1
|
Ma R, Chen L, Hu N, Caplan S, Hu G. Cilia and Extracellular Vesicles in Brain Development and Disease. Biol Psychiatry 2024; 95:1020-1029. [PMID: 37956781 PMCID: PMC11087377 DOI: 10.1016/j.biopsych.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Primary and motile cilia are thin, hair-like cellular projections from the cell surface involved in movement, sensing, and communication between cells. Extracellular vesicles (EVs) are small membrane-bound vesicles secreted by cells and contain various proteins, lipids, and nucleic acids that are delivered to and influence the behavior of other cells. Both cilia and EVs are essential for the normal functioning of brain cells, and their malfunction can lead to several neurological diseases. Cilia and EVs can interact with each other in several ways, and this interplay plays a crucial role in facilitating various biological processes, including cell-to-cell communication, tissue homeostasis, and pathogen defense. Cilia and EV crosstalk in the brain is an emerging area of research. Herein, we summarize the detailed molecular mechanisms of cilia and EV interplay and address the ciliary molecules that are involved in signaling and cellular dysfunction in brain development and diseases. Finally, we discuss the potential clinical use of cilia and EVs in brain diseases.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
| | - Ningyun Hu
- Millard West High School, Omaha, Nebraska
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
2
|
Lin Y, Gan L, Ren L, Ma C, Dai M, Qian K, Ye Q, Lin X. Acupuncture with specific mode electro-stimulation effectively and transiently opens the BBB through Shh signaling pathway. Neuroreport 2023; 34:873-886. [PMID: 37942738 DOI: 10.1097/wnr.0000000000001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
To explore a new method that patients with brain diseases such as stroke sequelae are hindered by blood-brain barrier (BBB) in clinical treatment. Research preliminarily found that acupuncture with specific mode electro-stimulation (EA) to open BBB-assisted drug delivery may be is an effective means to improve the clinical efficacy of brain disease patients. So here we further explore the features and mechanism. Middle cerebral artery occlusion/R recovery rats were employed as the animal model. Laser Doppler monitoring cerebral blood flow decreased to 45 ± 10% of the baseline value as modeling criteria and TTC staining observed infarcted areas of brain tissue. The permeability of FITC-Dextran and EB in the frontal lobe of rats was observed by microscope. After that, Western blot and Immunofluorescence staining for the detection of the shh and Gli1 signal molecule, Claudin-5 Occludin ZO-1 tight junction (TJ) proteins. EA can open the BBB stably and effectively, and has the characteristics of starting to close soon after the end of EA; EA inhibits the Shh-Gli1 signaling pathway, and downregulates Occludin ZO-1 TJ proteins. These results suggest that EA is safe and reversible in opening the BBB, and its mechanism is related to the inhibition of Shh signaling pathway to down-regulate the expression of TJ proteins.
Collapse
Affiliation(s)
- Yubo Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Prajapati A, Mehan S, Khan Z. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders. Biogerontology 2023:10.1007/s10522-023-10034-1. [PMID: 37097427 DOI: 10.1007/s10522-023-10034-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
4
|
Vasilopoulou C, McDaid-McCloskey SL, McCluskey G, Duguez S, Morris AP, Duddy W. Genome-Wide Gene-Set Analysis Identifies Molecular Mechanisms Associated with ALS. Int J Mol Sci 2023; 24:4021. [PMID: 36835433 PMCID: PMC9966913 DOI: 10.3390/ijms24044021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal late-onset motor neuron disease characterized by the loss of the upper and lower motor neurons. Our understanding of the molecular basis of ALS pathology remains elusive, complicating the development of efficient treatment. Gene-set analyses of genome-wide data have offered insight into the biological processes and pathways of complex diseases and can suggest new hypotheses regarding causal mechanisms. Our aim in this study was to identify and explore biological pathways and other gene sets having genomic association to ALS. Two cohorts of genomic data from the dbGaP repository were combined: (a) the largest available ALS individual-level genotype dataset (N = 12,319), and (b) a similarly sized control cohort (N = 13,210). Following comprehensive quality control pipelines, imputation and meta-analysis, we assembled a large European descent ALS-control cohort of 9244 ALS cases and 12,795 healthy controls represented by genetic variants of 19,242 genes. Multi-marker analysis of genomic annotation (MAGMA) gene-set analysis was applied to an extensive collection of 31,454 gene sets from the molecular signatures database (MSigDB). Statistically significant associations were observed for gene sets related to immune response, apoptosis, lipid metabolism, neuron differentiation, muscle cell function, synaptic plasticity and development. We also report novel interactions between gene sets, suggestive of mechanistic overlaps. A manual meta-categorization and enrichment mapping approach is used to explore the overlap of gene membership between significant gene sets, revealing a number of shared mechanisms.
Collapse
Affiliation(s)
- Christina Vasilopoulou
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | | | - Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9PT, UK
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| |
Collapse
|
5
|
Gupta R, Mehan S, Chhabra S, Giri A, Sherawat K. Role of Sonic Hedgehog Signaling Activation in the Prevention of Neurological Abnormalities Associated with Obsessive-Compulsive Disorder. Neurotox Res 2022; 40:1718-1738. [PMID: 36272053 DOI: 10.1007/s12640-022-00586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
The smoothened sonic hedgehog (Smo-Shh) pathway is one mechanism that influences neurogenesis, including brain cell differentiation and development during childhood. Shh signaling dysregulation leads to decreased target gene transcription, which contributes to increased neuronal excitation, apoptosis, and neurodegeneration, eventually leading to neurological deficits. Neuropsychiatric disorders such as OCD and related neurological dysfunctions are characterized by neurotransmitter imbalance, neuroinflammation, oxidative stress, and impaired neurogenesis, disturbing the cortico-striato-thalamo-cortical (CSTC) link neuronal network. Despite the availability of several treatments, such as selective serotonin reuptake inhibitors, some individuals may not benefit much from them. Several trials on the use of antipsychotics in the treatment of OCD have also produced inadequate findings. This evidence-based review focuses on a potential pharmacological approach to alleviating OCD and associated neuronal deficits by preventing neurochemical alterations, in which sonic hedgehog activators are neuroprotective, lowering neuronal damage while increasing neuronal maintenance and survival. As a result, stimulating SMO-Shh via its potential activators may have neuroprotective effects on neurological impairment associated with OCD. This review investigates the link between SMO-Shh signaling and the neurochemical abnormalities associated with the progression of OCD and associated neurological dysfunctions. Role of Smo-Shh signaling in serotonergic neurogenesis and in maintaining their neuronal identity. The Shh ligand activates two main transcriptional factors known as Foxa2 and Nkx2.2, which again activates another transcriptional factor, GATA (GATA2 and GATA3), in post mitotic precursor cells of serotonergic neurons-following increased expression of Pet-1 and Lmx1b after GATA regulates the expression of many serotonergic enzymes such as TPH2, SERT, VMAT, slc6a4, Htr1a, Htr1b (Serotonin receptor enzymes), and MAO that regulate and control the release of serotonin and maintain their neuronal identity after their maturation. Abbreviation: Foxa2: Forkhead box; GATA: Globin transcription factor; Lmx1b: LIM homeobox transcription factor 1 beta; TPH2: Tryptophan hydroxylase 2; Htr1a: Serotonin receptor 1a; Htr1b: Serotonin receptor 1b; SERT: Serotonin transporter; VMAT: Vesicular monoamine transporter; MAO: Monoamine oxidase.
Collapse
Affiliation(s)
- Ria Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
6
|
Gupta R, Mehan S, Sethi P, Prajapati A, Alshammari A, Alharbi M, Al-Mazroua HA, Narula AS. Smo-Shh Agonist Purmorphamine Prevents Neurobehavioral and Neurochemical Defects in 8-OH-DPAT-Induced Experimental Model of Obsessive-Compulsive Disorder. Brain Sci 2022; 12:brainsci12030342. [PMID: 35326298 PMCID: PMC8946713 DOI: 10.3390/brainsci12030342] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Obsessive-compulsive disorder is a mental disorder characterized by repetitive, unwanted thoughts and behavior due to abnormal neuronal corticostriatal-thalamocortical pathway and other neurochemical changes. Purmorphamine is a smoothened-sonic-hedgehog agonist that has a protective effect against many neurological diseases due to its role in maintaining functional connectivity during CNS development and its anti-inflammatory and antioxidant properties. As part of our current research, we investigated the neuroprotective effects of PUR against behavioral and neurochemical changes in 8-hydroxy-2-(di-n-propylamino)-tetralin-induced obsessive-compulsive disorder in rats. Additionally, the effect of PUR was compared with the standard drug for OCD, i.e., fluvoxamine. The intra-dorsal raphe-nucleus injection of 8-OH-DPAT in rats for seven days significantly showed OCD-like repetitive and compulsive behavior along with increased oxidative stress, inflammation, apoptosis, as well as neurotransmitter imbalance. These alterations were dose-dependently attenuated by long-term purmorphamine treatment at 5 mg/kg and 10 mg/kg i.p. In this study, we assessed the level of various neurochemical parameters in different biological samples, including brain homogenate, blood plasma, and CSF, to check the drug’s effect centrally and peripherally. These effects were comparable to the standard oral treatment withfluvoxamine at 10 mg/kg. However, when fluvoxamine was given in combination with purmorphamine, there was a more significant restoration of these alterations than the individualtreatmentswithfluvoxamine and purmorphamine. All the above findings demonstrate that the neuroprotective effect of purmorphamine in OCD can be strong evidence for developing a new therapeutic target for treating and managing OCD.
Collapse
Affiliation(s)
- Ria Gupta
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
- Correspondence:
| | - Pranshul Sethi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
| | - Aradhana Prajapati
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (H.A.A.-M.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (H.A.A.-M.)
| | - Haneen A. Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (H.A.A.-M.)
| | - Acharan S. Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA;
| |
Collapse
|
7
|
Thauvin M, de Sousa RM, Alves M, Volovitch M, Vriz S, Rampon C. An early Shh-H2O2 reciprocal regulatory interaction controls the regenerative program during zebrafish fin regeneration. J Cell Sci 2022; 135:274206. [PMID: 35107164 DOI: 10.1242/jcs.259664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS), originally classified as toxic molecules, have attracted increasing interest given their actions in cell signaling. Hydrogen peroxide (H2O2), the major ROS produced by cells, acts as a second messenger to modify redox-sensitive proteins or lipids. After caudal fin amputation, tight spatiotemporal regulation of ROS is required first for wound healing and later to initiate the regenerative program. However, the mechanisms carrying out this sustained ROS production and their integration with signaling pathways are still poorly understood. We focused on the early dialog between H2O2 and Sonic Hedgehog (Shh) during fin regeneration. We demonstrate that H2O2 controls Shh expression and that Shh in turn regulates the H2O2 level via a canonical pathway. Moreover, the means of this tight reciprocal control change during the successive phases of the regenerative program. Dysregulation of the Hedgehog pathway has been implicated in several developmental syndromes, diabetes and cancer. These data support the existence of an early positive crosstalk between Shh and H2O2 that might be more generally involved in various processes paving the way to improve regenerative processes, particularly in vertebrates.
Collapse
Affiliation(s)
- Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Rodolphe Matias de Sousa
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Marine Alves
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,École Normale Supérieure, PSL Research University, Department of Biology, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| |
Collapse
|
8
|
Ma R, Kutchy NA, Chen L, Meigs DD, Hu G. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiol Dis 2022; 163:105607. [PMID: 34979259 PMCID: PMC9280856 DOI: 10.1016/j.nbd.2021.105607] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders are characterized by the progressive loss of structure and function of the brain as a consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor for brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain disorders. This review summarizes current findings and thoughts on the role of primary cilia and ciliary signaling pathways in aging and age-related brain disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, Grenada
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong 515063, China; Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong 515063, China
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
9
|
Yang C, Qi Y, Sun Z. The Role of Sonic Hedgehog Pathway in the Development of the Central Nervous System and Aging-Related Neurodegenerative Diseases. Front Mol Biosci 2021; 8:711710. [PMID: 34307464 PMCID: PMC8295685 DOI: 10.3389/fmolb.2021.711710] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023] Open
Abstract
The Sonic hedgehog (SHH) pathway affects neurogenesis and neural patterning during the development of the central nervous system. Dysregulation of the SHH pathway in the brain contributes to aging-related neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. At present, the SHH signaling pathway can be divided into the canonical signaling pathway and non-canonical signaling pathway, which directly or indirectly mediates other related pathways involved in the development of neurodegenerative diseases. Hence, an in-depth knowledge of the SHH signaling pathway may open an avenue of possibilities for the treatment of neurodegenerative diseases. Here, we summarize the role and mechanism of the SHH signaling pathway in the development of the central nervous system and aging-related neurodegenerative diseases. In this review, we will also highlight the potential of the SHH pathway as a therapeutic target for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Yang
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Qi
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhitang Sun
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Rahi S, Gupta R, Sharma A, Mehan S. Smo-Shh signaling activator purmorphamine ameliorates neurobehavioral, molecular, and morphological alterations in an intracerebroventricular propionic acid-induced experimental model of autism. Hum Exp Toxicol 2021; 40:1880-1898. [PMID: 33906504 DOI: 10.1177/09603271211013456] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disease characterized by cognitive and sensorimotor impairment. Numerous research findings have consistently shown that alteration of Smo-Shh (smoothened-sonic hedgehog) signaling during the developmental process plays a significant role in ASD and triggers neuronal changes by promoting neuroinflammation and apoptotic markers. Purmorphamine (PUR), a small purine-derived agonist of the Smo-Shh pathway, shows resistance to hippocampal neuronal cell oxidation and decreases neuronal cell death. The goal of this study was to investigate the neuroprotective potential of PUR in brain intoxication induced by intracerebroventricular-propionic acid (ICV-PPA) in rats, with a focus on its effect on Smo-Shh regulation in the brain of rats. In addition, we analyze the impact of PUR on myelin basic protein (MBP) and apoptotic markers such as Caspase-3, Bax (pro-apoptotic), and Bcl-2 (anti-apoptotic) in rat brain homogenates. Chronic ICV-PPA infusion was administered consecutively for 11 days to induce autism in rats. In order to investigate behavioral alterations, rats were tested for spatial learning in the Morris Water Maze (MWM), locomotive alterations using actophotometer, and beam crossing task, while Forced Swimming Test (FST) for depressive behavior. PUR treatment with 5 mg/kg and 10 mg/kg (i.p.) was administered from day 12 to 44. Besides cellular, molecular and neuroinflammatory analyses, neurotransmitter levels and oxidative markers have also been studied in brain homogenates. The results of this study have shown that PUR increases the level of Smo-Shh and restores the neurochemical levels, and potentially prevents morphological changes, including demyelination.
Collapse
Affiliation(s)
- S Rahi
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - R Gupta
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - A Sharma
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| | - S Mehan
- Neuropharmacology Division, Department of Pharmacology, 75126ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
11
|
Rana T, Behl T, Sehgal A, Sachdeva M, Mehta V, Sharma N, Singh S, Bungau S. Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior. Neurochem Res 2021; 46:1589-1602. [PMID: 33786718 DOI: 10.1007/s11064-021-03307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Depression is the most prevalent form of neuropsychiatric disorder affecting all age groups globally. As per the estimation of the World Health Organization (WHO), depression will develop into the foremost reason for disability globally by the year 2030. The primary neurobiological mechanism implicated in depression remains ambiguous; however, dysregulation of molecular and signaling transductions results in depressive disorders. Several theories have been developed to explain the pathogenesis of depression, however, none of them completely explained all aspects of depressive-pathogenesis. In the current review, we aimed to explore the role of the sonic hedgehog (Shh) signaling pathway in the development of the depressive disorder and its potential as the therapeutic target. Shh signaling has a crucial function in neurogenesis and neural tube patterning during the development of the central nervous system (CNS). Shh signaling performs a basic function in embryogenesis and hippocampal neurogenesis. Moreover, antidepressants are also known to enhance neurogenesis in the hippocampus, which further suggests the potential of Shh signaling. Furthermore, there is decreased expression of a glioma-associated oncogene (Gli1) and Smoothened (Smo) in depression. Moreover, antidepressants also regulate brain-derived neurotrophic factor (BDNF) and wingless protein (Wnt) signaling, therefore, Shh may be implicated in the pathogenesis of the depressive disorder. Deregulation of Shh signaling in CNS results in neurological disorders such as depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Distt. Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
12
|
Chatterjee R, Ghosh B, Mandal M, Nawn D, Banerjee S, Pal M, Paul RR, Banerjee S, Chatterjee J. Pathophysiological relationship between hypoxia associated oxidative stress, Epithelial-mesenchymal transition, stemness acquisition and alteration of Shh/ Gli-1 axis during oral sub-mucous fibrosis and oral squamous cell carcinoma. Eur J Cell Biol 2020; 100:151146. [PMID: 33418093 DOI: 10.1016/j.ejcb.2020.151146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Oral sub-mucous fibrosis (OSF) is a pathophysiological state of oral cavity or oropharynx having a high chance of conversion to oral squamous cell carcinoma (OSCC). It involves fibrotic transformation of sub-epithelial matrix along with epithelial abnormalities. The present work aims to unveil the mechanistic domain regarding OSF to OSCC conversion exploring the scenario of hypoxia associated oxidative stress, epithelial-mesenchymal transition (EMT), metastasis and stemness acquisition. The study involves histopathological analysis of the diseased condition along with the exploration of oxidative stress status, assessment of mitochondrial condition, immunohistochemical analysis of HIF-1α, E-cadherin, vimentin, ERK, ALDH-1, CD133, Shh, Gli-1 and survivin expressions in the oral epithelial region together with the quantitative approach towards collagen deposition in the sub-epithelial matrix. Oxidative stress was found to be associated with type-II EMT in case of OSF attributing the development of sub-epithelial fibrosis and type-III EMT in case of OSCC favoring malignancy associated metastasis. Moreover, the acquisition of stemness during OSCC can also be correlated with EMT. Alteration of Shh and Gli-1 expression pattern revealed the mechanistic association of hypoxia with the phenotypic plasticity and disease manifestation in case of OSF as well as OSCC. Shh/ Gli-1 signaling can also be correlated with survivin mediated cytoprotective phenomenon under oxidative stress. Overall, the study established the correlative network of hypoxia associated oxidative stress, EMT and manifestation of oral pre-cancerous and cancerous condition in a holistic approach that may throw rays of hope in the therapeutic domain of the concerned diseases.
Collapse
Affiliation(s)
- Ritam Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Biswajoy Ghosh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Mousumi Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Debaleena Nawn
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Satarupa Banerjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India; School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India
| | - Mousumi Pal
- Guru Nanak Institute of Dental Sciences and Research, Kolkata 700114 West Bengal, India
| | - Ranjan Rashmi Paul
- Guru Nanak Institute of Dental Sciences and Research, Kolkata 700114 West Bengal, India
| | | | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
13
|
Rahi S, Mehan S. Understanding Abnormal SMO-SHH Signaling in Autism Spectrum Disorder: Potential Drug Target and Therapeutic Goals. Cell Mol Neurobiol 2020; 42:931-953. [PMID: 33206287 DOI: 10.1007/s10571-020-01010-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Autism is a multifactorial neurodevelopmental condition; it demonstrates some main characteristics, such as impaired social relationships and increased repetitive behavior. The initiation of autism spectrum disorder is mostly triggered during brain development by the deregulation of signaling pathways. Sonic hedgehog (SHH) signaling is one such mechanism that influences neurogenesis and neural processes during the development of the central nervous system. SMO-SHH signaling is also an important part of a broad variety of neurological processes, including neuronal cell differentiation, proliferation, and survival. Dysregulation of SMO-SHH signaling leads to many physiological changes that lead to neurological disorders such as ASD and contribute to cognitive decline. The aberrant downregulation of SMO-SHH signals contributes to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which increases oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis by suppressing target gene expression. We outlined in this review that SMO-SHH deregulation plays a crucial role in the pathogenesis of autism and addresses the current status of SMO-SHH pathway modulators. Additionally, a greater understanding of the SHH signaling pathway is an effort to improve successful treatment for autism and other neurological disorders.
Collapse
Affiliation(s)
- Saloni Rahi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
14
|
Liu D, Bai X, Ma W, Xin D, Chu X, Yuan H, Qiu J, Ke H, Yin S, Chen W, Wang Z. Purmorphamine Attenuates Neuro-Inflammation and Synaptic Impairments After Hypoxic-Ischemic Injury in Neonatal Mice via Shh Signaling. Front Pharmacol 2020; 11:204. [PMID: 32194421 PMCID: PMC7064623 DOI: 10.3389/fphar.2020.00204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/14/2020] [Indexed: 01/05/2023] Open
Abstract
Purmorphamine (PUR), an agonist of the Smoothened (Smo) receptor, has been shown to function as a neuroprotectant in acute experimental ischemic stroke. Its role in hypoxic-ischemic (HI) brain injury in neonatal mice remains unknown. Here we show that PUR attenuated acute brain injury, with a decrease in Bax/Bcl-2 ratio as well as inhibition of caspase-3 activation. These beneficial effects of PUR were associated with suppressing neuro-inflammation and oxidative stress. PUR exerted long-term protective effects upon tissue loss and improved neurobehavioral outcomes as determined at 14 and 28 days post-HI insult. Moreover, PUR increased synaptophysin (Syn) and postsynaptic density (PSD) protein 95 expression in HI-treated mice and attenuated synaptic loss. PUR upregulated the expression of Shh pathway mediators, while suppression of the Shh signaling pathway with cyclopamine (Cyc) reversed these beneficial effects of PUR on HI insult. Our study suggests a therapeutic potential for short-term PUR administration in HI-induced injury as a result of its capacity to exert multiple protective actions upon acute brain injury, long-term memory deficits, and impaired synapses. Moreover, we provide evidence indicating that one of the mechanisms underlying these beneficial effects of PUR involves activation of the Shh signaling pathway.
Collapse
Affiliation(s)
- Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Shandong University, Jinan, China
| | - Xuemei Bai
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Weiwei Ma
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Shandong University, Jinan, China.,Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hongtao Yuan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jie Qiu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Shandong University, Jinan, China.,Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - HongFei Ke
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Sen Yin
- Qilu Hospital, Shandong University, Jinan, China
| | | | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
15
|
Vicario N, Bernstock JD, Spitale FM, Giallongo C, Giunta MAS, Li Volti G, Gulisano M, Leanza G, Tibullo D, Parenti R, Gulino R. Clobetasol Modulates Adult Neural Stem Cell Growth via Canonical Hedgehog Pathway Activation. Int J Mol Sci 2019; 20:ijms20081991. [PMID: 31018557 PMCID: PMC6514872 DOI: 10.3390/ijms20081991] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/20/2019] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is a key pathway within the central nervous system (CNS), during both development and adulthood, and its activation via the 7-transmembrane protein Smoothened (Smo) may promote neuroprotection and restoration during neurodegenerative disorders. Shh signaling may also be activated by selected glucocorticoids such as clobetasol, fluocinonide and fluticasone, which therefore act as Smo agonists and hold potential utility for regenerative medicine. However, despite its potential role in neurodegenerative diseases, the impact of Smo-modulation induced by these glucocorticoids on adult neural stem cells (NSCs) and the underlying signaling mechanisms are not yet fully elucidated. The aim of the present study was to evaluate the effects of Smo agonists (i.e., purmorphamine) and antagonists (i.e., cyclopamine) as well as of glucocorticoids (i.e., clobetasol, fluocinonide and fluticasone) on NSCs in terms of proliferation and clonal expansion. Purmorphamine treatment significantly increased NSC proliferation and clonal expansion via GLI-Kruppel family member 1 (Gli1) nuclear translocation and such effects were prevented by cyclopamine co-treatment. Clobetasol treatment exhibited an equivalent pharmacological effect. Moreover, cellular thermal shift assay suggested that clobetasol induces the canonical Smo-dependent activation of Shh signaling, as confirmed by Gli1 nuclear translocation and also by cyclopamine co-treatment, which abolished these effects. Finally, fluocinonide and fluticasone as well as control glucocorticoids (i.e., prednisone, corticosterone and dexamethasone) showed no significant effects on NSCs proliferation and clonal expansion. In conclusion, our data suggest that Shh may represent a druggable target system to drive neuroprotection and promote restorative therapies.
Collapse
Affiliation(s)
- Nunzio Vicario
- Lab of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy.
| | - Joshua D Bernstock
- Medical Scientist Training Program, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Federica M Spitale
- Lab of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy.
| | - Cesarina Giallongo
- Division of Hematology, "A.O.U. Policlinico Vittorio Emanuele", University of Catania, 95123 Catania, Italy.
| | - Maria A S Giunta
- Lab of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy.
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Massimo Gulisano
- Lab of Synthetic and Systems Biology, Department of Drug Sciences, University of Catania, 95123 Catania, Italy.
| | - Giampiero Leanza
- Lab of Neurogenesis and Repair, Department of Drug Sciences, University of Catania, 95123 Catania, Italy.
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy.
| | - Rosalba Parenti
- Lab of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy.
| | - Rosario Gulino
- Lab of Neurophysiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
16
|
Macáková K, Afonso R, Saso L, Mladěnka P. The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic Biol Med 2019; 134:429-444. [PMID: 30703480 DOI: 10.1016/j.freeradbiomed.2019.01.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alkaloids have always attracted scientific interest due to either their positive or negative effects on human beings. This review aims to summarize their antioxidant effects by both classical in vitro scavenging assay and at the cellular level. Since most in vitro studies used the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay, the results from those studies are summed up in the first part of the article. In the second part, available data on the effect of alkaloids on NADPH-oxidase, the key enzyme for reactive oxygen species production, at the cellular level, are summarized. More than 130 alkaloids were tested by DPPH assay. However, due to methodological differences, a direct comparison is hardly possible. It can be at least concluded that some of them were either similar to or even more active than standard antioxidants and the number of aromatic hydroxyl groups seems to be the major determinant for the activity. The data on inhibition of NADPH-oxidase activity by alkaloids demonstrated that there is little relationship to the DPPH assay. The mechanism seems to be based on inhibition of synthesis, activation or translocation of NADPH-oxidase subunits. In some alkaloids, activation of the nuclear factor Nrf2 pathway was documented to be the grounds for inhibition of NADPH-oxidase. Interestingly, many alkaloids can behave both as anti-oxidants and pro-oxidants depending on conditions and pro-oxidation might be the reason for activation of Nrf2. Available data on other "antioxidant" transcription factors FOXOs and PPARs are also mentioned.
Collapse
Affiliation(s)
- Kateřina Macáková
- Department of Pharmaceutical Botany, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Rita Afonso
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
17
|
Swindell WR, Bojanowski K, Kindy MS, Chau RMW, Ko D. GM604 regulates developmental neurogenesis pathways and the expression of genes associated with amyotrophic lateral sclerosis. Transl Neurodegener 2018; 7:30. [PMID: 30524706 PMCID: PMC6276193 DOI: 10.1186/s40035-018-0135-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is currently an incurable disease without highly effective pharmacological treatments. The peptide drug GM604 (GM6 or Alirinetide) was developed as a candidate ALS therapy, which has demonstrated safety and good drug-like properties with a favorable pharmacokinetic profile. GM6 is hypothesized to bolster neuron survival through the multi-target regulation of developmental pathways, but mechanisms of action are not fully understood. Methods This study used RNA-seq to evaluate transcriptome responses in SH-SY5Y neuroblastoma cells following GM6 treatment (6, 24 and 48 h). Results We identified 2867 protein-coding genes with expression significantly altered by GM6 (FDR < 0.10). Early (6 h) responses included up-regulation of Notch and hedgehog signaling components, with increased expression of developmental genes mediating neurogenesis and axon growth. Prolonged GM6 treatment (24 and 48 h) altered the expression of genes contributing to cell adhesion and the extracellular matrix. GM6 further down-regulated the expression of genes associated with mitochondria, inflammatory responses, mRNA processing and chromatin organization. GM6-increased genes were located near GC-rich motifs interacting with C2H2 zinc finger transcription factors, whereas GM6-decreased genes were located near AT-rich motifs associated with helix-turn-helix homeodomain factors. Such motifs interacted with a diverse network of transcription factors encoded by GM6-regulated genes (STAT3, HOXD11, HES7, GLI1). We identified 77 ALS-associated genes with expression significantly altered by GM6 treatment (FDR < 0.10), which were known to function in neurogenesis, axon guidance and the intrinsic apoptosis pathway. Conclusions Our findings support the hypothesis that GM6 acts through developmental-stage pathways to influence neuron survival. Gene expression responses were consistent with neurotrophic effects, ECM modulation, and activation of the Notch and hedgehog neurodevelopmental pathways. This multifaceted mechanism of action is unique among existing ALS drug candidates and may be applicable to multiple neurodegenerative diseases. Electronic supplementary material The online version of this article (10.1186/s40035-018-0135-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William R Swindell
- 1Heritage College of Osteopathic Medicine, Ohio University, Athens, OH USA
| | | | - Mark S Kindy
- 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL USA.,4James A. Haley VAMC, Tampa, FL USA
| | | | - Dorothy Ko
- Genervon Biopharmaceuticals LLC, Pasadena, CA USA
| |
Collapse
|
18
|
Chen SD, Yang JL, Hwang WC, Yang DI. Emerging Roles of Sonic Hedgehog in Adult Neurological Diseases: Neurogenesis and Beyond. Int J Mol Sci 2018; 19:ijms19082423. [PMID: 30115884 PMCID: PMC6121355 DOI: 10.3390/ijms19082423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Sonic hedgehog (Shh), a member of the hedgehog (Hh) family, was originally recognized as a morphogen possessing critical characters for neural development during embryogenesis. Recently, however, Shh has emerged as an important modulator in adult neural tissues through different mechanisms such as neurogenesis, anti-oxidation, anti-inflammation, and autophagy. Therefore, Shh may potentially have clinical application in neurodegenerative diseases and brain injuries. In this article, we present some examples, including ours, to show different aspects of Shh signaling and how Shh agonists or mimetics are used to alter the neuronal fates in various disease models, both in vitro and in vivo. Other potential mechanisms that are discussed include alteration of mitochondrial function and anti-aging effect; both are critical for age-related neurodegenerative diseases. A thorough understanding of the protective mechanisms elicited by Shh may provide a rationale to design innovative therapeutic regimens for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
| | - Wei-Chao Hwang
- Department of Neurology, Taipei City Hospital, Taipei 11556, Taiwan.
| | - Ding-I Yang
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
19
|
Abstract
The developmental morphogen Sonic hedgehog (Shh) may continue to play a sustaining role in adult motor neurons, of potential relevance to motor neuron diseases including amyotrophic lateral sclerosis. The Shh signaling pathway is incompletely understood and interactions with other signaling pathways are possible. We focus here on Notch, and first show that there is an almost linear reduction in light output from a Gli reporter in Shh Light II cells in the presence of increasing concentrations of the Notch inhibitor DAPT (r2=0.982). Second, in the spinal cord of mutant superoxide dismutase mice, but not control mice, a key marker of Notch signaling changes with age. Before the onset of clinical signs, the Notch intracellular domain is expressed predominantly in motor neurons, but by 125 days of age, Notch intracellular domain expression is markedly reduced in motor neurons and increased in neighboring astroglia. Third, there is a parallel reduction in Gli protein expression in mutant superoxide dismutase mouse spinal motor neurons, consistent with the observed reduction in Notch signaling and also a redistribution of Gli away from the nucleus. Thus, there is a reduction in motor neuronal Notch signaling and associated changes in Shh signaling, occurring coincidentally with disease expression, that may contribute toward the dysfunction and death of motor neurons in amyotrophic lateral sclerosis.
Collapse
|
20
|
Cerebrospinal fluid from patients with amyotrophic lateral sclerosis inhibits sonic hedgehog function. PLoS One 2017; 12:e0171668. [PMID: 28170441 PMCID: PMC5295673 DOI: 10.1371/journal.pone.0171668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022] Open
Abstract
Sonic hedgehog (Shh) is a morphogen essential to the developing nervous system that continues to play an important role in adult life by contributing to cell proliferation and differentiation, maintaining blood-brain barrier integrity, and being cytoprotective against oxidative and excitotoxic stress, all features of importance in amyotrophic lateral sclerosis (ALS). ALS is a fatal disease characterized by selective loss of motor neurons due to poorly understood mechanisms. Evidence indicates that Shh might play an important role in ALS, and that Shh signaling might be also adversely affected in ALS. Since little is known about the functional status of Shh pathway in patients with ALS, we therefore sought to determine whether Shh protein levels or biological activity in cerebrospinal fluid (CSF) was less in ALS patients than controls, and whether these measures could be correlated with ALS disease severity and disease progression, and with other CSF analytes of biological interest in ALS. Comparing Shh levels in the CSF of normal controls (n = 13), neurological controls (n = 12), and ALS patients (n = 9) measured by ELISA, we found that CSF Shh levels were not different between controls and ALS patients. However, when assessing Shh biological activity in CSF using in vitro cell-based assays, which measure Shh activity as inducible Gli-driven luminescence, we found that in the presence of exogenous recombinant Shh or the Shh agonist, purmorphamine, the inducible activity of CSF was significantly augmented in the control groups as expected, but not in the ALS group, suggesting the presence of an inhibitor of Shh signaling in ALS CSF samples. Since purmorphamine acts on Smoothened, downstream of Shh and its receptor Patched, the inhibitory action is downstream of Smoothened. Our results also demonstrated that while the inhibitory effect of ALS CSF on Shh signaling did not correlate significantly with ALS disease characteristics, the levels of IL-1β and TNF-α did. In addition to being significantly elevated in ALS CSF, these cytokines negatively correlated with the disease duration, whereas GDF11 was a favorable predictor of ALS clinical score. We also found that TNF-α significantly inhibited Shh biological activity in vitro, potentially suggesting a novel role of TNF-α in ALS pathogenesis. Collectively, this is the first report demonstrating that Shh signaling in CSF of ALS patients is compromised.
Collapse
|
21
|
Hu Q, Li T, Wang L, Xie Y, Liu S, Bai X, Zhang T, Bo S, Xin D, Xue H, Li G, Wang Z. Neuroprotective Effects of a Smoothened Receptor Agonist against Early Brain Injury after Experimental Subarachnoid Hemorrhage in Rats. Front Cell Neurosci 2017; 10:306. [PMID: 28149272 PMCID: PMC5241312 DOI: 10.3389/fncel.2016.00306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
The sonic hedgehog (Shh) signaling pathway plays a fundamental role in the central nervous system (CNS) development, but its effects on neural cell survival and brain repair after subarachnoid hemorrhage (SAH) has not been well-investigated. The present study was undertaken to evaluate the influence of an agonist of the Shh co-receptor Smoothened (Smo), purmorphamine (PUR), on early brain injury (EBI) as well as the underlying mechanisms after SAH. PUR was administered via an intraperitoneal injection with a dose of 0.5, 1, and 5 mg/kg at 2, 6, 24, and 46 h after SAH in rat model. The results showed that PUR treatment significantly ameliorated brain edema, improved neurobehavioral function, and attenuated neuronal cell death in the prefrontal cortex (PFC), associated with a decrease in Bax/Bcl-2 ratio and suppression of caspase-3 activation at 48 h after SAH. PUR also promoted phospho-ERK levels. Additionally, PUR treatment markedly decreased MDA concentration accompanied with the elevation in the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 in PFC. Notably, PUR treatment significantly reversed the changes of Shh pathway mediators containing Patched, Gli1, and Shh by SAH insult, and the neuroprotection of PUR on SAH was blocked by Smo antagonist cyclopamine. These results indicated that PUR exerts neuroprotection against SAH-evoked injury in rats, mediated in part by anti-apoptotic and anti-oxidant mechanism, up-regulating phospho-ERK levels, mediating Shh signaling molecules in the PFC.
Collapse
Affiliation(s)
- Quan Hu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong UniversityJinan, China; Department of Physiology, Shandong University School of MedicineJinan, China; Department of Neurosurgery, Taian Central HospitalTaian, China
| | - Tong Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong UniversityJinan, China; Department of Physiology, Shandong University School of MedicineJinan, China
| | - Lingxiao Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong UniversityJinan, China; Department of Physiology, Shandong University School of MedicineJinan, China
| | - Yunkai Xie
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - Song Liu
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - Xuemei Bai
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - Tiantian Zhang
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - Shishi Bo
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - Danqing Xin
- Department of Physiology, Shandong University School of Medicine Jinan, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University Jinan, China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Medicine Jinan, China
| |
Collapse
|
22
|
Patel SS, Tomar S, Sharma D, Mahindroo N, Udayabanu M. Targeting sonic hedgehog signaling in neurological disorders. Neurosci Biobehav Rev 2017; 74:76-97. [PMID: 28088536 DOI: 10.1016/j.neubiorev.2017.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India
| | - Sunil Tomar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Diksha Sharma
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India.
| |
Collapse
|
23
|
Yu P, Wang L, Tang F, Zeng L, Zhou L, Song X, Jia W, Chen J, Yang Q. Resveratrol Pretreatment Decreases Ischemic Injury and Improves Neurological Function Via Sonic Hedgehog Signaling After Stroke in Rats. Mol Neurobiol 2016; 54:212-226. [PMID: 26738852 DOI: 10.1007/s12035-015-9639-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022]
Abstract
Resveratrol has neuroprotective effects for ischemic cerebral stroke. However, its neuroprotective mechanism for stroke is less well understood. Beneficial actions of the activated Sonic hedgehog (Shh) signaling pathway in stroke, such as improving neurological function, promoting neurogenesis, anti-oxidative, anti-apoptotic, and pro-angiogenic effects, have been noted, but relatively little is known about the role of Shh signaling in resveratrol-reduced cerebral ischemic injury after stroke. The present study tests whether the Shh pathway mediates resveratrol to decrease cerebral ischemic injury and improve neurological function after stroke. We observed that resveratrol pretreatment significantly improved neurological function, decreased infarct volume, enhanced vitality, and reduced apoptosis of neurons in vivo and vitro after stroke. Meanwhile, expression levels of Shh, Ptc-1, Smo, and Gli-1 mRNAs were significantly upregulated and Gli-1 was relocated to the nucleus. Intriguingly, in vivo and in vitro inhibition of the Shh signaling pathway with cyclopamine, a Smo inhibitor, completely reversed the above effects of resveratrol. These results suggest that decreased cerebral ischemic injury and improved neurological function by resveratrol may be mediated by the Shh signaling pathway.
Collapse
Affiliation(s)
- Pingping Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China
| | - Li Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China
| | - Fanren Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China
| | - Li Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China
| | - Luling Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China
| | - Xiaosong Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China
| | - Wei Jia
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China
| | - Jixiang Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
24
|
Neuroplasticity and Repair in Rodent Neurotoxic Models of Spinal Motoneuron Disease. Neural Plast 2016; 2016:2769735. [PMID: 26862439 PMCID: PMC4735933 DOI: 10.1155/2016/2769735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/12/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Retrogradely transported toxins are widely used to set up protocols for selective lesioning of the nervous system. These methods could be collectively named "molecular neurosurgery" because they are able to destroy specific types of neurons by using targeted neurotoxins. Lectins such as ricin, volkensin, or modeccin and neuropeptide- or antibody-conjugated saporin represent the most effective toxins used for neuronal lesioning. Some of these specific neurotoxins could be used to induce selective depletion of spinal motoneurons. In this review, we extensively describe two rodent models of motoneuron degeneration induced by volkensin or cholera toxin-B saporin. In particular, we focus on the possible experimental use of these models to mimic neurodegenerative diseases, to dissect the molecular mechanisms of neuroplastic changes underlying the spontaneous functional recovery after motoneuron death, and finally to test different strategies of neural repair. The potential clinical applications of these approaches are also discussed.
Collapse
|
25
|
Alves CJ, Maximino JR, Chadi G. Dysregulated expression of death, stress and mitochondrion related genes in the sciatic nerve of presymptomatic SOD1(G93A) mouse model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:332. [PMID: 26339226 PMCID: PMC4555015 DOI: 10.3389/fncel.2015.00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
Schwann cells are the main source of paracrine support to motor neurons. Oxidative stress and mitochondrial dysfunction have been correlated to motor neuron death in Amyotrophic Lateral Sclerosis (ALS). Despite the involvement of Schwann cells in early neuromuscular disruption in ALS, detailed molecular events of a dying-back triggering are unknown. Sciatic nerves of presymptomatic (60-day-old) SOD1(G93A) mice were submitted to a high-density oligonucleotide microarray analysis. DAVID demonstrated the deregulated genes related to death, stress and mitochondrion, which allowed the identification of Cell cycle, ErbB signaling, Tryptophan metabolism and Rig-I-like receptor signaling as the most representative KEGG pathways. The protein-protein interaction networks based upon deregulated genes have identified the top hubs (TRAF2, H2AFX, E2F1, FOXO3, MSH2, NGFR, TGFBR1) and bottlenecks (TRAF2, E2F1, CDKN1B, TWIST1, FOXO3). Schwann cells were enriched from the sciatic nerve of presymptomatic mice using flow cytometry cell sorting. qPCR showed the up regulated (Ngfr, Cdnkn1b, E2f1, Traf2 and Erbb3, H2afx, Cdkn1a, Hspa1, Prdx, Mapk10) and down-regulated (Foxo3, Mtor) genes in the enriched Schwann cells. In conclusion, molecular analyses in the presymptomatic sciatic nerve demonstrated the involvement of death, oxidative stress, and mitochondrial pathways in the Schwann cell non-autonomous mechanisms in the early stages of ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| |
Collapse
|
26
|
Ultrastructural changes in the progress of natural Scrapie regardless fixation protocol. Histochem Cell Biol 2015; 144:77-85. [PMID: 25724812 DOI: 10.1007/s00418-015-1314-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
Because few studies regarding ultrastructural pathological changes associated with natural prion diseases have been performed, the present study primarily intended to determine consistent lesions at the subcellular level and to demonstrate whether these changes are evident regardless of the fixation protocol. Thus far, no assessment method has been developed for classifying the possible variations according to the disease stage, although such an assessment would contribute to clarifying the pathogenesis of this neurodegenerative disease. Therefore, animals at different disease stages were included here. This study presents the first description of lesions associated with natural Scrapie in the cerebellum. Vacuolation, which preferentially occurs around Purkinje cells and which displays a close relation with glial cells, is one of the most novel observations provided in this study. The disruption of hypolemmal cisterns in this neuronal type and the presence of a primary cilium in the granular layer both represent the first findings concerning prion diseases. The possibility of including samples regardless of their fixation protocol is confirmed in this work. Therefore, a high proportion of tissue bank samples that are currently being wasted can be included in ultrastructural studies, which constitute a valuable source for information regarding physiological and pathological samples.
Collapse
|
27
|
Aronica E, Baas F, Iyer A, ten Asbroek AL, Morello G, Cavallaro S. Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex. Neurobiol Dis 2015; 74:359-76. [DOI: 10.1016/j.nbd.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/12/2014] [Accepted: 12/02/2014] [Indexed: 12/15/2022] Open
|
28
|
A Smoothened receptor agonist is neuroprotective and promotes regeneration after ischemic brain injury. Cell Death Dis 2014; 5:e1481. [PMID: 25341035 PMCID: PMC4649529 DOI: 10.1038/cddis.2014.446] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 12/26/2022]
Abstract
Ischemic stroke occurs as a result of blood supply interruption to the brain causing tissue degeneration, patient disabilities or death. Currently, treatment of ischemic stroke is limited to thrombolytic therapy with a narrow time window of administration. The sonic hedgehog (Shh) signaling pathway has a fundamental role in the central nervous system development, but its impact on neural cell survival and tissue regeneration/repair after ischemic stroke has not been well investigated. Here we report the neuroprotective properties of a small-molecule agonist of the Shh co-receptor Smoothened, purmorphamine (PUR), in the middle cerebral artery occlusion model of ischemic stroke. We found that intravenous administration of PUR at 6 h after injury was neuroprotective and restored neurological deficit after stroke. PUR promoted a transient upregulation of tissue-type plasminogen activator in injured neurons, which was associated with a reduction of apoptotic cell death in the ischemic cortex. We also observed a decrease in blood–brain barrier permeability after PUR treatment. At 14 d postinjury, attenuation of inflammation and reactive astrogliosis was found in PUR-treated animals. PUR increased the number of newly generated neurons in the peri-infarct and infarct area and promoted neovascularization in the ischemic zone. Notably, PUR treatment did not significantly alter the ischemia-induced level of Gli1, a Shh target gene of tumorigenic potential. Thus our study reports a novel pharmacological approach for postischemic treatment using a small-molecule Shh agonist, providing new insights into hedgehog signaling-mediated mechanisms of neuroprotection and regeneration after stroke.
Collapse
|
29
|
Ferent J, Traiffort E. Hedgehog: Multiple Paths for Multiple Roles in Shaping the Brain and Spinal Cord. Neuroscientist 2014; 21:356-71. [PMID: 24743306 DOI: 10.1177/1073858414531457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the discovery of the segment polarity gene Hedgehog in Drosophila three decades ago, our knowledge of Hedgehog signaling pathway has considerably improved and paved the way to a wide field of investigations in the developing and adult central nervous system. Its peculiar transduction mechanism together with its implication in tissue patterning, neural stem cell biology, and neural tissue homeostasis make Hedgehog pathway of interest in a high number of normal or pathological contexts. Consistent with its role during brain development, misregulation of Hedgehog signaling is associated with congenital diseases and tumorigenic processes while its recruitment in damaged neural tissue may be part of the repairing process. This review focuses on the most recent data regarding the Hedgehog pathway in the developing and adult central nervous system and also its relevance as a therapeutic target in brain and spinal cord diseases.
Collapse
Affiliation(s)
- Julien Ferent
- IRCM, Molecular Biology of Neural Development, Montreal, Quebec, Canada
| | - Elisabeth Traiffort
- INSERM-Université Paris Sud, Neuroprotection and Neuroregeneration: Small Neuroactive Molecules UMR 788, Le Kremlin-Bicêtre, France
| |
Collapse
|
30
|
Hadden MK. Hedgehog pathway agonism: therapeutic potential and small-molecule development. ChemMedChem 2013; 9:27-37. [PMID: 24203435 DOI: 10.1002/cmdc.201300358] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Indexed: 11/10/2022]
Abstract
The Hedgehog (Hh) pathway is a developmental signaling pathway that plays multiple roles during embryonic development and in adult tissues. Constitutive Hh signaling has been linked to the development and progression of several forms of cancer, and the application of small-molecule pathway inhibitors as anticancer chemotherapeutics is well studied and clearly defined. Activation of the Hh pathway as a therapeutic strategy for a variety of degenerative or ischemic disorders has also been proposed; however, the development of small-molecule Hh agonists has received less attention. The goal of this review is to highlight the recent evidence supporting the therapeutic potential of Hh pathway activators and to provide a comprehensive overview of small-molecule pathway agonists.
Collapse
Affiliation(s)
- M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, CT 06269 (USA).
| |
Collapse
|
31
|
Ma X, Turnbull P, Peterson R, Turnbull J. Trophic and proliferative effects of Shh on motor neurons in embryonic spinal cord culture from wildtype and G93A SOD1 mice. BMC Neurosci 2013; 14:119. [PMID: 24119209 PMCID: PMC3852546 DOI: 10.1186/1471-2202-14-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 09/18/2013] [Indexed: 12/01/2022] Open
Abstract
Background The developmental morphogen sonic hedgehog (Shh) may continue to play a trophic role in the support of terminally-differentiated motor neurons, of potential relevance to motor neuron disease. In addition, it may support the proliferation and differentiation of endogenous stem cells along motor neuronal lineages. As such, we have examined the trophic and proliferative effects of Shh supplementation or Shh antagonism in embryonic spinal cord cell cultures derived from wildtype or G93A SOD1 mice, a mouse model of amyotrophic lateral sclerosis. Results Shh supported survival, and stimulated growth of motor neurons, neurite outgrowth, and neurosphere formation in primary culture derived from both G93A SOD1 and WT mice. Shh increased the percentage of ciliated motor neurons, especially in G93A SOD1 culture. Shh-treated cultures showed increased neuronal proliferation compared to controls and especially cyclopamine treated cultures, from G93A SOD1 and WT mice. Moreover, Shh enhanced cell survival and differentiation of motor neuron precursors in WT culture. Conclusions Shh is neurotrophic to motor neurons and has mitogenic effects in WT and mSOD1 G93A culture in vitro.
Collapse
Affiliation(s)
- Xiaoxing Ma
- Department of Medicine, McMaster University, 1200 Main St West, Hamilton, ON L8N 3Z5, Canada.
| | | | | | | |
Collapse
|
32
|
Carney TJ, Ingham PW. Drugging Hedgehog: signaling the pathway to translation. BMC Biol 2013; 11:37. [PMID: 23587183 PMCID: PMC3626896 DOI: 10.1186/1741-7007-11-37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/11/2013] [Indexed: 11/18/2022] Open
Abstract
First discovered in Drosophila, the Hedgehog signaling pathway controls a wide range of developmental processes and is implicated in a variety of cancers. The success of a screen for chemical modulators of this pathway, published in 2002, opened a new chapter in the quest to translate the results of basic developmental biology research into therapeutic applications. Small molecule pathway agonists are now used to program stem cells, whilst antagonists are proving effective as anti-cancer therapies.
Collapse
Affiliation(s)
- Tom J Carney
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | | |
Collapse
|
33
|
Huang SS, Cheng H, Tang CM, Nien MW, Huang YS, Lee IH, Yin JH, Kuo TBJ, Yang CCH, Tsai SK, Yang DI. Anti-oxidative, anti-apoptotic, and pro-angiogenic effects mediate functional improvement by sonic hedgehog against focal cerebral ischemia in rats. Exp Neurol 2013; 247:680-8. [PMID: 23499832 DOI: 10.1016/j.expneurol.2013.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/22/2013] [Accepted: 03/04/2013] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog (SHH) is a morphogen important for neural development during embryogenesis. Recently, beneficial actions of SHH in ischemic injury have been noted. To test whether epidural application of the biolgically active N-terminal fragment of SHH (SHH-N) may reduce the extent of ischemic brain injury, male Long-Evans rats were exposed to a 60-min episode of middle cerebral artery occlusion (MCAO) with topical application of SHH-N and/or its specific inhibitor, cyclopamine, in fibrin glue over the peri-infarct cortex. We found that epidural application of SHH-N substaintially reduced infarct volumes after 7 days of reperfusion, which was reversed by cyclopamine; SHH-N also improved behavioral outcomes as assessed by global neurological functions, rotarod test, and grasping power test. Furthermore, SHH-N attenuated the extents of protein oxidation, lipid peroxidation, and apoptosis induced by focal ischemia/reperfusion. Immunohistochemical staining coupled with bromodeoxyuridine (BrdU) incorporation revealed that SHH-N enhanced post-ischemic angiogenesis, stimulated the proliferation of nestin-positive (nestin(+)) neural progenitor cells (NPCs), and suppressed astrocytosis. Our results thus revealed multifaceted protective mechanisms of SHH-N against focal cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, College of Medicine, Chung Shan Medical University, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|