMID: 23173607 PMCID: PMC3576245 DOI: 10.1186/1742-2094-9-254] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 10/19/2012] [Indexed: 11/23/2022] Open
Abstract
Background Mesencephalic astrocyte-derived neurotrophic factor (MANF), a 20 kDa secreted protein, was originally derived from a rat mesencephalic type-1 astrocyte cell line. MANF belongs to a novel evolutionally conserved family of neurotrophic factors along with conserved dopamine neurotrophic factor. In recent years, ever-increasing evidence has shown that both of them play a remarkable protective role against various injuries to neurons in vivo or in vitro. However, the characteristics of MANF expression in the different types of glial cells, especially in astrocytes, remain unclear. Methods The model of focal cerebral ischemia was induced by rat middle cerebral artery occlusion. Double-labeled immunofluorescent staining was used to identify the types of neural cells expressing MANF. Primarily cultured glial cells were used to detect the response of glial cells to endoplasmic reticulum stress stimulation. Propidium iodide staining was used to determine dead cells. Reverse transcription PCR and western blotting were used to detect the levels of mRNA and proteins. Results We found that MANF was predominantly expressed in neurons in both normal and ischemic cortex. Despite its name, MANF was poorly expressed in glial cells, including astrocytes, in normal brain tissue. However, the expression of MANF was upregulated in the glial cells under focal cerebral ischemia, including the astrocytes. This expression was also induced by several endoplasmic reticulum stress inducers and nutrient deprivation in cultured primary glial cells. The most interesting phenomenon observed in this study was the pattern of MANF expression in the microglia. The expression of MANF was closely associated with the morphology and state of microglia, accompanied by the upregulation of BIP/Grp78. Conclusions These results indicate that MANF expression was upregulated in the activated glial cells, which may contribute to the mechanism of ischemia-induced neural injury.
Collapse
Affiliation(s)
- Yujun Shen
- Biopharmaceutical Research Institute, Hefei 230032, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Microtubules and Associated Proteins in Oligodendrocytes, the Myelin Forming Cells of the Central Nervous System. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-1-62703-266-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
44
|
Bendlin BB, Carlsson CM, Johnson SC, Zetterberg H, Blennow K, Willette AA, Okonkwo OC, Sodhi A, Ries ML, Birdsill AC, Alexander AL, Rowley HA, Puglielli L, Asthana S, Sager MA. CSF T-Tau/Aβ42 predicts white matter microstructure in healthy adults at risk for Alzheimer's disease. PLoS One 2012; 7:e37720. [PMID: 22701578 PMCID: PMC3368882 DOI: 10.1371/journal.pone.0037720] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/23/2012] [Indexed: 11/19/2022] Open
Abstract
Cerebrospinal fluid (CSF) biomarkers T-Tau and Aβ(42) are linked with Alzheimer's disease (AD), yet little is known about the relationship between CSF biomarkers and structural brain alteration in healthy adults. In this study we examined the extent to which AD biomarkers measured in CSF predict brain microstructure indexed by diffusion tensor imaging (DTI) and volume indexed by T1-weighted imaging. Forty-three middle-aged adults with parental family history of AD received baseline lumbar puncture and MRI approximately 3.5 years later. Voxel-wise image analysis methods were used to test whether baseline CSF Aβ(42), total tau (T-Tau), phosphorylated tau (P-Tau) and neurofilament light protein predicted brain microstructure as indexed by DTI and gray matter volume indexed by T1-weighted imaging. T-Tau and T-Tau/Aβ(42) were widely correlated with indices of brain microstructure (mean, axial, and radial diffusivity), notably in white matter regions adjacent to gray matter structures affected in the earliest stages of AD. None of the CSF biomarkers were related to gray matter volume. Elevated P-Tau and P-Tau/Aβ(42) levels were associated with lower recognition performance on the Rey Auditory Verbal Learning Test. Overall, the results suggest that CSF biomarkers are related to brain microstructure in healthy adults with elevated risk of developing AD. Furthermore, the results clearly suggest that early pathological changes in AD can be detected with DTI and occur not only in cortex, but also in white matter.
Collapse
Affiliation(s)
- Barbara B Bendlin
- Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veteran's Hospital, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Smith GST, Homchaudhuri L, Boggs JM, Harauz G. Classic 18.5- and 21.5-kDa myelin basic protein isoforms associate with cytoskeletal and SH3-domain proteins in the immortalized N19-oligodendroglial cell line stimulated by phorbol ester and IGF-1. Neurochem Res 2012; 37:1277-95. [PMID: 22249765 DOI: 10.1007/s11064-011-0700-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/17/2011] [Accepted: 12/31/2011] [Indexed: 01/10/2023]
Abstract
The 18.5-kDa classic myelin basic protein (MBP) is an intrinsically disordered protein arising from the Golli (Genes of Oligodendrocyte Lineage) gene complex and is responsible for compaction of the myelin sheath in the central nervous system. This MBP splice isoform also has a plethora of post-translational modifications including phosphorylation, deimination, methylation, and deamidation, that reduce its overall net charge and alter its protein and lipid associations within oligodendrocytes (OLGs). It was originally thought that MBP was simply a structural component of myelin; however, additional investigations have demonstrated that MBP is multi-functional, having numerous protein-protein interactions with Ca²⁺-calmodulin, actin, tubulin, and proteins with SH3-domains, and it can tether these proteins to a lipid membrane in vitro. Here, we have examined cytoskeletal interactions of classic 18.5-kDa MBP, in vivo, using early developmental N19-OLGs transfected with fluorescently-tagged MBP, actin, tubulin, and zonula occludens 1 (ZO-1). We show that MBP redistributes to distinct 'membrane-ruffled' regions of the plasma membrane where it co-localizes with actin and tubulin, and with the SH3-domain-containing proteins cortactin and ZO-1, when stimulated with PMA, a potent activator of the protein kinase C pathway. Moreover, using phospho-specific antibody staining, we show an increase in phosphorylated Thr98 MBP (human sequence numbering) in membrane-ruffled OLGs. Previously, Thr98 phosphorylation of MBP has been shown to affect its conformation, interactions with other proteins, and tethering of other proteins to the membrane in vitro. Here, MBP and actin were also co-localized in new focal adhesion contacts induced by IGF-1 stimulation in cells grown on laminin-2. This study supports a role for classic MBP isoforms in cytoskeletal and other protein-protein interactions during membrane and cytoskeletal remodeling in OLGs.
Collapse
Affiliation(s)
- Graham S T Smith
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
46
|
Eyermann C, Czaplinski K, Colognato H. Dystroglycan promotes filopodial formation and process branching in differentiating oligodendroglia. J Neurochem 2012; 120:928-47. [PMID: 22117643 DOI: 10.1111/j.1471-4159.2011.07600.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During central nervous system (CNS) development, individual oligodendrocytes myelinate multiple axons, thus requiring the outgrowth and extensive branching of oligodendroglial processes. Laminin (Lm)-deficient mice have a lower percentage of myelinated axons, which may indicate a defect in the ability to properly extend and branch processes. It remains unclear, however, to what extent extracellular matrix (ECM) receptors contribute to oligodendroglial process remodeling itself. In the current study, we report that the ECM receptor dystroglycan is necessary for Lm enhancement of filopodial formation, process outgrowth, and process branching in differentiating oligodendroglia. During early oligodendroglial differentiation, the disruption of dystroglycan-Lm interactions, via blocking antibodies or dystroglycan small interfering RNA (siRNA), resulted in decreased filopodial number and length, decreased process length, and decreased numbers of primary and secondary processes. Later in oligodendrocyte differentiation, dystroglycan-deficient cells developed fewer branches, thus producing less complex networks of processes as determined by Sholl analysis. In newly differentiating oligodendroglia, dystroglycan was localized in filopodial tips, whereas, in more mature oligodendrocytes, dystroglycan was enriched in focal adhesion kinase (FAK)-positive focal adhesion structures. These results suggest that dystroglycan-Lm interactions influence oligodendroglial process dynamics and therefore may regulate the myelination capacity of individual oligodendroglia.
Collapse
|
47
|
Microtubule-severing ATPase spastin in glioblastoma: increased expression in human glioblastoma cell lines and inverse roles in cell motility and proliferation. J Neuropathol Exp Neurol 2011; 70:811-26. [PMID: 21865889 DOI: 10.1097/nen.0b013e31822c256d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We studied the expression and distribution of the microtubule-severing enzyme spastin in 3 human glioblastoma cell lines (U87MG, U138MG, and T98G) and in clinical tissue samples representative of all grades of diffuse astrocytic gliomas (n = 45). In adult human brains, spastin was distributed predominantly in neuronsand neuropil puncta and, to a lesser extent, in glia. Compared with normal mature brain tissues, spastin expression and cellular distribution were increased in neoplastic glial phenotypes, especiallyin glioblastoma (p < 0.05 vs low-grade diffuse astrocytomas). Overlapping punctate and diffuse patterns of localization wereidentified in tumor cells in tissues and in interphase and mitotic cells ofglioblastoma cell lines. There was enrichment of spastin in the leading edges of cells in T98G glioblastoma cell cultures and in neoplastic cell populations in tumor specimens. Real-time polymerase chain reaction and immunoblotting experiments revealed greater levels of spastin messenger RNA and protein expression in theglioblastoma cell lines versus normal human astrocytes. Functional experiments indicated that spastin depletion resulted in reduced cell motility and higher cell proliferation of T98G cells. Toour knowledge, this is the first report of spastin involvement incellmotility. Collectively, our results indicate that spastinexpression in glioblastomas might be linked to tumor cell motility, migration, and invasion.
Collapse
|
48
|
Abstract
BACKGROUND The 90-kDa heat-shock proteins (Hsp90) have rapidly evolved into promising therapeutic targets for the treatment of several diseases, including cancer and neurodegenerative diseases. Hsp90 is a molecular chaperone that aids in the conformational maturation of nascent polypeptides, as well as the rematuration of denatured proteins. DISCUSSION Many of the Hsp90-dependent client proteins are associated with cellular growth and survival and, consequently, inhibition of Hsp90 represents a promising approach for the treatment of cancer. Conversely, stimulation of heat-shock protein levels has potential therapeutic applications for the treatment of neurodegenerative diseases that result from misfolded and aggregated proteins. CONCLUSION Hsp90 modulation exhibits the potential to treat unrelated disease states, from cancer to neurodegenerative diseases, and, thus, to fold or not to fold, becomes a question of great value.
Collapse
|
49
|
Bennett M. The prefrontal–limbic network in depression: A core pathology of synapse regression. Prog Neurobiol 2011; 93:457-67. [DOI: 10.1016/j.pneurobio.2011.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/10/2010] [Accepted: 01/03/2011] [Indexed: 01/06/2023]
|
50
|
Smolders I, Smets I, Maier O, vandeVen M, Steels P, Ameloot M. Simvastatin interferes with process outgrowth and branching of oligodendrocytes. J Neurosci Res 2011; 88:3361-75. [PMID: 20857509 DOI: 10.1002/jnr.22490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Statins have attracted interest as a treatment option for multiple sclerosis (MS) because of their pleiotropic antiinflammatory and immunomodulatory effects. However, contradictory results have been described when they are applied to oligodendrocytes (OLGs), the cell type predominantly affected in MS. In this study we focus on the in vitro effect of statins on process outgrowth in OLN-93 cells, a well-characterized OLG-derived cell line, and primary cultures of neonatal rat OLGs. Application of the lipophilic simvastatin, as low as 0.1-1 μM, disturbs process formation of both cell types, leading to less ramified cells. We show that both protein isoprenylation and cholesterol synthesis are required for the normal differentiation of OLGs. It is further demonstrated that the expression of 2',3'-cyclic-nucleotide-3' phosphodiesterase (CNP) and tubulin is lowered, concomitant with a reduction of membrane-bound CNP as well as tubulin. Therefore, we propose that lack of isoprenylation of CNP could help to explain the altered morphological and biochemical differentiation state of treated OLGs. Moreover, expression of specific myelin markers, such as myelin basic protein, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein, was compromised after treatment. We conclude that simvastatin treatment has detrimental effects on OLG process outgrowth, the prior step in (re)myelination, thereby mortgaging long-term healing of MS lesions.
Collapse
Affiliation(s)
- Inge Smolders
- Biomedical Research Institute, School of Life Sciences, Hasselt University and Transnational University Limburg, Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|