1
|
Simino LAP, Baqueiro MN, Panzarin C, Lopes PKF, Góis MM, Simabuco FM, Ignácio-Souza LM, Milanski M, Ross MG, Desai M, Torsoni AS, Torsoni MA. Hypothalamic α7 nicotinic acetylcholine receptor (α7nAChR) is downregulated by TNFα-induced Let-7 overexpression driven by fatty acids. FASEB J 2023; 37:e23120. [PMID: 37527279 DOI: 10.1096/fj.202300439rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
The α7nAChR is crucial to the anti-inflammatory reflex, and to the expression of neuropeptides that control food intake, but its expression can be decreased by environmental factors. We aimed to investigate whether microRNA modulation could be an underlying mechanism in the α7nAchR downregulation in mouse hypothalamus following a short-term exposure to an obesogenic diet. Bioinformatic analysis revealed Let-7 microRNAs as candidates to regulate Chrna7, which was confirmed by the luciferase assay. Mice exposed to an obesogenic diet for 3 days had increased Let-7a and decreased α7nAChR levels, accompanied by hypothalamic fatty acids and TNFα content. Hypothalamic neuronal cells exposed to fatty acids presented higher Let-7a and TNFα levels and lower Chrna7 expression, but when the cells were pre-treated with TLR4 inhibitor, Let-7a, TNFα, and Chrna7 were rescued to normal levels. Thus, the fatty acids overload trigger TNFα-induced Let-7 overexpression in hypothalamic neuronal cells, which negatively regulates α7nAChR, an event that can be related to hyperphagia and obesity predisposition in mice.
Collapse
Affiliation(s)
- Laís A P Simino
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mayara N Baqueiro
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carolina Panzarin
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Priscilla K F Lopes
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana M Góis
- Multidisciplinary Laboratory of Food and Health (Labmas), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernando M Simabuco
- Multidisciplinary Laboratory of Food and Health (Labmas), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Campinas, Brazil
| | - Letícia M Ignácio-Souza
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Michael G Ross
- The Lundquist Institute, David Geffen School of Medicine at Harbor - UCLA Medical Center, UCLA, Los Angeles, California, USA
| | - Mina Desai
- The Lundquist Institute, David Geffen School of Medicine at Harbor - UCLA Medical Center, UCLA, Los Angeles, California, USA
| | - Adriana S Torsoni
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcio A Torsoni
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
2
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
3
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
4
|
Omega-3 Supplementation Prevents Short-Term High-Fat Diet Effects on the α7 Nicotinic Cholinergic Receptor Expression and Inflammatory Response. Mediators Inflamm 2021; 2021:5526940. [PMID: 34421366 PMCID: PMC8371655 DOI: 10.1155/2021/5526940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
The study is aimed at investigating if PUFA supplementation could prevent the effects of a short-term HFD on α7nAChR expression and on the severity of sepsis. Swiss mice were used for the in vivo experiments. For the in vitro experiments, we used a microglia cell line (BV-2) and a hepatoma cell line (Hepa-1c1c7) derived from mice. The animals were either fed standard chow, fed a short-term HFD (60%), or given supplementation with omega-3 fatty acid (2 g/kg or 4 g/kg bw) for 17 days, followed by a short-term HFD. Endotoxemia was induced with an intraperitoneal (i.p.) lipopolysaccharide injection (LPS, 5 or 12 mg/kg), and sepsis was induced by subjecting the animals to cecal ligation and puncture (CLP). BV-2 and Hepa-1c1c7 cells were treated with LPS (100 and 500 ng/mL, respectively) for 3 hours. RT-PCR or Western blotting was used to evaluate α7nAChR expression, inflammatory markers, DNMT1, and overall ubiquitination. LPS and HFD reduced the expression of α7nAChR and increased the expression of inflammatory markers. Omega-3 partially prevented the damage caused by the HFD to the expression of α7nAChR in the bone marrow and hypothalamus, decreased the inflammatory markers, and reduced susceptibility to sepsis-induced death. Exposing the BV-2 cells to LPS increased the protein content of DNMT1 and the overall ubiquitination and reduced the expression of α7nAChR. The inflammation induced by LPS in the BV-2 cell decreased α7nAChR expression and concomitantly increased DNMT1 expression and the ubiquitinated protein levels, indicating the participation of pre- and posttranscriptional mechanisms.
Collapse
|
5
|
Chen T, Cai C, Wang L, Li S, Chen L. Farnesyl Transferase Inhibitor Lonafarnib Enhances α7nAChR Expression Through Inhibiting DNA Methylation of CHRNA7 and Increases α7nAChR Membrane Trafficking. Front Pharmacol 2021; 11:589780. [PMID: 33447242 PMCID: PMC7801264 DOI: 10.3389/fphar.2020.589780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022] Open
Abstract
Inhibition of Ras farnesylation in acute has been found to upregulate the α7 nicotinic acetylcholine receptor (α7nAChR) activity. This study was carried out to investigate the effect of chronic administration for 7 days of farnesyl transferase inhibitor lonafarnib (50 mg/kg, intraperitoneally injected) to male mice on the expression and activity of α7nAChR in hippocampal CA1 pyramidal cells. Herein, we show that lonafarnib dose dependently enhances the amplitude of ACh-evoked inward currents (IACh), owning to the increased α7nAChR expression and membrane trafficking. Lonafarnib inhibited phosphorylation of c-Jun and JNK, which was related to DNA methylation. In addition, reduced DNA methyltransferase 1 (DNMT1) expression was observed in lonafarnib-treated mice, which was reversed by JNK activator. Lonafarnib-upregulated expression of α7nAChR was mimicked by DNMT inhibitor, and repressed by JNK activator. However, only inhibited DNA methylation did not affect IACh, and the JNK activator partially decreased the lonafarnib-upregulated IACh. On the other hand, lonafarnib also increased the membrane expression of α7nAChR, which was partially inhibited by JNK activator or CaMKII inhibitor, without changes in the α7nAChR phosphorylation. CaMKII inhibitor had no effect on the expression of α7nAChR. Lonafarnib-enhanced spatial memory of mice was also partially blocked by JNK activator or CaMKII inhibitor. These results suggest that Ras inhibition increases α7nAChR expression through depressed DNA methylation of CHRNA7 via Ras-c-Jun-JNK pathway, increases the membrane expression of α7nAChR resulting in part from the enhanced CaMKII pathway and total expression of this receptor, and consequently enhances the spatial memory.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Chengyun Cai
- School of Life Science, Nantong University, Nantong, China
| | - Lifeng Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Shixin Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Wu YJ, Wang L, Ji CF, Gu SF, Yin Q, Zuo J. The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells. Inflammation 2021; 44:821-834. [PMID: 33405021 DOI: 10.1007/s10753-020-01396-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is widely distributed in the nervous and non-cholinergic immune systems. It is necessary for the cholinergic transmitter to participate in the regulation of inflammatory response and is the key element of cholinergic anti-inflammatory pathway (CAP). Because of the profound impact of CAP on the immune system, α7nAChR is considered as a potential therapeutic target for the treatment of inflammatory diseases. Available evidences confirmed that manipulation of CAP by activating α7nAChR with either endogenous acetylcholine (ACh) or cholinergic agonists can substantially alleviate inflammatory responses both in vivo and in vitro. However, the mechanism through which CAP curbs the excessive pro-inflammatory responses and maintains immune homeostasis is not fully understood. Obtained clues suggest that the crosstalk between CAP and classical inflammatory pathways is the key to elucidate the anti-inflammatory mechanism, and the impacts of CAP activation in α7nAChR-expressing immune cells are the foundation of the immunoregulatory property. In this article, we review and update the knowledge concerning the progresses of α7nAChR-based CAP, including α7nAChR properties, signal transductions, interactions with classic immune pathways, and immunoregulatory functions in different immune cells. Certain critical issues to be addressed are also highlighted. By providing a panoramic view of α7nAChR, the summarized evidences will pave the way for the development of novel anti-inflammatory reagents and strategy and inspire further researches.
Collapse
Affiliation(s)
- Yi-Jin Wu
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
| | - Li Wang
- Department of Pharmacy, Wuhu Medicine and Health School, Wuhu, 241000, China
| | - Chao-Fan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Shao-Fei Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Qin Yin
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
- Research Center of Integrated Traditional and Western Medicine, Wannan Medical College, 241000, Wuhu, China.
| |
Collapse
|
7
|
Hood VL, Berger R, Freedman R, Law AJ. Transcription of PIK3CD in human brain and schizophrenia: regulation by proinflammatory cytokines. Hum Mol Genet 2020; 28:3188-3198. [PMID: 31211828 DOI: 10.1093/hmg/ddz144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022] Open
Abstract
PIK3CD encodes the phosphoinositide 3-kinase (PI3K) catalytic subunit, p110δ, a lipid kinase linked to neurodevelopmental disorders, including schizophrenia (SZ). PIK3CD is regulated at the transcript level through alternate use of 5' untranslated exons (UTRs), promoters, and proinflammatory cytokines. Increases in global PIK3CD expression and downregulation by neuroleptics are observed in SZ, and preclinical efficacy of a p110δ-selective inhibitor is seen in rodent models of risk. Here, we cloned PIK3CD alternative transcripts in human brain and evaluated temporal- and tissue-specific expression. We quantified PIK3CD transcripts in B-lymphoblastoid cells from patients with SZ and examined 5' UTR transcriptional regulation by tumor necrosis factor α (TNFα) and interleukin-1β (IL1β) in patient-derived fibroblasts. We report that PIK3CD transcripts are differentially expressed in human brain in a developmental-specific manner. Transcripts encoding 5' UTRs -2A and alternative exon -1 (Alt1), P37 and AS1 and AS2 were increased in SZ. Alt1, P37, and AS2 were also preferentially expressed in fetal brain, and all transcripts were regulated by TNFα and IL1β. Our findings provide novel insight into the complexity of PIK3CD regulation in human brain, implicate PIK3CD in human neurodevelopment, and identify isoform-specific disruption in SZ.
Collapse
Affiliation(s)
| | | | | | - Amanda J Law
- Department of Psychiatry.,Department of Medicine.,Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
8
|
Wang L, Hand JM, Fu L, Smith GW, Yao J. DNA methylation and miRNA-1296 act in concert to mediate spatiotemporal expression of KPNA7 during bovine oocyte and early embryonic development. BMC DEVELOPMENTAL BIOLOGY 2019; 19:23. [PMID: 31787077 PMCID: PMC6886206 DOI: 10.1186/s12861-019-0204-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/27/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Epigenetic regulation of oocyte-specific maternal factors is essential for oocyte and early embryonic development. KPNA7 is an oocyte-specific maternal factor, which controls transportation of nuclear proteins important for early embryonic development. To elucidate the epigenetic mechanisms involved in the controlled expression of KPNA7, both DNA methylation associated transcriptional silencing and microRNA (miRNA)-mediated mRNA degradation of KPNA7 were examined. RESULTS Comparison of DNA methylation profiles at the proximal promoter of KPNA7 gene between oocyte and 6 different somatic tissues identified 3 oocyte-specific differentially methylated CpG sites. Expression of KPNA7 mRNA was reintroduced in bovine kidney-derived CCL2 cells after treatment with the methylation inhibitor, 5-aza-2'-deoxycytidine (5-Aza-CdR). Analysis of the promoter region of KPNA7 gene in CCL2 cells treated with 5-Aza-CdR showed a lighter methylation rate in all the CpG sites. Bioinformatic analysis predicted 4 miRNA-1296 binding sites in the coding region of KPNA7 mRNA. Ectopic co-expression of miRNA-1296 and KPNA7 in HEK293 cells led to reduced expression of KPNA7 protein. Quantitative real time PCR (RT-qPCR) analysis revealed that miRNA-1296 is expressed in oocytes and early stage embryos, and the expression reaches a peak level in 8-cell stage embryos, coincident with the time of embryonic genome activation and the start of declining of KPNA7 expression. CONCLUSIONS These results suggest that DNA methylation may account for oocyte-specific expression of KPNA7, and miRNA-1296 targeting the coding region of KPNA7 is a potential mechanism for KPNA7 transcript degradation during the maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Lei Wang
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Jacqelyn M Hand
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Liyuan Fu
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Departments of Animal Science and Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianbo Yao
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
9
|
Morley BJ, Felix RA. A time to listen: perinatal smoking affects the development of temporal sound processing. J Physiol 2017; 595:3241-3242. [PMID: 28240351 DOI: 10.1113/jp274097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Richard A Felix
- Washington State University Vancouver, Vancouver, WA, 98686, USA
| |
Collapse
|
10
|
Sinkus ML, Graw S, Freedman R, Ross RG, Lester HA, Leonard S. The human CHRNA7 and CHRFAM7A genes: A review of the genetics, regulation, and function. Neuropharmacology 2015; 96:274-88. [PMID: 25701707 PMCID: PMC4486515 DOI: 10.1016/j.neuropharm.2015.02.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 01/16/2023]
Abstract
The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is ubiquitously expressed in both the central nervous system and in the periphery. CHRNA7 is genetically linked to multiple disorders with cognitive deficits, including schizophrenia, bipolar disorder, ADHD, epilepsy, Alzheimer's disease, and Rett syndrome. The regulation of CHRNA7 is complex; more than a dozen mechanisms are known, one of which is a partial duplication of the parent gene. Exons 5-10 of CHRNA7 on chromosome 15 were duplicated and inserted 1.6 Mb upstream of CHRNA7, interrupting an earlier partial duplication of two other genes. The chimeric CHRFAM7A gene product, dupα7, assembles with α7 subunits, resulting in a dominant negative regulation of function. The duplication is human specific, occurring neither in primates nor in rodents. The duplicated α7 sequence in exons 5-10 of CHRFAM7A is almost identical to CHRNA7, and thus is not completely queried in high throughput genetic studies (GWAS). Further, pre-clinical animal models of the α7nAChR utilized in drug development research do not have CHRFAM7A (dupα7) and cannot fully model human drug responses. The wide expression of CHRNA7, its multiple functions and modes of regulation present challenges for study of this gene in disease. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Melissa L Sinkus
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Sharon Graw
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA; Veterans Affairs Medical Research Center, Denver, CO 80262, USA.
| | - Randal G Ross
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Henry A Lester
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Sherry Leonard
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA; Veterans Affairs Medical Research Center, Denver, CO 80262, USA.
| |
Collapse
|
11
|
Dang X, Eliceiri BP, Baird A, Costantini TW. CHRFAM7A: a human-specific α7-nicotinic acetylcholine receptor gene shows differential responsiveness of human intestinal epithelial cells to LPS. FASEB J 2015; 29:2292-302. [PMID: 25681457 DOI: 10.1096/fj.14-268037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
The human genome contains a unique, distinct, and human-specific α7-nicotinic acetylcholine receptor (α7nAChR) gene [CHRNA7 (gene-encoding α7-nicotinic acetylcholine receptor)] called CHRFAM7A (gene-encoding dup-α7-nicotinic acetylcholine receptor) on a locus of chromosome 15 associated with mental illness, including schizophrenia. Located 5' upstream from the "wild-type" CHRNA7 gene that is found in other vertebrates, we demonstrate CHRFAM7A expression in a broad range of epithelial cells and sequenced the CHRFAM7A transcript found in normal human fetal small intestine epithelial (FHs) cells to prove its identity. We then compared its expression to CHRNA7 in 11 gut epithelial cell lines, showed that there is a differential response to LPS when compared to CHRNA7, and characterized the CHRFAM7A promoter. We report that both CHRFAM7A and CHRNA7 gene expression are widely distributed in human epithelial cell lines but that the levels of CHRFAM7A gene expression vary up to 5000-fold between different gut epithelial cells. A 3-hour treatment of epithelial cells with 100 ng/ml LPS increased CHRFAM7A gene expression by almost 1000-fold but had little effect on CHRNA7 gene expression. Mapping the regulatory elements responsible for CHRFAM7A gene expression identifies a 1 kb sequence in the UTR of the CHRFAM7A gene that is modulated by LPS. Taken together, these data establish the presence, identity, and differential regulation of the human-specific CHRFAM7A gene in human gut epithelial cells. In light of the fact that CHRFAM7A expression is reported to modulate ligand binding to, and alter the activity of, the wild-type α7nAChR ligand-gated pentameric ion channel, the findings point to the existence of a species-specific α7nAChR response that might regulate gut epithelial function in a human-specific fashion.
Collapse
Affiliation(s)
- Xitong Dang
- *Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, California, USA; and Cardiovascular Research Center, Luzhou Medical College, Luzhou, Sichuan, China
| | - Brian P Eliceiri
- *Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, California, USA; and Cardiovascular Research Center, Luzhou Medical College, Luzhou, Sichuan, China
| | - Andrew Baird
- *Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, California, USA; and Cardiovascular Research Center, Luzhou Medical College, Luzhou, Sichuan, China
| | - Todd W Costantini
- *Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California, San Diego Health Sciences, San Diego, California, USA; and Cardiovascular Research Center, Luzhou Medical College, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Bongiovanni R, Leonard S, Jaskiw GE. A simplified method to quantify dysregulated tyrosine transport in schizophrenia. Schizophr Res 2013; 150:386-91. [PMID: 24051014 DOI: 10.1016/j.schres.2013.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Schizophrenia is associated with altered tyrosine transport across plasma membranes. This is typically demonstrated by measuring the uptake of radiolabeled tyrosine in cultured human fibroblasts. Our primary goal was to determine whether tyrosine uptake could be characterized using unlabeled tyrosine. A secondary goal was to assess the effect of antipsychotic drugs added during the incubation. METHOD Epithelium-derived fibroblast cultures were generated from patients with schizophrenia (n=6) and age-matched controls (n=6). Cells between cycles 8-12 were exposed to an amino acid free medium for 60min and then for 1min to media containing tyrosine (0.008-1.0mM). Amino acid levels were measured and Michaelis-Menten parameters determined. Uptake of tyrosine (0.5mM) was also measured in control cells after antipsychotic drugs were introduced during the depletion or uptake phases. RESULTS Tyrosine uptake was sodium-independent. The maximal transport velocity (Vmax) was significantly lower in patients with schizophrenia than in controls (p<0.01). The transporter affinity (Km) did not differ between the groups. Tyrosine uptake was differentially affected (p<0.001) by inclusion of 10(-4)M haloperidol, chlorpromazine or clozapine during different periods of incubation. CONCLUSION Dysregulated tyrosine kinetics in schizophrenia can be readily studied without the use of radiolabeled tracers. The data also indicate that tyrosine uptake may be subject to complex pharmacological effects.
Collapse
Affiliation(s)
- Rodolfo Bongiovanni
- Psychiatry Service, Louis Stokes Cleveland DVAMC, Cleveland, OH 44106, United States.
| | | | | |
Collapse
|
13
|
Gahring LC, Enioutina EY, Myers EJ, Spangrude GJ, Efimova OV, Kelley TW, Tvrdik P, Capecchi MR, Rogers SW. Nicotinic receptor alpha7 expression identifies a novel hematopoietic progenitor lineage. PLoS One 2013; 8:e57481. [PMID: 23469197 PMCID: PMC3586088 DOI: 10.1371/journal.pone.0057481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
How inflammatory responses are mechanistically modulated by nicotinic acetylcholine receptors (nAChR), especially by receptors composed of alpha7 (α7) subunits, is poorly defined. This includes a precise definition of cells that express α7 and how these impact on innate inflammatory responses. To this aim we used mice generated through homologous recombination that express an Ires-Cre-recombinase bi-cistronic extension of the endogenous α7 gene that when crossed with a reporter mouse expressing Rosa26-LoxP (yellow fluorescent protein (YFP)) marks in the offspring those cells of the α7 cell lineage (α7lin+). In the adult, on average 20–25 percent of the total CD45+ myeloid and lymphoid cells of the bone marrow (BM), blood, spleen, lymph nodes, and Peyers patches are α7lin+, although variability between litter mates in this value is observed. This hematopoietic α7lin+ subpopulation is also found in Sca1+cKit+ BM cells suggesting the α7 lineage is established early during hematopoiesis and the ratio remains stable in the individual thereafter as measured for at least 18 months. Both α7lin+ and α7lin– BM cells can reconstitute the immune system of naïve irradiated recipient mice and the α7lin+:α7lin– beginning ratio is stable in the recipient after reconstitution. Functionally the α7lin+:α7lin– lineages differ in response to LPS challenge. Most notable is the response to LPS as demonstrated by an enhanced production of IL-12/23(p40) by the α7lin+ cells. These studies demonstrate that α7lin+ identifies a novel subpopulation of bone marrow cells that include hematopoietic progenitor cells that can re-populate an animal’s inflammatory/immune system. These findings suggest that α7 exhibits a pleiotropic role in the hematopoietic system that includes both the direct modulation of pro-inflammatory cell composition and later in the adult the role of modulating pro-inflammatory responses that would impact upon an individual’s lifelong response to inflammation and infection.
Collapse
Affiliation(s)
- Lorise C Gahring
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Administration Medical Center, Salt Lake City, Utah, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|