1
|
Chen YT, Young TH, Wang YH, Huang CH, Gao YY, Huang TW. Orexin-A increases the differentiation of human olfactory sensory neurons through orexin receptor type 1. Regen Ther 2024; 26:1058-1068. [PMID: 39582799 PMCID: PMC11585478 DOI: 10.1016/j.reth.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Sensorineural olfactory dysfunction significantly impairs the life quality of patients but without effective treatments to date. Orexin is a neurotrophic factor activates neuronal network activity. However, it is still unknown whether orexin can promote differentiation in human olfactory sensory neurons (OSNs). This study seeks to explore the impact of orexin on the differentiation of human olfactory neuroepithelial cells (HONCs). Methods The primary olfactory epithelium cells were cultured with or without orexin-A. The neural maturation-related and functional proteins were analyzed through immunofluorescence staining and Western blot. The function of HONCs were evaluated through the synaptic vesicle recycling assay. Results The results showed that HONCs in the orexin-A group expressed higher levels of stage-specific markers, including achaete-scute homolog 1, βIII-tubulin, and olfactory marker protein. Additionally, more components of signaling transduction pathways compared to the control group. The orexin-A-mediated differentiation of OSN effect can be nullified with dual orexin receptor antagonist suvorexant and the selective orexin receptor type 1 antagonist SB674042, instead of selective orexin receptor type 2 antagonist TCS-OX2-29. Conclusions Orexin-A elevates the expression of protein markers in human olfactory neuronal progenitor cells to stimulate the differentiation of OSN and enhances the formation of components of the olfactory-specific signaling transduction pathway via orexin receptor type 1.
Collapse
Affiliation(s)
- Yin-Tzu Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsuan Huang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Yun Gao
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tsung-Wei Huang
- Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan
- Department of Electrical Engineering, College of Electrical and Communication Engineering, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Ma X, Cao F, Cui J, Li X, Yin Z, Wu Y, Wang Q. Orexin B protects dopaminergic neurons from 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity associated with reduced extracellular signal-regulated kinase phosphorylation. Mol Biol Rep 2024; 51:669. [PMID: 38787465 DOI: 10.1007/s11033-024-09587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is a major pathological hallmark of Parkinson's disease (PD). Orexin B (OXB) has been reported to promote the growth of DA neurons. However, the roles of OXB in the degeneration of DA neurons still remained not fully clear. METHODS An in vivo PD model was constructed by administrating 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Pole test was performed to investigate the motor function of mice and the number of DA neurons was detected by immunofluorescence (IF). A PD cell model was established by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+). OXB was added to the culture medium 2 h after MPP + treatment. Microscopic analysis was carried out to investigate the function of OXB in the cell model of PD 24 h after MPP + challenge. RNA-Seq analysis of the PD cell model was performed to explore the possible mechanisms. Western blot was used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK). RESULTS OXB significantly decreased the DA neurons death caused by MPTP, alleviated MPP+-induced neurotoxicity in SH-SY5Y cells, and robustly enhanced the weight and motor ability of PD mice. Besides, RNA-Seq analysis demonstrated that the mitogen-activated protein kinase (MAPK) pathway was involved in the pathology of PD. Furthermore, MPP + led to increased levels of phosphorylation of ERK (p-ERK), OXB treatment significantly decreased the levels of p-ERK in MPP+-treated SH-SY5Y cells. CONCLUSIONS This study demonstrated that OXB exerts a neuroprotective role associated with reduced ERK phosphorylation in the PD model. This suggests that OXB may have therapeutic potential for treatment of PD.
Collapse
Affiliation(s)
- Xiaodan Ma
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
| | - Fei Cao
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
- Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Jing Cui
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
| | - Xuezhi Li
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China
| | - Zuojuan Yin
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yili Wu
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Qinqin Wang
- Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
3
|
Satpati A, Pereira FL, Soloviev AV, Mladinov M, Larsen E, Hua SL, Tu CL, Leite REP, Suemoto CK, Rodriguez RD, Paes VR, Walsh C, Spina S, Seeley WW, Pasqualucci CA, Filho WJ, Chang W, Neylan TC, Grinberg LT. The wake- and sleep-modulating neurons of the lateral hypothalamic area demonstrate a differential pattern of degeneration in Alzheimers disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583765. [PMID: 38559184 PMCID: PMC10979907 DOI: 10.1101/2024.03.06.583765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Sleep-wake dysfunction is an early and common event in Alzheimer's disease (AD). The lateral hypothalamic area (LHA) regulates the sleep and wake cycle through wake-promoting orexinergic neurons (OrxN) and sleep-promoting melanin-concentrating hormone or MCHergic neurons (MCHN). These neurons share close anatomical proximity with functional reciprocity. This study investigated LHA OrxN and MCHN loss patterns in AD individuals. Understanding the degeneration pattern of these neurons will be instrumental in designing potential therapeutics to slow down the disease progression and remediate the sleep-wake dysfunction in AD. METHODS Postmortem human brain tissue from donors with AD (across progressive stages) and controls were examined using unbiased stereology. Formalin-fixed, celloidin-embedded hypothalamic sections were stained with Orx-A/MCH, p-tau (CP13), and counterstained with gallocyanin. Orx or MCH-positive neurons with or without CP13 inclusions and gallocyanin-stained neurons were considered for stereology counting. Additionally, we extracted RNA from the LHA using conventional techniques. We used customized Neuropathology and Glia nCounter (Nanostring) panels to study gene expression. Wald statistical test was used to compare the groups, and the genes were considered differentially expressed when the p-value was <.05. RESULTS We observed a progressive decline in OrxN alongside a relative preservation of MCHN. OrxN decreased by 58% (p=0.03) by Braak stages (BB) 1-2 and further declined to 81% (p=0.03) by BB 5-6. Conversely, MCHN demonstrated a non-statistical significant decline (27%, p=0.1088) by BB 6. We observed a progressive increase in differentially expressed genes (DEGs), starting with glial profile changes in BB2. While OrxN loss was observed, Orx-related genes showed upregulation in BB 3-4 compared to BB 0-1. GO and KEGG terms related to neuroinflammatory pathways were mainly enriched. CONCLUSIONS To date, OrxN loss in the LHA represents the first neuronal population to die preceding the loss of LC neurons. Conversely, MCHN shows resilience to AD p-tau accumulation across Braak stages. The initial loss of OrxN correlates with specific neuroinflammation, glial profile changes, and an overexpression of HCRT, possibly due to hyperexcitation following compensation mechanisms. Interventions preventing OrxN loss and inhibiting p-tau accumulation in the LHA could prevent neuronal loss in AD and, perhaps, the progression of the disease.
Collapse
|
4
|
Cavalu S, Saber S, Hamad RS, Abdel-Reheim MA, Elmorsy EA, Youssef ME. Orexins in apoptosis: a dual regulatory role. Front Cell Neurosci 2024; 18:1336145. [PMID: 38699177 PMCID: PMC11064656 DOI: 10.3389/fncel.2024.1336145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
The orexins, also referred to as hypocretins, are neuropeptides that originate from the lateral hypothalamus (LH) region of the brain. They are composed of two small peptides, orexin-A, and orexin-B, which are broadly distributed throughout the central and peripheral nervous systems. Orexins are recognized to regulate diverse functions, involving energy homeostasis, the sleep-wake cycle, stress responses, and reward-seeking behaviors. Additionally, it is suggested that orexin-A deficiency is linked to sleepiness and narcolepsy. The orexins bind to their respective receptors, the orexin receptor type 1 (OX1R) and type 2 (OX2R), and activate different signaling pathways, which results in the mediation of various physiological functions. Orexin receptors are widely expressed in different parts of the body, including the skin, muscles, lungs, and bone marrow. The expression levels of orexins and their receptors play a crucial role in apoptosis, which makes them a potential target for clinical treatment of various disorders. This article delves into the significance of orexins and orexin receptors in the process of apoptosis, highlighting their expression levels and their potential contributions to different diseases. The article offers an overview of the existing understanding of the orexin/receptor system and how it influences the regulation of apoptosis.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
5
|
Fayazi B, Tadibi V, Ranjbar K. The role of hypoxia related hormones responses in acute mountain sickness susceptibility individuals unaccustomed to high altitude. PLoS One 2023; 18:e0292173. [PMID: 37796960 PMCID: PMC10553285 DOI: 10.1371/journal.pone.0292173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
Acute mountain sickness (AMS) is caused by rapid ascent to altitude (>2500 m) and remains a poorly understood pathophysiological condition. Accordingly, we investigated the relationship between acute exposure to high altitude and hypoxia related biochemical proteins. 21 healthy subjects (Female (8) and male (13), Age: 36.7±8.5, BMI: 23.2±3.1) volunteers participated in this project and fasting blood samples were taken before (sea level) and after 1 and 24-h exposure to high altitude (3,550 m). Blood oxygen saturation (SpO2), AMS status (Lake Louise Score) and serum HIF-1, Endothelin-1, VEGF and Orexin-A were measured (via ELISA) at 1, 6 and 24 h after exposure to high altitude. Pre-ascent measurement of hypoxia related proteins (Orexin-A, HIF-1, VEGF and Endothelin-1) where all significantly (<0.05) higher in the AMS-resistant individuals (No-AMS) when compared to AMS susceptible individuals (AMS+). Upon ascent to high altitude, 11 out of 21 volunteers had AMS (10.1±0.6 in AMS+ vs. 0.9±0.6 in No-AMS, P<0.05) and presented with lower resting SpO2 levels (77.7±0.4 vs. 83.5±0.3 respectively, p<0.05). Orexin-A, HIF-1, VEGF and Endothelin-1, significantly increased 24 hrs after exposure to high altitude in both AMS+ and No-AMS. The response of Orexin-A was similar between two groups, also, HIF-1 elevation 24 hrs after exposure to altitude was more in AMS+ (13% vs. 19%), but the increase of VEGF and Endothelin-1, 1 and 24 hrs after exposure to altitude in No-AMS was double that of AMS+. Hypoxia related proteins include Orexin-A, HIF-1, VEGF and Endothelin-1 may play a pathophysiological role in those who are susceptible to AMS.
Collapse
Affiliation(s)
- Bayan Fayazi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Vahid Tadibi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Kamal Ranjbar
- Department of Exercise Physiology, Faculty of Sport Sciences, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| |
Collapse
|
6
|
Chatterjee O, Gopalakrishnan L, Pullimamidi D, Raj C, Yelamanchi S, Gangadharappa BS, Nair B, Mahadevan A, Raju R, Keshava Prasad TS. A molecular network map of orexin-orexin receptor signaling system. J Cell Commun Signal 2023; 17:217-227. [PMID: 36480100 PMCID: PMC10030760 DOI: 10.1007/s12079-022-00700-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022] Open
Abstract
Orexins are excitatory neuropeptides, which are predominantly associated with feeding behavior, sleep-wake cycle and energy homeostasis. The orexinergic system comprises of HCRTR1 and HCRTR2, G-protein-coupled receptors of rhodopsin family and the endogenous ligands processed from HCRT pro-hormone, Orexin A and Orexin B. These neuropeptides are biosynthesized by the orexin neurons present in the lateral hypothalamus area, with dense projections to other brain regions. The orexin-receptor signaling is implicated in various metabolic as well as neurological disorders, making it a promising target for pharmacological interventions. However, there is limited information available on the collective representation of the signal transduction pathways pertaining to the orexin-orexin receptor signaling system. Here, we depict a compendium of the Orexin A/B stimulated reactions in the form of a basic signaling pathway map. This map catalogs the reactions into five categories: molecular association, activation/inhibition, catalysis, transport, and gene regulation. A total of 318 downstream molecules were annotated adhering to the guidelines of NetPath curation. This pathway map can be utilized for further assessment of signaling events associated with orexin-mediated physiological functions and is freely available on WikiPathways, an open-source pathway database ( https://www.wikipathways.org/index.php/Pathway:WP5094 ).
Collapse
Affiliation(s)
- Oishi Chatterjee
- Institute of Bioinformatics, International Tech Park, 560 066, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, 690 525, Kollam, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), 575 018, Mangalore, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Tech Park, 560 066, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), 575 018, Mangalore, India
- Manipal Academy of Higher Education (MAHE), 576 104, Manipal, India
| | | | - Chinmayi Raj
- Institute of Bioinformatics, International Tech Park, 560 066, Bangalore, India
| | - Soujanya Yelamanchi
- Institute of Bioinformatics, International Tech Park, 560 066, Bangalore, India
| | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, 690 525, Kollam, India
| | - Anita Mahadevan
- Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 560 029, Bangalore, India
- Department of Neuropathology, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 560 029, Bangalore, India
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), 575 018, Mangalore, India.
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), 575 018, Mangalore, India.
| |
Collapse
|
7
|
Zhang C, Liu YW, Chen M, Min S, Mao J, Li Q, Chi Z. CoCl 2 -simulated hypoxia potentiates the osteogenic differentiation of fibroblasts derived from tympanosclerosis by upregulating the expression of BMP-2. Cell Biol Int 2022; 46:1423-1432. [PMID: 35811437 DOI: 10.1002/cbin.11845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/20/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Tympanosclerosis (TS) is a result of long-standing middle ear inflammation characterized by fibroblasts ossification. Fibrosis is the last revertible stage in the progress of middle ear inflammation to TS. It was hypothesized that chronic hypoxia could be modulating fibrosis, which in turn additionally further aggravated hypoxia via decreasing oxygen diffusion. However, the effects of hypoxia on osteoinductive activity of fibroblasts have not been explored. Herein, we purposed to explore the role of hypoxia in osteogenic differentiation of fibroblasts derived from TS. The expression of bone morphogenetic protein-2 (BMP-2), hypoxia-inducible factor-1α (HIF-1α), and Vimentin in the human surgical specimens of tympansclerosis was investigated by immunofluorescent staining. Furthermore, cultured fibroblasts were stratified into the following study groups: control, 25, 50, and 100 μM cobaltous chloride (CoCl2 ) group. BMP-2, as well as HIF-1α levels of expression were detected via western blotting and immunofluorescence analysis. We found that the expression of BMP-2 and HIF-1α was significantly upregulated in TS tissues and these fibroblasts, which was vimentin positive surrounding sclerotic plaques, were also expressing HIF-1α positive. The results also demonstrated that CoCl2 treatment increased nuclear HIF-1α protein level in the fibroblast. Furthermore, treatment with CoCl2 significantly increased BMP-2 expression and remarkably elevated alkaline phosphatse activity and the mineralized nodules area. These data illustrate that hypoxia may play an osteogenic role in TS fibroblasts via the elevated expression of a possible osteogenic factor, BMP-2.
Collapse
Affiliation(s)
- Chen Zhang
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yang-Wenyi Liu
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Min Chen
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Shiyao Min
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Jiabao Mao
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| | - Qin Li
- Stomatology Department, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhangcai Chi
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, PR China
| |
Collapse
|
8
|
Saad AK, Akour A, Mahboob A, AbuRuz S, Sadek B. Role of Brain Modulators in Neurodevelopment: Focus on Autism Spectrum Disorder and Associated Comorbidities. Pharmaceuticals (Basel) 2022; 15:612. [PMID: 35631438 PMCID: PMC9144645 DOI: 10.3390/ph15050612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.
Collapse
Affiliation(s)
- Ali K. Saad
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Abdulla Mahboob
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Salahdein AbuRuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.K.S.); (A.A.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
9
|
Mavanji V, Georgopoulos AP, Kotz CM. Orexin enhances neuronal synchronization in adult rat hypothalamic culture: a model to study hypothalamic function. J Neurophysiol 2022; 127:1221-1229. [PMID: 35353632 PMCID: PMC9054260 DOI: 10.1152/jn.00041.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
The regulation of sleep/wake behavior and energy homeostasis is maintained in part by the hypothalamic neuropeptide orexin A (OXA, hypocretin). Reduction in orexin signaling is associated with sleep disorders and obesity, whereas higher lateral hypothalamic (LH) orexin signaling and sensitivity promotes obesity resistance. Similarly, dysregulation of hypothalamic neural networks is associated with onset of age-related diseases, including obesity and several neurological diseases. Despite the association of obesity and aging, and that adult populations are the target for the majority of pharmaceutical and obesity studies, conventional models for neuronal networks utilize embryonic neural cultures rather than adult neurons. Synchronous activity describes correlated changes in neuronal activity between neurons and is a feature of normal brain function, and is a measure of functional connectivity and final output from a given neural structure. Earlier studies show alterations in hypothalamic synchronicity following behavioral perturbations in embryonic neurons obtained from obesity-resistant rats and following application of orexin onto embryonic hypothalamic cultures. Synchronous network dynamics in adult hypothalamic neurons remain largely undescribed. To address this, we established an adult rat hypothalamic culture in multi-electrode-array (MEA) dishes and recorded the field potentials. Then we studied the effect of exogenous orexin on network synchronization of these adult hypothalamic cultures. In addition, we studied the wake promoting effects of orexin in vivo when directly injected into the lateral hypothalamus (LH). Our results showed that the adult hypothalamic cultures are viable for nearly 3 mo in vitro, good quality MEA recordings can be obtained from these cultures in vitro, and finally, that cultured adult hypothalamus is responsive to orexin. These results support that adult rat hypothalamic cultures could be used as a model to study the neural mechanisms underlying obesity. In addition, LH administration of OXA enhanced wakefulness in rats, indicating that OXA enhances wakefulness partly by promoting neural synchrony in the hypothalamus.NEW & NOTEWORTHY This study, for the first time, demonstrates that adult hypothalamic cultures are viable in vitro for a prolonged duration and are electrophysiologically active. In addition, the study shows that orexin enhances neural synchronization in adult hypothalamic cultures.
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Apostolos P Georgopoulos
- Research Service, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Brain Sciences Center, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota
- Center for Cognitive Sciences, University of Minnesota, Minneapolis, Minnesota
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Catherine M Kotz
- Research Service, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Minnesota Nutrition and Obesity Research Center, St. Paul, Minnesota
- Geriatric Research Education Clinical Center, Veterans Affairs Health Care System, Minneapolis, Minnesota
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
10
|
Sunkaria A, Bhardwaj S. Sleep Disturbance and Alzheimer's Disease: The Glial Connection. Neurochem Res 2022; 47:1799-1815. [PMID: 35303225 DOI: 10.1007/s11064-022-03578-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Poor quality and quantity of sleep are very common in elderly people throughout the world. Growing evidence has suggested that sleep disturbances could accelerate the process of neurodegeneration. Recent reports have shown a positive correlation between sleep deprivation and amyloid-β (Aβ)/tau aggregation in the brain of Alzheimer's patients. Glial cells have long been implicated in the progression of Alzheimer's disease (AD) and recent findings have also suggested their role in regulating sleep homeostasis. However, how glial cells control the sleep-wake balance and exactly how disturbed sleep may act as a trigger for Alzheimer's or other neurological disorders have recently gotten attention. In an attempt to connect the dots, the present review has highlighted the role of glia-derived sleep regulatory molecules in AD pathogenesis. Role of glia in sleep disturbance and Alzheimer's progression.
Collapse
Affiliation(s)
- Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Supriya Bhardwaj
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
11
|
Ramser A, Dridi S. Avian Orexin: Feed Intake Regulator or Something Else? Vet Sci 2022; 9:vetsci9030112. [PMID: 35324840 PMCID: PMC8950792 DOI: 10.3390/vetsci9030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Originally named for its expression in the posterior hypothalamus in rats and after the Greek word for “appetite”, hypocretin, or orexin, as it is known today, gained notoriety as a neuropeptide regulating feeding behavior, energy homeostasis, and sleep. Orexin has been proven to be involved in both central and peripheral control of neuroendocrine functions, energy balance, and metabolism. Since its discovery, its ability to increase appetite as well as regulate feeding behavior has been widely explored in mammalian food production animals such as cattle, pigs, and sheep. It is also linked to neurological disorders, leading to its intensive investigation in humans regarding narcolepsy, depression, and Alzheimer’s disease. However, in non-mammalian species, research is limited. In the case of avian species, orexin has been shown to have no central effect on feed-intake, however it was found to be involved in muscle energy metabolism and hepatic lipogenesis. This review provides current knowledge and summarizes orexin’s physiological roles in livestock and pinpoints the present lacuna to facilitate further investigations.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-(479)-575-2583; Fax: +1-(479)-575-7139
| |
Collapse
|
12
|
Parekh RU, White A, Leffler KE, Biancardi VC, Eells JB, Abdel-Rahman AA, Sriramula S. Hypothalamic kinin B1 receptor mediates orexin system hyperactivity in neurogenic hypertension. Sci Rep 2021; 11:21050. [PMID: 34702886 PMCID: PMC8548389 DOI: 10.1038/s41598-021-00522-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/13/2021] [Indexed: 12/05/2022] Open
Abstract
Brain orexin system hyperactivity contributes to neurogenic hypertension. We previously reported upregulated neuronal kinin B1 receptor (B1R) expression in hypertension. However, the role of central B1R activation on the orexin system in neurogenic hypertension has not been examined. We hypothesized that kinin B1R contributes to hypertension via upregulation of brain orexin-arginine vasopressin signaling. We utilized deoxycorticosterone acetate (DOCA)-salt hypertension model in wild-type (WT) and B1R knockout (B1RKO) mice. In WT mice, DOCA-salt-treatment increased gene and protein expression of orexin A, orexin receptor 1, and orexin receptor 2 in the hypothalamic paraventricular nucleus and these effects were attenuated in B1RKO mice. Furthermore, DOCA-salt- treatment increased plasma arginine vasopressin levels in WT mice, but not in B1RKO mice. Cultured primary hypothalamic neurons expressed orexin A and orexin receptor 1. B1R specific agonist (LDABK) stimulation of primary neurons increased B1R protein expression, which was abrogated by B1R selective antagonist R715 but not by the dual orexin receptor antagonist, ACT 462206, suggesting that B1R is upstream of the orexin system. These data provide novel evidence that B1R blockade blunts orexin hyperactivity and constitutes a potential therapeutic target for the treatment of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Rohan Umesh Parekh
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Acacia White
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Korin E Leffler
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Vinicia C Biancardi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Jeffrey B Eells
- 4Department of Anatomy and Cell Biology, Brody School of Medicine at East, Carolina University, Greenville, NC, 27834, USA
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA.
| |
Collapse
|
13
|
Current Management of Residual Excessive Daytime Sleepiness Due to Obstructive Sleep Apnea: Insights for Optimizing Patient Outcomes. Neurol Ther 2021; 10:651-672. [PMID: 34658002 PMCID: PMC8520824 DOI: 10.1007/s40120-021-00289-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023] Open
Abstract
Although excessive daytime sleepiness (EDS) attributable to obstructive sleep apnea (OSA) can be resolved by consistent usage of and effective treatment (often with the use of continuous positive airway pressure therapy), 12–58% of patients report residual EDS (REDS). While REDS is difficult to treat, a proportion of cases are possibly due to reversible issues, and wake-promoting medications can prove useful for the remaining cases. Given the challenges associated with effective management of REDS and its relationship to multiple comorbidities, multidisciplinary management of patients with REDS is often recommended. Here we aim to bridge the knowledge gap on the burden, risk factors, prevalence, and potential pathophysiologic mechanisms of REDS in patients with OSA after first-line treatment. The roles of primary care physicians and sleep specialists, as well as the importance of the use of objective assessment tools for the evaluation of REDS and the effective management of comorbidities, are discussed. An update of approved treatments and emerging candidate treatments is also presented.
Collapse
|
14
|
La Torre ME, Villano I, Monda M, Messina A, Cibelli G, Valenzano A, Pisanelli D, Panaro MA, Tartaglia N, Ambrosi A, Carotenuto M, Monda V, Messina G, Porro C. Role of Vitamin E and the Orexin System in Neuroprotection. Brain Sci 2021; 11:brainsci11081098. [PMID: 34439717 PMCID: PMC8394512 DOI: 10.3390/brainsci11081098] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Microglia are the first line of defense at the level of the central nervous system (CNS). Phenotypic change in microglia can be regulated by various factors, including the orexin system. Neuroinflammation is an inflammatory process mediated by cytokines, by the lack of interaction between neurotransmitters and their specific receptors, caused by systemic tissue damage or, more often, associated with direct damage to the CNS. Chronic activation of microglia could lead to long-term neurodegenerative diseases. This review aims to explore how tocopherol (vitamin E) and the orexin system may play a role in the prevention and treatment of microglia inflammation and, consequently, in neurodegenerative diseases thanks to its antioxidant properties. The results of animal and in vitro studies provide evidence to support the use of tocopherol for a reduction in microglia inflammation as well as a greater activation of the orexinergic system. Although there is much in vivo and in vitro evidence of vitamin E antioxidant and protective abilities, there are still conflicting results for its use as a treatment for neurodegenerative diseases that speculate that vitamin E, under certain conditions or genetic predispositions, can be pro-oxidant and harmful.
Collapse
Affiliation(s)
- Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Ines Villano
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Daniela Pisanelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Nicola Tartaglia
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 71122 Foggia, Italy; (N.T.); (A.A.)
| | - Antonio Ambrosi
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 71122 Foggia, Italy; (N.T.); (A.A.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
- Correspondence: ; Tel.: +39-8815-88095
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| |
Collapse
|
15
|
Grasselli F, Bussolati S, Grolli S, Di Lecce R, Dall’Aglio C, Basini G. Effects of Orexin B on Swine Granulosa and Endothelial Cells. Animals (Basel) 2021; 11:ani11061812. [PMID: 34204547 PMCID: PMC8235033 DOI: 10.3390/ani11061812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The follicle is the ovarian functional unit. It is mainly composed of granulosa cells and angiogenesis is crucial to guarantee its development till ovulation. Carrying on our previous studies on the orexin system in the ovary, we presently demonstrate a potential role of orexin B in the control of granulosa cells’ oxidative stress and of the angiogenesis event. Abstract In addition to the well-known central modulatory role of orexins, we recently demonstrated a peripheral involvement in swine granulosa cells for orexin A and in adipose tissue for orexin B (OXB). The aim of present research was to verify immunolocalization of OXB and its potential role in modulating the main features of swine granulosa cells. In particular, we explored the effects on granulosa cell proliferation (through the incorporation of bromodeoxyuridine), cell metabolic activity (as indirect evaluation by the assessment of ATP), steroidogenic activity (by immunoenzymatic examination) and redox status (evaluating the production of superoxide anion by means of the WST test, production of nitric oxide through the use of the Griess test and the non-enzymatic reducing power by FRAP test). Our data point out that OXB does not modify granulosa cell growth, steroidogenesis and superoxide anion generation. On the contrary, the peptide stimulates (p < 0.05) nitric oxide output and non-enzymatic reducing power. Since new vessel growth is crucial for ovarian follicle development, a further aim of this study was to explore the expression of prepro-orexin and the effects of OXB on swine aortic endothelial cells. We found that the peptide is ineffective in modulating cell growth, while it inhibits redox status parameters. In addition, we demonstrated a stimulatory effect on angiogenesis evaluated in fibrin gel angiogenesis assay. Taken together, OXB appears to be potentially involved in the modulation of redox status in granulosa and endothelial cells and we could argue an involvement of the peptide in the follicular angiogenic events.
Collapse
Affiliation(s)
- Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Rosanna Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Cecilia Dall’Aglio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
- Correspondence: ; Tel.: +39-521-032-775
| |
Collapse
|
16
|
Zhang Y, Bian Y, Wang Y, Wang Y, Duan X, Han Y, Zhang L, Wang F, Gu Z, Qin Z. HIF-1α is necessary for activation and tumour-promotion effect of cancer-associated fibroblasts in lung cancer. J Cell Mol Med 2021; 25:5457-5469. [PMID: 33943003 PMCID: PMC8184678 DOI: 10.1111/jcmm.16556] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer‐associated fibroblasts (CAFs) activation is crucial for the establishment of a tumour promoting microenvironment, but our understanding of CAFs activation is still limited. In this study, we found that hypoxia‐inducible factor‐1α (HIF‐1α) was highly expressed in CAFs of human lung cancer tissues and mouse spontaneous lung tumour. Accordingly, enhancing the expression of HIF‐1α in fibroblasts via hypoxia induced the conversion of normal fibroblasts into CAFs. HIF‐1α‐specific inhibitor or HIF‐1α knockout (KO) significantly attenuated CAFs activation, which was manifested by the decreased expression of COL1A2 and α‐SMA. In vivo, during tumour formation, the expression of Ki‐67 and proliferating cell nuclear antigen (PCNA) in the tumour tissue with HIF‐1α KO fibroblasts was significantly lower than that of normal fibroblasts. Moreover, HIF‐1α in fibroblasts could activate the NF‐κB signalling pathway and enhance a subsequent secretion of CCL5, thus promoting the tumour growth. In conclusion, our results suggest that HIF‐1α is essential for the activation and tumour‐promotion function of CAFs in lung cancer (LC). And targeting HIF‐1α expression on CAFs may be a promising strategy for LC therapy.
Collapse
Affiliation(s)
- Yana Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yangyang Bian
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yuan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yuanyuan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Xixi Duan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yuning Han
- General Hospital of Ningxia Medical University, Ningxia, China
| | - Lijing Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Fei Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Zhuoyu Gu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Abstract
Twenty-two years after their discovery, the hypocretins (Hcrts), also known as orexins, are two of the most studied peptidergic systems, involved in myriad physiological systems that range from sleep, arousal, motivation, homeostatic regulation, fear, anxiety and learning. A causal relationship between activity of Hcrt and arousal stability was established shortly after their discovery and have led to the development of a new class of drugs to treat insomnia. In this review we discuss the many faces of the Hcrt system and examine recent findings that implicate decreased Hcrt function in the pathogenesis of a number of neuropsychiatric conditions. We also discuss future therapeutic strategies to replace or enhance Hcrt function as a treatment option for these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Erica Seigneur
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
18
|
Role of 2-Arachidonoyl-Glycerol and CB1 Receptors in Orexin-A-Mediated Prevention of Oxygen-Glucose Deprivation-Induced Neuronal Injury. Cells 2020; 9:cells9061507. [PMID: 32575773 PMCID: PMC7349736 DOI: 10.3390/cells9061507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
Orexin-A (OX-A) protects the brain against oxidative stress-mediated ischemic injury. Since the endocannabinoid 2-arachidonoylglycerol (2-AG) and cannabinoid type-1 (CB1) receptors were previously shown to mediate some of the effects of OX-A exerted through the orexin-1 receptor (OX-1R), we investigated the involvement of 2-AG in OX-A-induced neuroprotection following oxygen and glucose deprivation (OGD) in mouse cortical neurons. OGD-induced reactive oxygen species (ROS) accumulation and neuronal death were prevented by both OX-A and arachidonyl-2′-chloroethylamide (ACEA), a synthetic CB1 receptor agonist, in a manner sensitive to OX-1R and CB1 receptor antagonists, SB334867 and AM251. OX-A stimulated 2-AG biosynthesis in cortical neurons. In neurons isolated from monoacylglycerol lipase (MAGL, a 2-AG hydrolyzing enzyme) null mice, 10-fold higher 2-AG concentrations were found and OGD failed to induce ROS production and cell death, whereas AM251 restored these noxious effects. OX-A-induced neuroprotection was mediated by the phosphoinositide-3-kinase/Akt (PI3K/Akt) survival pathway since both OX-A and ACEA induced phosphorylation of Akt and prevented OGD-induced cytochrome c release from the mitochondria, in a manner counteracted by SB334867 or AM251. Administration of OX-A reduced infarct volume and elevated brain 2-AG levels in a mouse model of transient ischemia. These results suggest that 2-AG and CB1 receptor mediate OX-A prevention of ischemia-induced neuronal apoptosis.
Collapse
|
19
|
Orexins role in neurodegenerative diseases: From pathogenesis to treatment. Pharmacol Biochem Behav 2020; 194:172929. [PMID: 32315694 DOI: 10.1016/j.pbb.2020.172929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Orexin is a neurotransmitter that mainly regulates sleep/wake cycle. In addition to its sleep cycle regulatory role, it is involved in regulation of attention, energy homeostasis, neurogenesis and cognition. Several evidences has shown the involvement of orexin in narcolepsy, but there are also growing evidences that shows the disturbance in orexin system in neurodegenerative diseases including Alzheimer's, Parkinson's, Epilepsy, Huntington's diseases and Amyotrophic lateral sclerosis. Pathogenesis and clinical symptoms of these disorders can be partly attributed from orexin system imbalance. However, there are controversial reports on the exact relationship between orexin and these neurodegenerative diseases. Therefore, the aim of this review is to summarize the current evidences regarding the role of orexin in these neurodegenerative diseases.
Collapse
|
20
|
Orexin-A exacerbates Alzheimer's disease by inducing mitochondrial impairment. Neurosci Lett 2020; 718:134741. [PMID: 31927055 DOI: 10.1016/j.neulet.2020.134741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which is characterized by the accumulation of amyloid-β peptide (Aβ). Orexin-A is a neuropeptide which has been reported to participate in the pathogenesis of AD. Thus, we aimed to investigate the possible mechanism by which Orexin-A acts in AD. APP/PS1 transgenic mice, an animal model of AD, were intracerebroventricularly injected with Orexin-A. Aβ-treated SH-SY5Y cells were used as a cell model of AD and treated with Orexin-A. The Morris water maze test, fluorescence microscopy, enzyme-linked immunosorbent assay (ELISA), electron microscopy, real-time PCR, and other biochemical assays were conducted. The Morris water maze test showed that Orexin-A aggravated cognitive deficit in APP/PS1 mice. Using thioflavine-S staining and ELISA, we found that Orexin-A promoted Aβ accumulation in APP/PS1 mice. By evaluating mitochondrial morphology, cytochrome c oxidase activity, ATP level, mitochondrial DNA copy number, and reactive oxygen species, we found that Orexin-A aggravated mitochondrial impairment in APP/PS1 mice and Aβ-treated SH-SY5Y cells. Our results indicate that Orexin-A exacerbates AD by inducing mitochondrial impairment. This is a new mechanism that explains how Orexin-A participates in the pathogenesis of AD.
Collapse
|
21
|
Liu M, Min T, Zhang H, Liu Y, Wang Z. Pharmacological Characteristics of Porcine Orexin 2 Receptor and Mutants. Front Endocrinol (Lausanne) 2020; 11:132. [PMID: 32296386 PMCID: PMC7136461 DOI: 10.3389/fendo.2020.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Orexin receptors (OXRs) play a critical regulatory role in central control of food intake, maintenance of sleeping states, energy metabolism, and neuroendocrine homeostasis. However, most previous studies have focused on the sleep-promoting functions of OXRs in human beings, while their potential value in enhancing food intake for livestock breeding has not been fully exploited. In this study, we successfully cloned porcine orexin 2 receptor (pOX2R) complementary DNA and constructed four pOX2R mutants (P10S, P11T, V308I, and T401I) by site-directed mutagenesis, and their functional expressions were further confirmed through Western blotting analysis. Pharmacological characteristics of pOX2R and their mutants were further investigated. These results showed that the P10S, P11T, and T401I mutants had decreased cAMP signaling with orexin A, whereas only the P11T mutant decreased under the stimulation of orexin B. Besides, only P10S displayed a decreased calcium release in response to both orexin ligands. Importantly, these mutants exhibited decreased phosphorylation levels of ERK1/2, p38, and CREB to some degree compared with wild-type pOX2R. Collectively, these findings highlight the critical role of these mutations in pOX2R signaling and expand our understanding of molecular and pharmacological characterization of pOX2R.
Collapse
Affiliation(s)
- Min Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Min
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haijie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yuan Liu
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Zhiqiang Wang
| |
Collapse
|
22
|
Han X, Zhou J, Peng W. Orexins Facilitates Osteogenic Differentiation of MC3T3-E1 Cells. IUBMB Life 2019; 70:633-641. [PMID: 29999239 DOI: 10.1002/iub.1757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of osteoblastic bone formation and matrix mineralization plays a key role in the pathological development of osteoporosis. The orexin peptide orexin-A, a highly excitatory neuropeptide hormone, possesses various biological functions by activating its specific G protein-coupled receptors, orexin-1 receptor (OX1R) and orexin-2 receptor (OX2R). Here, we report that OX1R but not OX2R was expressed in MC3T3-E1 cells. Importantly, we found that orexin-A accelerated osteoblast differentiation and matrix mineralization in MC3T3-E1 cells, as manifested by elevation of physiological markers of osteoblastic differentiation [alkaline phosphatase (ALP) and osteogenic genes] and Alizarin Red staining, respectively. Importantly, our findings indicated that orexin-A significantly increased the expression of runt-related transcription factor 2 (Runx-2), which is the central transcriptional factor. Orexin-A treatment phosphorylated the kinase p38 mitogen-activated protein kinase (MAPK) in a dose- and time-dependent manner. Also, orexin-induced increase in gene expression (Runx-2, ALP, osteocalcin, and osterix) and matrix mineralization were prevented by the p38 MAPK specific inhibitor SB203580. Additionally, we also revealed that protein kinase D (PKD) is involved in the effects of Orexin-A on p38 MAPK activation and Runx-2 expression. Finally, we found that Orexin-A-induced osteoblastic formation and matrix mineralization and the activation of the PKD/p38 MAPK pathway are mediated by OX1R. Based on these findings, we concluded that activation of OX1R by orexin-A might possess a therapeutic strategy for bone disease. © 2018 IUBMB Life, 70(7):633-641, 2018.
Collapse
Affiliation(s)
- Xuesong Han
- New Medical Department of Orthopedics, Daqing People's Hospital, Daqing, Heilongjiang, China
| | - Jicheng Zhou
- Department of Orthopeadic Surgery, Daqing People's Hospital, Daqing, Heilongjiang, China
| | - Wei Peng
- Department of Orthopeadic Surgery, Daqing People's Hospital, Daqing, Heilongjiang, China
| |
Collapse
|
23
|
Orexin-A Stimulates Insulin Secretion Through the Activation of the OX1 Receptor and Mammalian Target of Rapamycin in Rat Insulinoma Cells. Pancreas 2019; 48:568-573. [PMID: 30946236 DOI: 10.1097/mpa.0000000000001280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The study aimed to investigate the involvement of the mammalian target of rapamycin (mTOR) signaling pathway in orexin-A/OX1 receptor-induced insulin secretion in rat insulinoma INS-1 cells. METHODS Rat insulinoma INS-1 cells were grown and treated with various concentrations of orexin-A, with or without OX1 receptor-selective antagonist SB674042 or the phosphatidylinositol 3-kinase/mTOR antagonist PF-04691502. Insulin release experiments, Western blot analysis, and statistical analysis were conducted using INS-1 cells. RESULTS Our results showed that treating cells with orexin-A increased the expression of the OX1 receptor and the phosphorylation of mTOR in a concentration-dependent manner. An increase in insulin secretion was also observed for cells treated with orexin-A. We further demonstrated that the increase in insulin secretion was dependent on the activation of the OX1 receptor and mTOR signaling pathway by using the OX1 receptor-selective antagonist SB674042 or the phosphatidylinositol 3-kinase/mTOR antagonist PF-04691502, which abolished the effects of orexin-A treatment. CONCLUSIONS Our results concluded that orexin-A/OX1 receptor stimulates insulin secretion by activating AKT and its downstream target, mTOR. Therefore, orexins may regulate the energy balance for cell survival with the involvement of mTOR in this process.
Collapse
|
24
|
Becquet L, Abad C, Leclercq M, Miel C, Jean L, Riou G, Couvineau A, Boyer O, Tan YV. Systemic administration of orexin A ameliorates established experimental autoimmune encephalomyelitis by diminishing neuroinflammation. J Neuroinflammation 2019; 16:64. [PMID: 30894198 PMCID: PMC6425555 DOI: 10.1186/s12974-019-1447-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/26/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Orexins (hypocretins, Hcrt) A and B are GPCR-binding hypothalamic neuropeptides known to regulate sleep/wake states and feeding behavior. A few studies have shown that orexin A exhibits anti-inflammatory and neuroprotective properties, suggesting that it might provide therapeutic effects in inflammatory and neurodegenerative diseases like multiple sclerosis (MS). In MS, encephalitogenic Th1 and Th17 cells trigger an inflammatory response in the CNS destroying the myelin sheath. Here, we investigated the effects of peripheral orexin A administration to mice undergoing experimental autoimmune encephalomyelitis (EAE), a widely used model of MS. METHODS Mice were subcutaneously immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35-55 in CFA. Mice were treated intraperitoneally for five consecutive days with either PBS or 300 μg of orexin A starting at a moderate EAE score. Molecular, cellular, and histological analysis were performed by real-time PCR, ELISA, flow cytometry, and immunofluorescence. RESULTS Orexin A strongly ameliorated ongoing EAE, limiting the infiltration of pathogenic CD4+ T lymphocytes, and diminishing chemokine (MCP-1/CCL2 and IP-10/CXCL10) and cytokine (IFN-γ (Th1), IL-17 (Th17), TNF-α, IL-10, and TGF-β) expressions in the CNS. Moreover, orexin A treatment was neuroprotective, decreasing demyelination, astrogliosis, and microglial activation. Despite its strong local therapeutic effects, orexin A did not impair peripheral draining lymph node cell proliferation and Th1/Th17 cytokine production in response to MOG35-55 in vitro. CONCLUSIONS Peripherally-administered orexin A ameliorated EAE by reducing CNS neuroinflammation. These results suggest that orexins may represent new therapeutic candidates that should be further investigated for MS treatment.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Cell Proliferation/drug effects
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Glial Fibrillary Acidic Protein/metabolism
- Immune System/drug effects
- Immune System/metabolism
- Mice
- Mice, Inbred C57BL
- Myelin Basic Protein/metabolism
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Orexin Receptors/genetics
- Orexin Receptors/metabolism
- Orexins/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- RNA, Messenger/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Laurine Becquet
- grid.503198.6University of Rouen Normandy, INSERM U1234 PANTHER, Institute for Research and Innovation in Biomedicine (IRIB), Faculté de Médecine et Pharmacie, 22 Boulevard Gambetta, 76183 Rouen, France
| | - Catalina Abad
- grid.503198.6University of Rouen Normandy, INSERM U1234 PANTHER, Institute for Research and Innovation in Biomedicine (IRIB), Faculté de Médecine et Pharmacie, 22 Boulevard Gambetta, 76183 Rouen, France
| | - Mathilde Leclercq
- grid.503198.6University of Rouen Normandy, INSERM U1234 PANTHER, Institute for Research and Innovation in Biomedicine (IRIB), Faculté de Médecine et Pharmacie, 22 Boulevard Gambetta, 76183 Rouen, France
| | - Camille Miel
- grid.503198.6University of Rouen Normandy, INSERM U1234 PANTHER, Institute for Research and Innovation in Biomedicine (IRIB), Faculté de Médecine et Pharmacie, 22 Boulevard Gambetta, 76183 Rouen, France
| | - Laetitia Jean
- grid.503198.6University of Rouen Normandy, INSERM U1234 PANTHER, Institute for Research and Innovation in Biomedicine (IRIB), Faculté de Médecine et Pharmacie, 22 Boulevard Gambetta, 76183 Rouen, France
| | - Gaëtan Riou
- grid.503198.6University of Rouen Normandy, INSERM U1234 PANTHER, Institute for Research and Innovation in Biomedicine (IRIB), Faculté de Médecine et Pharmacie, 22 Boulevard Gambetta, 76183 Rouen, France
| | - Alain Couvineau
- 0000 0004 0620 6317grid.462374.0Paris-Diderot University, INSERM U1149, Inflammation Research Center (CRI), DHU UNITY, Faculté de Médecine Site Bichat, 16 rue H. Huchard, 75018 Paris, France
| | - Olivier Boyer
- grid.503198.6University of Rouen Normandy, INSERM U1234 PANTHER, Institute for Research and Innovation in Biomedicine (IRIB), Faculté de Médecine et Pharmacie, 22 Boulevard Gambetta, 76183 Rouen, France
- grid.41724.34Department of Immunology and Biotherapy, University of Rouen Normandy, INSERM U1234 PANTHER, IRIB, Rouen University Hospital, 22 Boulevard Gambetta, 76183 Rouen, France
| | - Yossan-Var Tan
- grid.503198.6University of Rouen Normandy, INSERM U1234 PANTHER, Institute for Research and Innovation in Biomedicine (IRIB), Faculté de Médecine et Pharmacie, 22 Boulevard Gambetta, 76183 Rouen, France
| |
Collapse
|
25
|
Couvineau A, Voisin T, Nicole P, Gratio V, Abad C, Tan YV. Orexins as Novel Therapeutic Targets in Inflammatory and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2019; 10:709. [PMID: 31695678 PMCID: PMC6817618 DOI: 10.3389/fendo.2019.00709] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 02/05/2023] Open
Abstract
Orexins [orexin-A (OXA) and orexin-B (OXB)] are two isoforms of neuropeptides produced by the hypothalamus. The main biological actions of orexins, focused on the central nervous system, are to control the sleep/wake process, appetite and feeding, energy homeostasis, drug addiction, and cognitive processes. These effects are mediated by two G protein-coupled receptor (GPCR) subtypes named OX1R and OX2R. In accordance with the synergic and dynamic relationship between the nervous and immune systems, orexins also have neuroprotective and immuno-regulatory (i.e., anti-inflammatory) properties. The present review gathers recent data demonstrating that orexins may have a therapeutic potential in several pathologies with an immune component including multiple sclerosis, Alzheimer's disease, narcolepsy, obesity, intestinal bowel diseases, septic shock, and cancers.
Collapse
Affiliation(s)
- Alain Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
- *Correspondence: Alain Couvineau
| | - Thierry Voisin
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
| | - Pascal Nicole
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
| | - Valérie Gratio
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
| | - Catalina Abad
- University of Rouen Normandy, INSERM U1234 PANTHER, IRIB, Rouen, France
| | - Yossan-Var Tan
- University of Rouen Normandy, INSERM U1234 PANTHER, IRIB, Rouen, France
- Yossan-Var Tan
| |
Collapse
|
26
|
Functional cardiac orexin receptors: role of orexin-B/orexin 2 receptor in myocardial protection. Clin Sci (Lond) 2018; 132:2547-2564. [PMID: 30467191 PMCID: PMC6365625 DOI: 10.1042/cs20180150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 01/25/2023]
Abstract
Orexins/hypocretins exert cardiovascular effects which are centrally mediated. In the present study, we tested whether orexins and their receptors may also act in an autocrine/paracrine manner in the heart exerting direct effects. Quantitative reverse transcription-PCR (RT-PCR), immunohistochemical and Western blot analyses revealed that the rat heart expresses orexins and orexin receptors (OXR). In isolated rat cardiomyocytes, only orexin-B (OR-B) caused an increase in contractile shortening, independent of diastolic or systolic calcium levels. A specific orexin receptor-2 (OX2R) agonist ([Ala11, d-Leu15]-Orexin B) exerted similar effects as OR-B, whereas a specific orexin receptor-1 (OX1R) antagonist (SB-408124) did not alter the responsiveness of OR-B. Treatment of the same model with OR-B resulted in a dose-dependent increase in myosin light chain and troponin-I (TnI) phosphorylation. Following ischaemia/reperfusion in the isolated Langendorff perfused rat heart model, OR-B, but not OR-A, exerts a cardioprotective effect; mirrored in an in vivo model as well. Unlike OR-A, OR-B was also able to induce extracellular signal-regulated kinase (ERK) 1/2 (ERK1/2) and Akt phosphorylation in rat myocardial tissue and ERK1/2 phosphorylation in human heart samples. These findings were further corroborated in an in vivo rat model. In human subjects with heart failure, there is a significant negative correlation between the expression of OX2R and the severity of the disease clinical symptoms, as assessed by the New York Heart Association (NYHA) functional classification. Collectively, we provide evidence of a distinct orexin system in the heart that exerts a cardioprotective role via an OR-B/OX2R pathway.
Collapse
|
27
|
Zhao X, Liu L, Li R, Wei X, Luan W, Liu P, Zhao J. Hypoxia-Inducible Factor 1-α (HIF-1α) Induces Apoptosis of Human Uterosacral Ligament Fibroblasts Through the Death Receptor and Mitochondrial Pathways. Med Sci Monit 2018; 24:8722-8733. [PMID: 30504760 PMCID: PMC6289032 DOI: 10.12659/msm.913384] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Hypoxia induces cell apoptosis in the uterosacral ligaments of patients with pelvic organ prolapse by upregulation of hypoxia-inducible factor-1α (HIF-1α). This study aimed to investigate the effects of HIF-1α on human uterosacral ligament fibroblasts (hUSLFs) following treatment with the chemical inducer of hypoxia, cobalt chloride (CoCl2), and to explore the underlying mechanisms. Material/Methods Ten women who underwent hysterectomy for benign disease provided uterosacral ligament tissue for cell extraction. Following CoCl2 treatment, cell viability of isolated and cultured hUSLFs was evaluated by the MTT assay. JC-1 fluorescence mitochondrial imaging was used to study the change in mitochondrial membrane potential. Cell apoptosis and expression of apoptosis-associated proteins and collagen type I alpha 1 (COL1A1) were measured by flow cytometry, TUNEL and Western blot, respectively. Results Hypoxia increased the expression of HIF-1α and increased cell apoptosis, decreased cell viability and expression levels of COL1A1. The JC-1 assay showed that the mitochondrial membrane potential was reduced and caspase-8, and -9 inhibitors partly reduced hUSLF apoptosis. HIF-1α treatment downregulated the expression of cellular FLICE inhibitory protein (c-FLIP), decoy receptor 2 (DcR2), and the ratio of Bcl-2 to Bax, and upregulated the expression tumor necrosis factor related apoptosis-inducing ligand (TRAIL), death receptor 5 (DR5) or TRAIL-R2, Fas, Bcl-2 interacting protein 3 (BNIP3), and cytochrome C, and increased the activation of caspase-3, caspase-8, and caspase-9, all of which were reversed by knockdown of HIF-1α. Conclusions HIF-1α significantly induced apoptosis of hUSLFs through both the cell death receptor and the mitochondrial-associated apoptosis pathways.
Collapse
Affiliation(s)
- Xinrui Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lidong Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Wenqing Luan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University , Jinan, Shandong, China (mainland)
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
28
|
Duffy CM, Hofmeister JJ, Nixon JP, Butterick TA. High fat diet increases cognitive decline and neuroinflammation in a model of orexin loss. Neurobiol Learn Mem 2018; 157:41-47. [PMID: 30471346 DOI: 10.1016/j.nlm.2018.11.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/26/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022]
Abstract
Midlife obesity is a risk factor for cognitive decline and is associated with the earlier onset of Alzheimer's disease (AD). Diets high in saturated fat potentiate the onset of obesity, microglial activation, and neuroinflammation. Signaling deficiencies in the hypothalamic peptide orexin and/or orexin fiber loss are linked to neurodegeneration, cognitive impairment, and neuroinflammation. Prior studies show that orexin is neuroprotective, suppresses neuroinflammation, and that treatment with orexin improves cognitive processes in orexin/ataxin-3 (O/A3) mice, a transgenic mouse model of orexin neurodegeneration. Our overall hypothesis is that loss of orexin contributes to high fat diet (HFD)-induced hippocampal neuroinflammation and cognitive decline. To examine this, we tested male O/A3 mice (7-8 mo. of age) in a two-way active avoidance (TWAA) hippocampus-dependent memory task. We tested whether (1) orexin loss impaired cognitive function; (2) HFD worsened cognitive impairment; and (3) HFD increased microglial activation and neuroinflammation. O/A3 mice showed significant impairments in TWAA task learning vs. wild type (WT) mice (increased escapes p < 0.05, reduced avoidances p < 0.0001). Mice were then placed on HFD (45% total fat, 31.4% saturated fat) or remained on normal chow (NC; 4% total fat and 1% saturated fat), and TWAA was retested at 2 and 4 weeks. Learning impairment was evident at both 2 and 4 weeks in O/A3 mice fed HFD for following diet exposure vs. WT mice on normal chow or HFD (increased escapes, reduced avoidances p < 0.05). Additionally, O/A3 mice had increased gene expression of the microglial activation marker Iba-1 (measured via qRT-PCR, p < 0.001). Further characterization of the microglial immune response genes in hippocampal tissue revealed a significant increase in CX3 chemokine receptor 1 (CX3CR1), tumor necrosis factor-alpha (TNF-α) and the mitochondria-associated enzyme immune responsive gene-1 (Irg1). Collectively, our results indicate that orexin loss impairs memory, and that HFD accelerates hippocampus-dependent learning deficits and the onset of neuroinflammation.
Collapse
Affiliation(s)
- C M Duffy
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States
| | - J J Hofmeister
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States; Minneapolis Center for Veterans Research and Education, Minneapolis, MN, United States
| | - J P Nixon
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States; Minneapolis Center for Veterans Research and Education, Minneapolis, MN, United States
| | - T A Butterick
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, United States; Minneapolis Center for Veterans Research and Education, Minneapolis, MN, United States.
| |
Collapse
|
29
|
Orexin A may suppress inflammatory response in fibroblast-like synoviocytes. Biomed Pharmacother 2018; 107:763-768. [DOI: 10.1016/j.biopha.2018.07.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
|
30
|
Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018; 11:220. [PMID: 30002617 PMCID: PMC6031739 DOI: 10.3389/fnmol.2018.00220] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022] Open
Abstract
Orexins, also known as hypocretins, are two neuropeptides secreted from orexin-containing neurons, mainly in the lateral hypothalamus (LH). Orexins orchestrate their effects by binding and activating two G-protein–coupled receptors (GPCRs), orexin receptor type 1 (OX1R) and type 2 (OX2R). Orexin/receptor pathways play vital regulatory roles in many physiological processes, especially feeding behavior, sleep–wake rhythm, reward and addiction and energy balance. Furthermore several reports showed that orexin/receptor pathways are involved in pathological processes of neurological diseases such as narcolepsy, depression, ischemic stroke, drug addiction and Alzheimer’s disease (AD). This review article summarizes the expression patterns, physiological functions and potential molecular mechanisms of the orexin/receptor system in neurological diseases, providing an overall framework for considering these pathways from the standpoints of basic research and clinical treatment of neurological diseases.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Yanyou Pan
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Chao Xu
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bo Bai
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
31
|
Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacol Ther 2018; 186:25-44. [PMID: 29289556 DOI: 10.1016/j.pharmthera.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy .,4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
33
|
Orexin receptor expression is increased during mancozeb-induced feeding impairments and neurodegenerative events in a marine fish. Neurotoxicology 2018; 67:46-53. [PMID: 29673962 DOI: 10.1016/j.neuro.2018.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/05/2023]
Abstract
Food intake ensures energy resources sufficient for basic metabolism, immune system and reproductive investment. It is already known that food-seeking performances, which are crucially controlled by orexins (ORXs), may be under the influence of environmental factors including pollutants. Among these, mancozeb (mz) is becoming an environmental risk for neurodegenerative diseases. Due to few studies on marine fish exposed to mz, it was our intention to correlate feeding latency, food intake and feeding duration to potential neurodegenerative processes in key diencephalic sites and expression changes of the ORX neuroreceptor (ORXR) in the ornate wrasses (Thalassoma pavo). Hence, fish exposed for 4 days (d) to mz 0.2 mg/l (deriving from a 0.07, 0.14, 0.2, 0.3 mg/l screening test) displayed a significant reduction (p < 0.05) of food intake compared to controls as early as 1d that became more evident (p < 0.01) after 3d. Moreover, significant enhancements of feeding latency were reported after 1d up to 3d (p < 0.001) and even feeding duration was enhanced up to 3d (p < 0.001), which instead moderately increased after 4d (p < 0.05). A reduction (-120%; p < 0.001) of mean body weight was also detected at the end of exposure. Likewise, a notable (p < 0.001) activation of ORXR protein occurred together with mRNA up-regulations in diencephalic areas such as the diffuse nucleus of the inferior lobe (+48%) that also exhibited evident degenerative neuronal fields. Overall, these results highlight an ORX role as a vital component of the neuroprotective program under environmental conditions that interfere with feeding behaviors.
Collapse
|
34
|
Ciccimarra R, Bussolati S, Grasselli F, Grolli S, Ragionieri L, Ravanetti F, Botti M, Gazza F, Cacchioli A, Di Lecce R, Cantoni AM, Basini G. Orexin system in swine ovarian follicles. Domest Anim Endocrinol 2018; 62:49-59. [PMID: 29053993 DOI: 10.1016/j.domaniend.2017.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/17/2022]
Abstract
Successful reproduction is strictly linked to metabolic cues. The orexins are a family of hypothalamic neurohormones, well known for their key role in the control of food intake and the involvement in several aspects of the reproductive process. The biological actions of both orexins are carried out through binding to the related Orexin 1 (OX1R) and Orexin 2 (OX2R) G-protein-coupled receptors. The purpose of this study was to investigate the presence of orexin system components in the porcine ovaries, to contribute to expand the knowledge about their pleiotropic role. First, we investigated the localization of orexin A (OXA) and its receptors by immunochemistry in different ovarian districts. Thereafter, we evaluated the expression of the prepro-orexin (PPO) gene and OXA effects on granulosa cell functions. Immunohistochemical study revealed the presence of orexinergic system components in porcine ovarian follicles. Moreover, our data show the expression of PPO messenger RNA in swine ovarian follicles >5 mm. In addition, OXA influences proliferation (P < 0.05), steroidogenic activity (P < 0.05), and redox status of granulosa cells (P < 0.05). Therefore, we hypothesize that OXA could exert a local physiological role in swine ovarian follicles even if further studies are required to deeply define the function of this pleiotropic system.
Collapse
Affiliation(s)
- R Ciccimarra
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - L Ragionieri
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Ravanetti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - M Botti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Gazza
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - A Cacchioli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - R Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - A M Cantoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
35
|
Wan X, Liu Y, Zhao Y, Sun X, Fan D, Guo L. Orexin A affects HepG2 human hepatocellular carcinoma cells glucose metabolism via HIF-1α-dependent and -independent mechanism. PLoS One 2017; 12:e0184213. [PMID: 28886081 PMCID: PMC5590901 DOI: 10.1371/journal.pone.0184213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 08/21/2017] [Indexed: 01/20/2023] Open
Abstract
Orexins are hypothalamic neuropeptides that regulate feeding, reward, wakefulness and energy homeostasis. The present study sought to characterize the involvement of orexin A in glucose metabolism in HepG2 human hepatocellular carcinoma cells, and investigated the role of hypoxia-inducible factor-1α (HIF-1α) in the response. HepG2 cells were exposed to different concentrations of orexin A (10−9 to 10−7 M) in vitro, without or with the orexin receptor 1 (OX1R) inhibitor (SB334867), HIF-1α inhibitor (YC-1) or a combination of both inhibitors. Subsequently, OX1R, HIF-1α expression and localization, glucose uptake, glucose transporter 1 (GLUT1) expression and ATP content were measured. We further investigated the intracellular fate of glucose by measuring the gene expression of pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase (LDHA) and pyruvate dehydrogenase B (PDHB), as well as metabolite levels including lactate generation and mitochondrial pyruvate dehydrogenase (PDH) activity. The activity of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was also assessed. Our results showed that the expression of OX1R was predominantly located in the nucleus in HepG2 cells. Orexin A oxygen-independently promoted the mRNA and protein expression of HIF-1α as well as its nuclear accumulation in HepG2 cells and the elevated HIF-1α protein was associated, at least partly, with the activation of the PI3K/Akt/mTOR pathway. Orexin A stimulated GLUT1 expression, glucose uptake as well as ATP generation in HepG2 cells via OX1R acting through the HIF-1α pathway. Moreover, orexin A inhibited LDHA, PDK1 expression and lactate production, stimulated PDHB expression and PDH enzyme activity independent of HIF-1α. Our results indicated that orexin signaling facilitated the glucose flux into mitochondrial oxidative metabolism rather than glycolysis in HepG2 cells. These findings provide new insight into the regulation of glucose metabolism by orexin A in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Xing Wan
- Department of Medical Oncology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P.R. China
| | - Yuanyuan Liu
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P.R. China
| | - Yuyan Zhao
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P.R. China
- * E-mail: (LG); (YZ)
| | - Xiaoqi Sun
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P.R. China
| | - Dongxiao Fan
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P.R. China
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P.R. China
- * E-mail: (LG); (YZ)
| |
Collapse
|
36
|
Hadadianpour Z, Fatehi F, Ayoobi F, Kaeidi A, Shamsizadeh A, Fatemi I. The effect of orexin-A on motor and cognitive functions in a rat model of Parkinson’s disease. Neurol Res 2017; 39:845-851. [DOI: 10.1080/01616412.2017.1352185] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zahra Hadadianpour
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Farangis Fatehi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fateme Ayoobi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Fatemi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
37
|
HSP90 and pCREB alterations are linked to mancozeb-dependent behavioral and neurodegenerative effects in a marine teleost. Toxicol Appl Pharmacol 2017; 323:26-35. [DOI: 10.1016/j.taap.2017.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/08/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
|
38
|
Pasban-Aliabadi H, Esmaeili-Mahani S, Abbasnejad M. Orexin-A Protects Human Neuroblastoma SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity: Involvement of PKC and PI3K Signaling Pathways. Rejuvenation Res 2017; 20:125-133. [PMID: 27814668 DOI: 10.1089/rej.2016.1836] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by progressive and selective death of dopaminergic neurons. Multifunctional neuropeptide orexin-A is involved in many biological events of the body. It has been shown that orexin-A has protective effects in neurodegenerative disease such as PD. However, its cellular mechanisms have not yet been fully clarified. Here, we investigated the intracellular signaling pathway of orexin-A neuroprotection in 6-hydroxydopamine (6-OHDA)-induced SH-SY5H cells damage as an in vitro model of PD. The cells were incubated with 150 μM 6-OHDA, and the viability was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazolium bromide (MTT) assay. Mitochondrial membrane potential and intracellular calcium were measured by fluorescent probes. Western blotting was also used to determine cyclooxygenase type 2 (COX-2), nuclear factor erythroid 2 related factor 2 (Nrf2), and HSP70 protein levels. The data showed that 6-OHDA has decreasing effects on cell viability, Nrf2, and HSP70 protein expression and increases the level of mitochondrial membrane potential, intracellular calcium, and COX-2 protein. Orexin-A (500 pM) significantly attenuated the 6-OHDA-induced cell damage. Furthermore, Orexin-A significantly prevented the mentioned effects of 6-OHDA on SH-SY5Y cells. Orexin 1 receptor antagonist (SB3344867), PKC, and PI3-kinase (PI3K) inhibitors (chelerythrin and LY294002, respectively) could suppress the orexin-A neuroprotective effect. In contrast, blockage of PKA by a selective inhibitor (KT5720) had no effects on the orexin protection. The results suggest that orexin-A protective effects against 6-OHDA-induced neurotoxicity are performed via its receptors, PKC and PI3K signaling pathways.
Collapse
Affiliation(s)
- Hamzeh Pasban-Aliabadi
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran
| | - Saeed Esmaeili-Mahani
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran .,2 Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences , Kerman, Iran
| | - Mehdi Abbasnejad
- 1 Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman , Kerman, Iran
| |
Collapse
|
39
|
Orexin-A Rescues Chronic Copper-Dependent Behavioral and HSP90 Transcriptional Alterations in the Ornate Wrasse Brain. Neurotox Res 2017; 31:578-589. [DOI: 10.1007/s12640-017-9706-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 11/26/2022]
|
40
|
Orexin-A promotes Glu uptake by OX1R/PKCα/ERK1/2/GLT-1 pathway in astrocytes and protects co-cultured astrocytes and neurons against apoptosis in anoxia/hypoglycemic injury in vitro. Mol Cell Biochem 2016; 425:103-112. [DOI: 10.1007/s11010-016-2866-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022]
|
41
|
Application of the Co-culture Membrane System Pointed to a Protective Role of Catestatin on Hippocampal Plus Hypothalamic Neurons Exposed to Oxygen and Glucose Deprivation. Mol Neurobiol 2016; 54:7369-7381. [PMID: 27815840 DOI: 10.1007/s12035-016-0240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/17/2016] [Indexed: 12/30/2022]
Abstract
Depletion of oxygen and glucose even for brief periods is sufficient to cause cerebral ischemia, which is a predominant worldwide cause of motor deficits with the reduction of life quality and subsequently death. Hence, more insights regarding protective measures against ischemic events are becoming a major research goal. Among the many neuronal factors, N-methyl-D-aspartate receptors (NMDAR), orexinergic neuroreceptors (ORXR), and sympatho-inhibitory neuropeptide catestatin (CST) are widely involved with ischemic episodes. In this study, it was possible to induce in vitro ischemic conditions of the hamster (Mesocricetus auratus) hippocampal and hypothalamic neuronal cultures, grown on a newly compartmentalized membrane system, via oxygen and glucose deprivation (OGD). These cultures displayed notably differentiated NMDARergic and ORXergic receptor expression activities along with evident brain-derived neurotrophic factor (BDNF) plus orexin A (ORX-A) secretion, especially under co-cultured conditions. Interestingly, addition of CST in OGD-insulted hippocampal cells accounted for upregulated GluN1 and ORX1R transcripts that in the case of the latter neuroreceptor was very strongly (p < 0.001) increased when co-cultured with hypothalamic cells. Similarly, hypothalamic neurons supplied very evident upregulations of GluN1, ORX1R, and above all of GluN2A transcripts along with increased BDNF and ORX-A secretion in the presence of hippocampal cells. Overall, the preferential CST effects on BDNF plus ORX-A production together with altered NMDAR and ORXR levels, especially in co-cultured hypothalamic cells pointed to ORX-containing neurons as major protective constituents against ischemic damages thus opening new scenarios on the cross-talking roles of CST during ischemic disorders.
Collapse
|
42
|
Duffy CM, Nixon JP, Butterick TA. Orexin A attenuates palmitic acid-induced hypothalamic cell death. Mol Cell Neurosci 2016; 75:93-100. [PMID: 27449757 DOI: 10.1016/j.mcn.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022] Open
Abstract
Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health.
Collapse
Affiliation(s)
- Cayla M Duffy
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Dr, Minneapolis, MN 55417, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St. Paul, MN 55108, USA
| | - Joshua P Nixon
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Dr, Minneapolis, MN 55417, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St. Paul, MN 55108, USA
| | - Tammy A Butterick
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Dr, Minneapolis, MN 55417, USA; Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St. Paul, MN 55108, USA; Minnesota Obesity Center, University of Minnesota, 1334 Eckles Ave, St. Paul, MN 55108, USA.
| |
Collapse
|
43
|
Guo SJ, Cui Y, Huang ZZ, Liu H, Zhang XQ, Jiang JX, Xin WJ. Orexin A-mediated AKT signaling in the dentate gyrus contributes to the acquisition, expression and reinstatement of morphine-induced conditioned place preference. Addict Biol 2016; 21:547-59. [PMID: 25757577 DOI: 10.1111/adb.12236] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accumulating evidence indicates that the hippocampal dentate gyrus (DG), a critical brain region contributing to learning and memory, is involved in the addiction and relapse to abused drugs. Emerging studies also suggest the role of orexin signaling in the rewarding behavior induced by repeated exposure to opiates. In the present study, we investigated the dynamic adaptation of orexin signaling in the DG and its functional significance in the acquisition, expression, maintenance of and relapse to rewarding behavior induced by morphine. Repeated place conditioning with morphine significantly increased the orexin A content released from the lateral hypothalamic area projecting neurons into the DG. Local infusions of orexin A into the DG sensitized the acquisition of and relapse to the conditioned place preference induced by morphine. The application of the orexin receptor type 1 (OXR1) antagonist SB334867 significantly abolished the acquisition, expression and maintenance of the conditioned place preference induced by repeated exposure to morphine. Furthermore, the significant increase of the phosphorylation of AKT in the DG was associated with preference for the morphine-paired chamber in rats, which was reversed by the local administration of an OXR1 antagonist. Thus, these findings suggested that the dynamic upregulation of orexin A signaling, via the AKT pathway in the DG, may promote the acquisition and maintenance of opioid-induced craving behaviors and may increase sensitivity to the rewarding effect of subsequent opioids.
Collapse
Affiliation(s)
- Sui-Jun Guo
- Department of Psychology; Guangzhou Medical University; China
| | - Yu Cui
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| | - Zhen-Zhen Huang
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| | - Huan Liu
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| | - Xue-Qin Zhang
- Department of Psychology; Guangzhou Medical University; China
| | - Jin-Xiang Jiang
- Department of Psychology; Guangzhou Medical University; China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center; Zhongshan Medical School; Sun Yat-Sen University; China
| |
Collapse
|
44
|
Liu Y, Zhao Y, Guo L. Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism. Mol Cell Endocrinol 2016; 420:208-16. [PMID: 26549689 DOI: 10.1016/j.mce.2015.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
Abstract
Orexins are hypothalamic neuropeptides that regulate food intake, energy homeostasis, reward system and sleep/wakefulness states. The purpose of this study was to investigate the effects of orexin A on glucose metabolism in human hepatocellular carcinoma cell line, Hep3B, and determine the possible mechanisms. Hep3B cells were incubated with different concentrations of orexin A (10(-9)-10(-7) M) in vitro in the presence or absence of the orexin receptor 1 (OX1R) inhibitor (SB334867), Akt inhibitor (PF-04691502) and mammalian target of rapamycin (mTOR) inhibitor (temsirolimus). Subsequently, OX1R protein expression, glucose transporter 1 (GLUT1) expression, glucose uptake, the mRNA expression of lactate dehydrogenase (LDHA), pyruvate dehydrogenase kinase 1 (PDK1) and pyruvate dehydrogenase B (PDHB), lactate generation and mitochondrial pyruvate dehydrogenase (PDH) enzyme activity were measured. The activity of phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was also determined. OX1R was expressed in hepatoma tissues and Hep3B cells. Stimulation of the Hep3B cells with orexin A resulted in a dose-dependent increase of GLUT1 expression and glucose uptake, which was associated with the activation of PI3K/Akt/mTOR pathway. Further, orexin A increased PDHB expression and PDH enzyme activity, decreased LDHA, PDK1 mRNA levels and lactate generation independent of PI3K/Akt/mTOR pathway. Our results demonstrated that orexin A directed the cellular metabolism towards mitochondrial glucose oxidation rather than glycolysis. These findings provide functional evidence of the metabolic actions of orexin A in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Yuyan Zhao
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, PR China.
| |
Collapse
|
45
|
Du MK, Hunt NJ, Waters KA, Machaalani R. Cumulative effects of repetitive intermittent hypercapnic hypoxia on orexin in the developing piglet hypothalamus. Int J Dev Neurosci 2015; 48:1-8. [PMID: 26548856 DOI: 10.1016/j.ijdevneu.2015.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 01/17/2023] Open
Abstract
Orexin neuropeptides (OxA and OxB) and their receptors (OX1R and OX2R) are involved in maintenance of sleep and wakefulness, and are regulated by various environmental stimuli. We studied piglets, in the early neonatal period, exposed to 48-min of intermittent hypercapnic hypoxia (IHH; 7% O2/8% CO2) alternating with air. Three groups of 13-14 day-old piglets with IHH exposure of 1-day (1D-IHH) (n=7), 2-days (2D-IHH) (n=7) and 4-days (4D-IHH) (n=8) were compared to controls (exposed only to air, n=8). Immunoreactivity of OxA and OxB was studied in the piglet hypothalamic regions of the dorsomedial hypothalamus (DMH), perifornical area (PeF) and lateral hypothalamic area (LH). Results showed that after 1D- and 2D-IHH, total OxA and OxB expression decreased by 20% (p ≤ 0.005) and 40% (p<0.001), respectively. After 4D-IHH, the decrease in OxA and OxB was 50% (p<0.001). These findings indicate that a chronic IHH exposure induces greater changes in orexin neuropeptide expression than an acute 1-day exposure in the hypothalamus. This may be causally related to the dysregulation of sleep.
Collapse
Affiliation(s)
- Man K Du
- Department of Pathology, University of Sydney, NSW 2006, Australia; The BOSCH Institute, University of Sydney, NSW 2006, Australia
| | - Nicholas J Hunt
- The BOSCH Institute, University of Sydney, NSW 2006, Australia; Department of Medicine, Blackburn Building, D06, University of Sydney, NSW 2006, Australia
| | - Karen A Waters
- Department of Medicine, Blackburn Building, D06, University of Sydney, NSW 2006, Australia; The Children's Hospital, Westmead Sydney, NSW 2145, Australia
| | - Rita Machaalani
- The BOSCH Institute, University of Sydney, NSW 2006, Australia; Department of Medicine, Blackburn Building, D06, University of Sydney, NSW 2006, Australia; The Children's Hospital, Westmead Sydney, NSW 2145, Australia.
| |
Collapse
|
46
|
Duffy CM, Yuan C, Wisdorf LE, Billington CJ, Kotz CM, Nixon JP, Butterick TA. Role of orexin A signaling in dietary palmitic acid-activated microglial cells. Neurosci Lett 2015; 606:140-4. [PMID: 26306651 DOI: 10.1016/j.neulet.2015.08.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/05/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022]
Abstract
Excess dietary saturated fatty acids such as palmitic acid (PA) induce peripheral and hypothalamic inflammation. Hypothalamic inflammation, mediated in part by microglial activation, contributes to metabolic dysregulation. In rodents, high fat diet-induced microglial activation results in nuclear translocation of nuclear factor-kappa B (NFκB), and increased central pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The hypothalamic neuropeptide orexin A (OXA, hypocretin 1) is neuroprotective in brain. In cortex, OXA can also reduce inflammation and neurodegeneration through a microglial-mediated pathway. Whether hypothalamic orexin neuroprotection mechanisms depend upon microglia is unknown. To address this issue, we evaluated effects of OXA and PA on inflammatory response in immortalized murine microglial and hypothalamic neuronal cell lines. We demonstrate for the first time in microglial cells that exposure to PA increases gene expression of orexin-1 receptor but not orexin-2 receptor. Pro-inflammatory markers IL-6, TNF-α, and inducible nitric oxide synthase in microglial cells are increased following PA exposure, but are reduced by pretreatment with OXA. The anti-inflammatory marker arginase-1 is increased by OXA. Finally, we show hypothalamic neurons exposed to conditioned media from PA-challenged microglia have increased cell survival only when microglia were pretreated with OXA. These data support the concept that OXA may act as an immunomodulatory regulator of microglia, reducing pro-inflammatory cytokines and increasing anti-inflammatory factors to promote a favorable neuronal microenvironment.
Collapse
Affiliation(s)
- Cayla M Duffy
- Veterans Administration Medical Center, Minneapolis, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Ce Yuan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Lauren E Wisdorf
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Charles J Billington
- Veterans Administration Medical Center, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Minnesota Obesity Center, St Paul, MN USA
| | - Catherine M Kotz
- Veterans Administration Medical Center, Minneapolis, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA; Minnesota Obesity Center, St Paul, MN USA
| | - Joshua P Nixon
- Veterans Administration Medical Center, Minneapolis, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Tammy A Butterick
- Veterans Administration Medical Center, Minneapolis, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
47
|
Hunt NJ, Waters KA, Rodriguez ML, Machaalani R. Decreased orexin (hypocretin) immunoreactivity in the hypothalamus and pontine nuclei in sudden infant death syndrome. Acta Neuropathol 2015; 130:185-98. [PMID: 25953524 DOI: 10.1007/s00401-015-1437-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/29/2022]
Abstract
Infants at risk of sudden infant death syndrome (SIDS) have been shown to have dysfunctional sleep and poor arousal thresholds. In animal studies, both these attributes have been linked to impaired signalling of the neuropeptide orexin. This study examined the immunoreactivity of orexin (OxA and OxB) in the tuberal hypothalamus (n = 27) and the pons (n = 15) of infants (1-10 months) who died from SIDS compared to age-matched non-SIDS infants. The percentage of orexin immunoreactive neurons and the total number of neurons were quantified in the dorsomedial, perifornical and lateral hypothalamus at three levels of the tuberal hypothalamus. In the pons, the area of orexin immunoreactive fibres were quantified in the locus coeruleus (LC), dorsal raphe (DR), laterodorsal tegmental (LDT), medial parabrachial, dorsal tegmental (DTg) and pontine nuclei (Pn) using automated methods. OxA and OxB were co-expressed in all hypothalamic and pontine nuclei examined. In SIDS infants, orexin immunoreactivity was decreased by up to 21 % within each of the three levels of the hypothalamus compared to non-SIDS (p ≤ 0.050). In the pons, a 40-50 % decrease in OxA occurred in the all pontine nuclei, while a similar decrease in OxB immunoreactivity was observed in the LC, LDT, DTg and Pn (p ≤ 0.025). No correlations were found between the decreased orexin immunoreactivity and previously identified risk factors for SIDS, including prone sleeping position and cigarette smoke exposure. This finding of reduced orexin immunoreactivity in SIDS infants may be associated with sleep dysfunction and impaired arousal.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Department of Medicine, Room 206, SIDS and Sleep Apnoea Laboratory, Sydney Medical School, University of Sydney, Blackburn Building, D06, Sydney, NSW, 2006, Australia
| | | | | | | |
Collapse
|
48
|
Davies J, Chen J, Pink R, Carter D, Saunders N, Sotiriadis G, Bai B, Pan Y, Howlett D, Payne A, Randeva H, Karteris E. Orexin receptors exert a neuroprotective effect in Alzheimer's disease (AD) via heterodimerization with GPR103. Sci Rep 2015; 5:12584. [PMID: 26223541 PMCID: PMC4519789 DOI: 10.1038/srep12584] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/29/2015] [Indexed: 12/22/2022] Open
Abstract
Orexins are neuropeptides that regulate the sleep-wake cycle and feeding behaviour. QRFP is a newly discovered neuropeptide which exerts similar orexigenic activity, thus playing an important role in energy homeostasis and regulation of appetite. The exact expression and signalling characteristics and physiological actions of QRFP and its receptor GPR103 are poorly understood. Alzheimer's disease (AD) patients experience increased nocturnal activity, excessive daytime sleepiness, and weight loss. We hypothesised therefore that orexins and QRFP might be implicated in the pathophysiology of AD. We report that the down-regulation of hippocampal orexin receptors (OXRs) and GPR103 particularly in the cornu ammonis (CA) subfield from AD patients suffering from early onset familial AD (EOFAD) and late onset familial AD (LOAD). Using an in vitro model we demonstrate that this downregulation is due to to Aβ-plaque formation and tau hyper-phosphorylation. Transcriptomics revealed a neuroprotective role for both orexins and QRFP. Finally we provide conclusive evidence using BRET and FRET that OXRs and GPR103 form functional hetero-dimers to exert their effects involving activation of ERK1/2. Pharmacological intervention directed at the orexigenic system may prove to be an attractive avenue towards the discovery of novel therapeutics for diseases such as AD and improving neuroprotective signalling pathways.
Collapse
Affiliation(s)
- Julie Davies
- Biosciences, College of Health and Life Sciences, Brunel University, Uxbridge, UB8 3PH, UK
| | - Jing Chen
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, P.R. China
| | - Ryan Pink
- Department of Biological and Medical Sciences, Oxford Brookes University, UK
| | - David Carter
- Department of Biological and Medical Sciences, Oxford Brookes University, UK
| | - Nigel Saunders
- Centre for Systems and Synthetic Biology, Brunel University, Uxbridge UB83PH, UK
| | - Georgios Sotiriadis
- Biosciences, College of Health and Life Sciences, Brunel University, Uxbridge, UB8 3PH, UK
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, P.R. China
| | - Yanyou Pan
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, P.R. China
| | - David Howlett
- Wolfson Centre for Age Related Diseases, King’s College London, London, SE11UL, UK
| | - Annette Payne
- Department of Computer Science, College of Engineering, Design and Physical Sciences, Brunel University, Uxbridge UB8 3PH, UK
| | - Harpal Randeva
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Emmanouil Karteris
- Biosciences, College of Health and Life Sciences, Brunel University, Uxbridge, UB8 3PH, UK
| |
Collapse
|
49
|
López-Hernández B, Ceña V, Posadas I. The endoplasmic reticulum stress and the HIF-1 signalling pathways are involved in the neuronal damage caused by chemical hypoxia. Br J Pharmacol 2015; 172:2838-51. [PMID: 25625917 DOI: 10.1111/bph.13095] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/23/2014] [Accepted: 01/15/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Hypoxia inducible factor-1 (HIF-1) promotes transitory neuronal survival suggesting that additional mechanisms such as the endoplasmic reticulum (ER) stress might be involved in determining neuronal survival or death. Here, we examined the involvement of ER stress in hypoxia-induced neuronal death and analysed the relationship between ER stress and the HIF-1 pathways. EXPERIMENTAL APPROACH Cultures of rat cortical neurons were exposed to chemical hypoxia induced by 200 μM CoCl2 , and its effect on neuronal viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and counting apoptotic nuclei. Protein levels were determined by Western blot analysis. RT-PCR was performed to analyse the content and the t1/2 of HIF-1α mRNA. KEY RESULTS Chemical hypoxia induced neuronal apoptosis in a time-dependent manner and activated the ER stress PRK-like endoplasmic reticulum kinase (PERK)-dependent pathway. At later stages, chemical hypoxia increased the expression of the C/EBP homologous protein (CHOP) and caspase 12 activity. CoCl2 reduced HIF-1α mRNA t1/2 leading to a decrease in HIF-1α mRNA and protein content, simultaneously activating the ER stress PERK-dependent pathway. Salubrinal, a selective inhibitor of phospho-eIF2α phosphatase, protected neurons from chemical hypoxia by reducing CHOP levels and caspase 12 activity, and increasing the t1/2 of HIF-1α mRNA and the levels of HIF-1α protein. Knocking down HIF-1α blocked the neuroprotective effects of salubrinal. CONCLUSIONS AND IMPLICATIONS Neuronal apoptosis induced by chemical hypoxia is a process regulated by HIF-1α stabilization early on and by ER stress activation at later stages. Our data also suggested that HIF-1α levels were regulated by ER stress.
Collapse
Affiliation(s)
- Beatriz López-Hernández
- Departamento de Ciencias Médicas, Unidad Asociada Neurodeath CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | - Valentin Ceña
- Departamento de Ciencias Médicas, Unidad Asociada Neurodeath CSIC-Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Posadas
- Departamento de Ciencias Médicas, Unidad Asociada Neurodeath CSIC-Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
50
|
Chang X, Zhao Y, Guo L. Effect of Orexin-A on Cortisol Secretion in H295R Cells via p70S6K/4EBP1 Signaling Pathway. Int J Endocrinol 2015; 2015:405157. [PMID: 26064108 PMCID: PMC4441985 DOI: 10.1155/2015/405157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/02/2015] [Accepted: 04/24/2015] [Indexed: 11/17/2022] Open
Abstract
Orexin-A is a neuropeptide that orchestrates diverse central and peripheral processes. It is now clear that orexin system plays a central role in the regulation of endocrine, paracrine, and neurocrine. It is involved in the regulation of growth hormone, adrenocorticotropic hormone, thyroid, mineralocorticoid, and cortisol secretion. These hormones may also serve as a kind of signal linking energy balance regulation, reproduction, stress response, and cardiovascular regulation. Many studies have demonstrated the ability of orexin-A to regulate adrenocortical cells through the MAPK (mitogen-activated protein kinases) pathway. The aim of our study is to investigate the effect of orexin-A on cortisol secretion via the protein 70 ribosomal protein S6 kinase-1 (p70S6K) and eukaryotic translation initiation factor 4E binding proteins (4EBP1) signaling pathway in adrenocortical cells. We reported the first evidence that orexin-A stimulated p70S6K and 4EBP1 in human H295R adrenocortical cells in a concentration and time-dependent manner. 10(-6) M orexin-A treatment for 1 hour was the most potent. Our results also indicated that p70S6K and 4EBP1 kinases participated in controlling cortisol secretion via OX1 receptor in H295R cells, which implied important role of p70S6K and 4EBP1 kinases in regulating adrenal function induced by orexin-A.
Collapse
Affiliation(s)
- Xiaocen Chang
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Yuyan Zhao
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
- *Yuyan Zhao:
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|