1
|
Bou Najm D, Alame S, Takash Chamoun W. Unraveling the Role of Wnt Signaling Pathway in the Pathogenesis of Autism Spectrum Disorder (ASD): A Systematic Review. Mol Neurobiol 2024:10.1007/s12035-024-04558-x. [PMID: 39489840 DOI: 10.1007/s12035-024-04558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Autism spectrum disorder (ASD), or simply autism, is a neurodevelopmental disorder characterized by social communication deficit, restricted interests, and repetitive behavior. Several studies suggested a link between autism and the dysregulation of the Wnt signaling pathway which is mainly involved in cell fate determination, cell migration, cell polarity, neural patterning, and organogenesis. Despite the absence of effective therapy, significant progress has been made in understanding the pathogenesis of ASD. Neuropharmacological studies showed that drugs acting on the Wnt pathway like Canagliflozin can alleviate autistic-like behavior in animal models. Hence, this pathway could potentially be a futuristic therapeutic target to mitigate autism's symptoms. This systematic review aims to collect and analyze evidence that elucidates how alterations in the Wnt pathway may contribute to the pathogenesis of autism in animal models at the molecular, cellular, and physiological levels. Comprehensive searches were conducted across multiple databases, including PubMed, Web of Science, Embase, and Scopus to identify relevant studies up to March 2024. The inclusion criteria encompassed experimental studies that focused on the link between autism and this pathway, and the quality assessment was ensured by SYRCLE's risk of bias tools. Collectively, the included articles highlighted the possible implication of this pathway in the abnormalities found in autism, which impacted processes such as energy metabolism, oxidative stress, and neurogenesis. These alterations could underlie autistic behavior by affecting synaptic transmission and mitochondrial function.
Collapse
Affiliation(s)
- Daniel Bou Najm
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon.
| | - Saada Alame
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon.
| | - Wafaa Takash Chamoun
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon.
| |
Collapse
|
2
|
Shin N, Lee HJ, Sim DY, Ahn CH, Park SY, Koh W, Khil J, Shim BS, Kim B, Kim SH. Anti-Warburg Mechanism of Ginsenoside F2 in Human Cervical Cancer Cells via Activation of miR193a-5p and Inhibition of β-Catenin/c-Myc/Hexokinase 2 Signaling Axis. Int J Mol Sci 2024; 25:9418. [PMID: 39273365 PMCID: PMC11394963 DOI: 10.3390/ijms25179418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Though Ginsenoside F2 (GF2), a protopanaxadiol saponin from Panax ginseng, is known to have an anticancer effect, its underlying mechanism still remains unclear. In our model, the anti-glycolytic mechanism of GF2 was investigated in human cervical cancer cells in association with miR193a-5p and the β-catenin/c-Myc/Hexokinase 2 (HK2) signaling axis. Here, GF2 exerted significant cytotoxicity and antiproliferation activity, increased sub-G1, and attenuated the expression of pro-Poly (ADPribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (procaspase3) in HeLa and SiHa cells. Consistently, GF2 attenuated the expression of Wnt, β-catenin, and c-Myc and their downstream target genes such as HK2, pyruvate kinase isozymes M2 (PKM2), and lactate dehydrogenase A (LDHA), along with a decreased production of glucose and lactate in HeLa and SiHa cells. Moreover, GF2 suppressed β-catenin and c-Myc stability in the presence and absence of cycloheximide in HeLa cells, respectively. Additionally, the depletion of β-catenin reduced the expression of c-Myc and HK2 in HeLa cells, while pyruvate treatment reversed the ability of GF2 to inhibit β-catenin, c-Myc, and PKM2 in GF2-treated HeLa cells. Notably, GF2 upregulated the expression of microRNA139a-5p (miR139a-5p) in HeLa cells. Consistently, the miR139a-5p mimic enhanced the suppression of β-catenin, c-Myc, and HK2, while the miR193a-5p inhibitor reversed the ability of GF2 to attenuate the expression of β-catenin, c-Myc, and HK2 in HeLa cells. Overall, these findings suggest that GF2 induces apoptosis via the activation of miR193a-5p and the inhibition of β-catenin/c-Myc/HK signaling in cervical cancer cells.
Collapse
Affiliation(s)
- Nari Shin
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Wonil Koh
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Jaeho Khil
- Institute of Sports Science, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| |
Collapse
|
3
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Wang F, Chen L, Kong D, Zhang X, Xia S, Liang B, Li Y, Zhou Y, Zhang Z, Shao J, Zheng S, Zhang F. Canonical Wnt signaling promotes HSC glycolysis and liver fibrosis through an LDH-A/HIF-1α transcriptional complex. Hepatology 2024; 79:606-623. [PMID: 37733267 PMCID: PMC10871634 DOI: 10.1097/hep.0000000000000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/10/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND AND AIMS Aerobic glycolysis reprogramming occurs during HSC activation, but how it is initiated and sustained remains unknown. We investigated the mechanisms by which canonical Wnt signaling regulated HSC glycolysis and the therapeutic implication for liver fibrosis. APPROACH AND RESULTS Glycolysis was examined in HSC-LX2 cells upon manipulation of Wnt/β-catenin signaling. Nuclear translocation of lactate dehydrogenase A (LDH-A) and its interaction with hypoxia-inducible factor-1α (HIF-1α) were investigated using molecular simulation and site-directed mutation assays. The pharmacological relevance of molecular discoveries was intensified in primary cultures, rodent models, and human samples. HSC glycolysis was enhanced by Wnt3a but reduced by β-catenin inhibitor or small interfering RNA (siRNA). Wnt3a-induced rapid transactivation and high expression of LDH-A dependent on TCF4. Wnt/β-catenin signaling also stimulated LDH-A nuclear translocation through importin β2 interplay with a noncanonical nuclear location signal of LDH-A. Mechanically, LDH-A bound to HIF-1α and enhanced its stability by obstructing hydroxylation-mediated proteasome degradation, leading to increased transactivation of glycolytic genes. The Gly28 residue of LDH-A was identified to be responsible for the formation of the LDH-A/HIF-1α transcription complex and stabilization of HIF-1α. Furthermore, LDH-A-mediated glycolysis was required for HSC activation in the presence of Wnt3a. Results in vivo showed that HSC activation and liver fibrosis were alleviated by HSC-specific knockdown of LDH-A in mice. β-catenin inhibitor XAV-939 mitigated HSC activation and liver fibrosis, which were abrogated by HSC-specific LDH-A overexpression in mice with fibrosis. CONCLUSIONS Inhibition of HSC glycolysis by targeting Wnt/β-catenin signaling and LDH-A had therapeutic promise for liver fibrosis.
Collapse
Affiliation(s)
- Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baoyu Liang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ya Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Hou Z, Wu C, Tang J, Liu S, Li L. CLSPN actives Wnt/β-catenin signaling to facilitate glycolysis and cell proliferation in oral squamous cell carcinoma. Exp Cell Res 2024; 435:113935. [PMID: 38237848 DOI: 10.1016/j.yexcr.2024.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a common malignancy with a poor prognosis. This study aimed to determine the influence and underlying mechanisms of CLSPN on OSCC. METHODS CLSPN expression was tested using quantitative real-time polymerase chain reaction, immunohistochemistry, and western blotting. Flow cytometry, cell counting kit, and colony formation assays were performed to determine OSCC cell apoptosis, viability, and proliferation, respectively. In OSCC cells, the extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose uptake, and lactate production were determined using the corresponding kits. Changes in the protein levels of HK2, PKM2, LDHA, Wnt3a, and β-catenin were assessed using western blotting. RESULTS CLSPN expression was increased in OSCC tissues. Overexpression of CLSPN in HSC-2 cells promoted cell proliferation, increased the levels of ECAR, glucose uptake, and lactate production, and increased the protein levels of HK2, PKM2, LDHA, Wnt3a, and β-catenin, but inhibited OCR levels and apoptosis. The knockdown of CLSPN in CAL27 cells resulted in the opposite results. Moreover, the effects of CLSPN overexpression on glycolysis and OSCC cell proliferation were reversed by Wnt3a knockdown. In vivo, knockdown of CLSPN restrained tumor growth, glycolysis, and the activation of Wnt/β-catenin signaling. CONCLUSION CLSPN promoted glycolysis and OSCC cell proliferation, and reduced apoptosis, which was achieved by the activation of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zeyu Hou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinru Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shaohua Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Lei Y, He L, Li Y, Hou J, Zhang H, Li G. PDLIM1 interacts with HK2 to promote gastric cancer progression through enhancing the Warburg effect via Wnt/β-catenin signaling. Cell Tissue Res 2024; 395:105-116. [PMID: 37930472 DOI: 10.1007/s00441-023-03840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
PDZ and LIM domain protein 1 (PDLIM1) is a cytoskeletal protein and is associated with the malignant pathological features of several tumors. However, the prognostic value of PDLIM1 and the molecular mechanisms by which it is involved in the metabolism and progression in gastric cancer (GC) are still unclear. The GEPIA database was used to predict the expression and prognosis of PDLIM1 in GC. qRT-PCR and western blot assays were applied to detect the mRNA and protein expression in GC tissues and cells. Loss- and gain-of-function experiments were performed to evaluate the biological role of PDLIM1 in GC cells. The Warburg effect was detected by a battery of glycolytic indicators. The interaction of PDLIM1 and hexokinase 2 (HK2) was determined by a co-immunoprecipitation assay. Furthermore, the modulatory effects of PDLIM1 and HK2 on Wnt/β-catenin signaling were assessed. The results showed that PDLIM1 expression was upregulated in GC tissues and cells and was associated with a poor prognosis for GC patients. PDLIM1 inhibition reduced GC cell proliferation, migration and invasion and promoted cell apoptosis. In the glucose deprivation (GLU-D) condition, the PDLIM1 level was reduced and PDLIM1 overexpression led to an increase in glycolysis. Besides, mechanistic investigation showed that PDLIM1 interacted with HK2 to mediate biological behaviors and the glycolysis of GC through Wnt/β-catenin signaling under glucose deprivation. In conclusion, PDLIM1 interacts with HK2 to promote gastric cancer progression by enhancing the Warburg effect via Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yunpeng Lei
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Lirui He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Yue Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Jianing Hou
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Haoran Zhang
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China
| | - Guan Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, NO. 1120, Lianhua Road, Futian District, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
7
|
Rico A, Valls A, Guembelzu G, Azpitarte M, Aiastui A, Zufiria M, Jaka O, López de Munain A, Sáenz A. Altered expression of proteins involved in metabolism in LGMDR1 muscle is lost in cell culture conditions. Orphanet J Rare Dis 2023; 18:315. [PMID: 37817200 PMCID: PMC10565977 DOI: 10.1186/s13023-023-02873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy due to mutations in the CAPN3 gene. While the pathophysiology of this disease has not been clearly established yet, Wnt and mTOR signaling pathways impairment in LGMDR1 muscles has been reported. RESULTS A reduction in Akt phosphorylation ratio and upregulated expression of proteins implicated in glycolysis (HK-II) and in fructose and lactate transport (GLUT5 and MCT1) in LGMDR1 muscle was observed. In vitro analysis to establish mitochondrial and glycolytic functions of primary cultures were performed, however, no differences between control and patients were observed. Additionally, gene expression analysis showed a lack of correlation between primary myoblasts/myotubes and LGMDR1 muscle while skin fibroblasts and CD56- cells showed a slightly better correlation with muscle. FRZB gene was upregulated in all the analyzed cell types (except in myoblasts). CONCLUSIONS Proteins implicated in metabolism are deregulated in LGMDR1 patients' muscle. Obtained results evidence the limited usefulness of primary myoblasts/myotubes for LGMDR1 gene expression and metabolic studies. However, since FRZB is the only gene that showed upregulation in all the analyzed cell types it is suggested its role as a key regulator of the pathophysiology of the LGMDR1 muscle fiber. The Wnt signaling pathway inactivation, secondary to FRZB upregulation, and GLUT5 overexpression may participate in the impaired adipogenesis in LGMD1R patients.
Collapse
Affiliation(s)
- Anabel Rico
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Andrea Valls
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Garazi Guembelzu
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Margarita Azpitarte
- Cell Culture, Histology and Multidisciplinary 3D Printing Platform, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Ana Aiastui
- Department of Neurology, Donostialdea Integrated Health Organization, San Sebastián, Spain
| | - Mónica Zufiria
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Oihane Jaka
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
| | - Adolfo López de Munain
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, San Sebastián, Spain
- Department of Neurosciences, University of the Basque Country UPV-EHU, San Sebastián, Spain
- Faculty of Medicine, University of Deusto, Bilbao, Spain
| | - Amets Sáenz
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain.
- CIBERNED, CIBER, Spanish Ministry of Science and Innovation, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
8
|
Kwon HH, Ahn CH, Lee HJ, Sim DY, Park JE, Park SY, Kim B, Shim BS, Kim SH. The Apoptotic and Anti-Warburg Effects of Brassinin in PC-3 Cells via Reactive Oxygen Species Production and the Inhibition of the c-Myc, SIRT1, and β-Catenin Signaling Axis. Int J Mol Sci 2023; 24:13912. [PMID: 37762214 PMCID: PMC10530901 DOI: 10.3390/ijms241813912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Though Brassinin is known to have antiangiogenic, anti-inflammatory, and antitumor effects in colon, prostate, breast, lung, and liver cancers, the underlying antitumor mechanism of Brassinin is not fully understood so far. Hence, in the current study, the apoptotic mechanism of Brassinin was explored in prostate cancer. Herein, Brassinin significantly increased the cytotoxicity and reduced the expressions of pro-Poly ADP-ribose polymerase (PARP), pro-caspase 3, and B-cell lymphoma 2 (Bcl-2) in PC-3 cells compared to DU145 and LNCaP cells. Consistently, Brassinin reduced the number of colonies and increased the sub-G1 population and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL)-positive cells in the PC-3 cells. Of note, Brassinin suppressed the expressions of pyruvate kinase-M2 (PKM2), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and lactate dehydrogenase (LDH) as glycolytic proteins in the PC-3 cells. Furthermore, Brassinin significantly reduced the expressions of SIRT1, c-Myc, and β-catenin in the PC-3 cells and also disrupted the binding of SIRT1 with β-catenin, along with a protein-protein interaction (PPI) score of 0.879 and spearman's correlation coefficient of 0.47 being observed between SIRT1 and β-catenin. Of note, Brassinin significantly increased the reactive oxygen species (ROS) generation in the PC-3 cells. Conversely, ROS scavenger NAC reversed the ability of Brassinin to attenuate pro-PARP, pro-Caspase3, SIRT1, and β-catenin in the PC-3 cells. Taken together, these findings support evidence that Brassinin induces apoptosis via the ROS-mediated inhibition of SIRT1, c-Myc, β-catenin, and glycolysis proteins as a potent anticancer candidate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (H.H.K.); (C.-H.A.); (H.-J.L.); (D.Y.S.); (J.E.P.); (S.-Y.P.); (B.K.); (B.-S.S.)
| |
Collapse
|
9
|
Byroju VV, Nadukkandy AS, Cordani M, Kumar LD. Retinoblastoma: present scenario and future challenges. Cell Commun Signal 2023; 21:226. [PMID: 37667345 PMCID: PMC10478474 DOI: 10.1186/s12964-023-01223-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
With an average incidence of 1 in every 18,000 live births, retinoblastoma is a rare type of intraocular tumour found to affect patients during their early childhood. It is curable if diagnosed at earlier stages but can become life-threateningly malignant if not treated timely. With no racial or gender predisposition, or even environmental factors known to have been involved in the incidence of the disease, retinoblastoma is often considered a clinical success story in pediatric oncology. The survival rate in highly developed countries is higher than 95% and they have achieved this because of the advancement in the development of diagnostics and treatment techniques. This includes developing the already existing techniques like chemotherapy and embarking on new strategies like enucleation, thermotherapy, cryotherapy, etc. Early diagnosis, studies on the etiopathogenesis and genetics of the disease are the need of the hour for improving the survival rates. According to the Knudson hypothesis, also known as the two hit hypothesis, two hits on the retinoblastoma susceptibility (RB) gene is often considered as the initiating event in the development of the disease. Studies on the molecular basis of the disease have also led to deciphering the downstream events and thus in the discovery of biomarkers and related targeted therapies. Furthermore, improvements in molecular biology techniques enhanced the development of efficient methods for early diagnosis, genetic counseling, and prevention of the disease. In this review, we discuss the genetic and molecular features of retinoblastoma with a special emphasis on the mutation leading to the dysregulation of key signaling pathways involved in cell proliferation, DNA repair, and cellular plasticity. Also, we describe the classification, clinical and epidemiological relevance of the disease, with an emphasis on both the traditional and innovative treatments to tackle retinoblastoma. Video Abstract.
Collapse
Affiliation(s)
- Vishnu Vardhan Byroju
- Department of Biochemistry, American International Medical University, Gros Islet, St. Lucia, USA
| | | | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, and Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Lekha Dinesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, India.
| |
Collapse
|
10
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part II: Molecular Mechanisms of Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:357. [PMID: 37754786 PMCID: PMC10531542 DOI: 10.3390/jcdd10090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which ischemic heart disease is the most representative. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As it is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian hearts. In contrast, some lower vertebrate species can regenerate the heart after an injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this 'two parts' review, we discuss the current state-of-the-art of the main response to achieve heart regeneration, where several processes are involved and essential for cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
11
|
Li S, Hao L, Hu X. Natural products target glycolysis in liver disease. Front Pharmacol 2023; 14:1242955. [PMID: 37663261 PMCID: PMC10469892 DOI: 10.3389/fphar.2023.1242955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the occurrence and development of different liver diseases. Oxidative phosphorylation (OXPHOS) dysfunction and production of reactive oxygen species are closely related to mitochondrial dysfunction, forcing glycolysis to become the main source of energy metabolism of liver cells. Moreover, glycolysis is also enhanced to varying degrees in different liver diseases, especially in liver cancer. Therefore, targeting the glycolytic signaling pathway provides a new strategy for the treatment of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis associated with liver cancer. Natural products regulate many steps of glycolysis, and targeting glycolysis with natural products is a promising cancer treatment. In this review, we have mainly illustrated the relationship between glycolysis and liver disease, natural products can work by targeting key enzymes in glycolysis and their associated proteins, so understanding how natural products regulate glycolysis can help clarify the therapeutic mechanisms these drugs use to inhibit liver disease.
Collapse
Affiliation(s)
- Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
13
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
14
|
Vallée A. Arterial Stiffness and the Canonical WNT/β-catenin Pathway. Curr Hypertens Rep 2022; 24:499-507. [PMID: 35727523 DOI: 10.1007/s11906-022-01211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Arterial stiffness (AS) was mainly associated with cardiovascular morbidity and mortality in a hypertensive patient. Some risk factors contribute to the development of AS, such as aging, high blood pressure, vascular calcification, inflammation, and diabetes mellitus. The WNT/β-catenin pathway is implicated in numerous signaling and regulating pathways, including embryogenesis, cell proliferation, migration and polarity, apoptosis, and organogenesis. The activation of the WNT/β-catenin pathway is associated with the development of these risk factors. RECENT FINDINGS Aortic pulse wave velocity (PWV) is measured to determine AS, and in peripheral artery disease patients, PWV is higher than controls. An augmentation in PWV by 1 m/s has been shown to increase the risk of cardiovascular events by 14%. AS measured by PWV is characterized by the deregulation of the WNT/β-catenin pathway by the inactivation of its two inhibitors, i.e., DKK1 and sclerostin. Thus, this review focuses on the role of the WNT/β-catenin pathway which contributes to the development of arterial stiffness.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology - Data - Biostatistics, Delegation of Clinical Research and Innovation, Foch Hospital, 92150, Suresnes, France.
| |
Collapse
|
15
|
Roy SK, Ma Y, Lam BQ, Shrivastava A, Srivastav S, Shankar S, Srivastava RK. Riluzole regulates pancreatic cancer cell metabolism by suppressing the Wnt-β-catenin pathway. Sci Rep 2022; 12:11062. [PMID: 35773307 PMCID: PMC9246955 DOI: 10.1038/s41598-022-13472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Most cancer cells rely on aerobic glycolysis to support uncontrolled proliferation and evade apoptosis. However, pancreatic cancer cells switch to glutamine metabolism to survive under hypoxic conditions. Activation of the Wnt/β-catenin pathway induces aerobic glycolysis by activating enzymes required for glucose metabolism and regulating the expression of glutamate transporter and glutamine synthetase. The results demonstrate that riluzole inhibits pancreatic cancer cell growth and has no effect on human pancreatic normal ductal epithelial cells. RNA-seq experiments identified the involvement of Wnt and metabolic pathways by riluzole. Inhibition of Wnt-β-catenin/TCF-LEF pathway by riluzole suppresses the expression of PDK, MCT1, cMyc, AXIN, and CyclinD1. Riluzole inhibits glucose transporter 2 expression, glucose uptake, lactate dehydrogenase A expression, and NAD + level. Furthermore, riluzole inhibits glutamate release and glutathione levels, and elevates reactive oxygen species. Riluzole disrupts mitochondrial homeostasis by inhibiting Bcl-2 and upregulating Bax expression, resulting in a drop of mitochondrial membrane potential. Finally, riluzole inhibits pancreatic cancer growth in KPC (Pdx1-Cre, LSL-Trp53R172H, and LSL-KrasG12D) mice. In conclusion, riluzole can inhibit pancreatic cancer growth by regulating glucose and glutamine metabolisms and can be used to treat pancreatic cancer.
Collapse
Affiliation(s)
- Sanjit K Roy
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA
| | - Yiming Ma
- Kansas City VA Medical Center, Kansas City, MO, 66128, USA
| | - Bao Q Lam
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA
| | - Anju Shrivastava
- St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Sudesh Srivastav
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA
- Kansas City VA Medical Center, Kansas City, MO, 66128, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, 70112, USA
| | - Rakesh K Srivastava
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA.
- Kansas City VA Medical Center, Kansas City, MO, 66128, USA.
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
16
|
Vallée A. Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). Int J Mol Med 2022; 49:79. [PMID: 35445729 PMCID: PMC9083851 DOI: 10.3892/ijmm.2022.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a natural product widely used due to its pharmacological effects. Nevertheless, only a limited number of studies concerning the effects of curcumin on exudative age‑related macular degeneration (AMD) is currently available. Since ophthalmic diseases, including exudative AMD, have a marked impact on public health, the prevention and therapy of ophthalmic disorders remain of increasing concern. Exudative AMD is characterized by choroidal neovascularization (CNV) invading the subretinal space, ultimately enhancing exudation and hemorrhaging. The exudative AMD subtype corresponds to 10 to 15% of cases of macular degeneration; however, the occurrence of this subtype has been reported as the major cause of vision loss and blindness, with the occurrence of CNV being responsible for 80% of the cases with vision loss. In CNV increased expression of VEGF has been observed, stimulated by the overactivation of Wnt/β‑catenin signaling pathway. The stimulation of the Wnt/β‑catenin signaling pathway is responsible for the activation of several cellular mechanisms, simultaneously enhancing inflammation, oxidative stress and angiogenesis in numerous diseases, including ophthalmic disorders. Some studies have previously demonstrated the possible advantage of the use of curcumin for the inhibition of Wnt/β‑catenin signaling. In the present review article, the different mechanisms of curcumin are described concerning its effects on oxidative stress, inflammation and angiogenesis in exudative AMD, by interacting with Wnt/β‑catenin signaling.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology-Data-Biostatistics, Delegation of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
17
|
The Role of PKM2 in the Regulation of Mitochondrial Function: Focus on Mitochondrial Metabolism, Oxidative Stress, Dynamic, and Apoptosis. PKM2 in Mitochondrial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7702681. [PMID: 35571239 PMCID: PMC9106463 DOI: 10.1155/2022/7702681] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The M2 isoform of pyruvate kinase (PKM2) is one isoform of pyruvate kinase (PK). PKM2 is expressed at high levels during embryonic development and tumor progression and is subject to complex allosteric regulation. PKM2 is a special glycolytic enzyme that regulates the final step of glycolysis; the role of PKM2 in the metabolism, survival, and apoptosis of cancer cells has received increasing attention. Mitochondria are directly or indirectly involved in the regulation of energy metabolism, susceptibility to oxidative stress, and cell death; however, the role of PKM2 in mitochondrial functions remains unclear. Herein, we review the related mechanisms of the role of PKM2 in the regulation of mitochondrial functions from the aspects of metabolism, reactive oxygen species (ROS), dynamic, and apoptosis, which can be highlighted as a target for the clinical management of cardiovascular and metabolic diseases.
Collapse
|
18
|
Deng L, Yi S, Yin X, Li Y, Luan Q. MFN2 knockdown promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2022; 13:162. [PMID: 35413941 PMCID: PMC9006575 DOI: 10.1186/s13287-022-02836-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Mitofusin-2 (MFN2) is a kind of GTPase that participates in the regulation of mitochondrial fusion, which is related to a variety of physiological and pathological processes, including energy metabolism, cell differentiation, and embryonic development. However, it remains unclear whether MFN2 is involved in the metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). Methods MFN2 knockdown (MFN2-KD) and MFN2-overexpressing (MFN2-OE) induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) were constructed by lentivirus. The commercial kits were utilized to detect the glycolysis and oxidative phosphorylation (OXPHOS) rate. Flow cytometry, Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), RNA-seq, immunofluorescence, and immunoprecipitation were employed for phenotype and molecular mechanism assessment. Results We demonstrated that MFN2 and Wnt/β-catenin signaling pathway regulated glycolysis of iPSC-MSCs. The lack of MFN2 promoted the osteogenic differentiation of iPSC-MSCs, and aerobic glycolysis in the presence of sufficient oxygen, which increased glucose consumption and lactic acid production, as well as the glycolytic enzyme activity and gene expression. Inhibiting the Wnt/β-catenin signaling pathway normalized the enhanced glycolytic rate and osteogenic differentiation of MFN2-KD iPSC-MSCs. MFN2-OE iPSC-MSCs displayed the opposite phenotype. Conclusions Downregulating MFN2 promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Our research reveals the new function of MFN2 in regulating the osteogenic differentiation and energy metabolism of MSCs, which will provide a new therapeutic target and theoretical basis for alveolar bone repair and periodontal regenerative treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02836-w.
Collapse
Affiliation(s)
- Lidi Deng
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Siqi Yi
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiaohui Yin
- Department of First Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, 100191, People's Republic of China.
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
19
|
Zhu X, Jiang L, Long M, Wei X, Hou Y, Du Y. Metabolic Reprogramming and Renal Fibrosis. Front Med (Lausanne) 2021; 8:746920. [PMID: 34859009 PMCID: PMC8630632 DOI: 10.3389/fmed.2021.746920] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
There are several causes of chronic kidney disease, but all of these patients have renal fibrosis. Although many studies have examined the pathogenesis of renal fibrosis, there are still no effective treatments. A healthy and balanced metabolism is necessary for normal cell growth, proliferation, and function, but metabolic abnormalities can lead to pathological changes. Normal energy metabolism is particularly important for maintaining the structure and function of the kidneys because they consume large amounts of energy. We describe the metabolic reprogramming that occurs during renal fibrosis, which includes changes in fatty acid metabolism and glucose metabolism, and the relationship of these changes with renal fibrosis. We also describe the potential role of novel drugs that disrupt this metabolic reprogramming and the development of fibrosis, and current and future challenges in the treatment of fibrosis.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Wang Y, Xie L, Zhu M, Guo Y, Tu Y, Zhou Y, Zeng J, Zhu L, Du S, Wang Z, Zhang Y, Liu X, Song E. Shikonin alleviates choroidal neovascularization by inhibiting proangiogenic factor production from infiltrating macrophages. Exp Eye Res 2021; 213:108823. [PMID: 34752817 DOI: 10.1016/j.exer.2021.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Choroidal neovascularization (CNV), a feature of neovasular age-related macular degeneration (AMD), acts as a leading cause of vision loss in the elderly. Shikonin (SHI), a natural bioactive compound extracted from Chinese herb radix arnebiae, exerts anti-inflammatory and anti-angiogenic roles and also acts as a potential pyruvate kinase M2 (PKM2) inhibitor in macrophages. The major immune cells macrophages infiltrate the CNV lesions, where the production of pro-angiognic cytokines from macrophage facilitates the development of CNV. PKM2 contributes to the neovascular diseases. In this study, we found that SHI oral gavage alleviated the leakage, area and volume of mouse laser-induced CNV lesion and inhibited macrophage infiltration without ocular cytotoxicity. Moreover, SHI inhibited the secretion of pro-angiogenic cytokine, including basic fibroblast growth factor (FGF2), insulin-like growth factor-1 (IGF1), chemokine (C-C motif) ligand 2 (CCL2), placental growth factor and vascular endothelial growth factor (VEGF), from primary human macrophages by down-regulating PKM2/STAT3/CD163 pathway, indicating a novel potential therapy strategy for CNV.
Collapse
Affiliation(s)
- Ying Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Guo
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yamei Zhou
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jia Zeng
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Linling Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shu Du
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhenzhen Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuting Zhang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China.
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
21
|
Li L, Ji Y, Zhang L, Cai H, Ji Z, Gu L, Yang S. Wogonin inhibits the growth of HT144 melanoma via regulating hedgehog signaling-mediated inflammation and glycolysis. Int Immunopharmacol 2021; 101:108222. [PMID: 34688155 DOI: 10.1016/j.intimp.2021.108222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) signaling has been proved to be closely associated with the occurrence of melanoma. Wogonin is one of the active components of flavonoids that extracts from Scutellariae radix. Previous studies showed that wogonin could inhibit the invasion and migration of B16F10 cells, and suppress the synthesis of melanin in A375 melanoma cells. However, the regulatory effects of Hh signaling in wogonin against melanoma and its potential mechanisms remain largely unknown. The present study aimed to investigate the effect of wogonin on the growth of HT144 melanoma, and to elucidate the role of Hh signaling in wogonin-induced antitumor effects by focusing on inflammation and glycolysis regulation. Wogonin inhibited the proliferation, colony formation and tumor growth of HT144 melanoma cells. Wogonin showed strong anti-inflammatory effect in HT144 melanoma, as shown by the decreased levels of pro-inflammatory factors, the increased level of anti-inflammatory factor and the decreased expression of inflammatory cytokines. Wogonin decreased the glucose consumption and the production of lactic acid and ATP, and decreased the activities of hexokinase (HK), phosphofructokinase(PFK) and pyruvate kinase (PK), and further inhibited the expression of monocarboxylate transporter 1 (MCT-1), MCT-4 and glucosecotransporter-1 (GLUT1), showing potent anti-glycolysis effect against HT144 melanoma. Wogonin inhibited the patched and Smo expression while increased Hhip expression in HT144 cells, suggesting that wogonin blocked the Hh signaling in HT144 cells. The Hh signaling inhibitor cyclopamine, like wogonin, inhibited the colony formation of HT144 cells, however, the inhibitory effect of wogonin on colony formation of HT144 cells was abrogated by the Hh signaling agonist SAG. In addition, SAG abrogated the inhibitory effect of wogonin on the secretion of inflammatory factors and the expression of inflammatory cytokines. Furthermore, SAG abrogated the inhibitory effect of wogonin on several key molecules controlling glycolysis. Overall, these findings suggested that the anti-tumor effect of wogonin can be attributed to the inhibition of Hh signaling-mediated regulation of inflammation and glycolysis in HT144 melanoma.
Collapse
Affiliation(s)
- Ling Li
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China; Yancheng No.1 People's Hospital, Yancheng 224001, China
| | - Yanting Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lili Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Hengji Cai
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhoujing Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lixiong Gu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
22
|
Shi C, Yang EJ, Tao S, Ren G, Mou PK, Shim JS. Natural products targeting cancer cell dependency. J Antibiot (Tokyo) 2021; 74:677-686. [PMID: 34163025 DOI: 10.1038/s41429-021-00438-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Precision cancer medicine is a tailored treatment approach for individual cancer patients with different genomic characteristics. Mutated or hyperactive oncogenes have served as main drug targets in current precision cancer medicine, while defective or inactivated tumor suppressors in general have not been considered as druggable targets. Synthetic lethality is one of very few approaches that enable to target defective tumor suppressors with pharmacological agents. Synthetic lethality exploits cancer cell dependency on a protein or pathway, which arises when the function of a tumor suppressor is defective. This approach has been proven to be effective in clinical settings since the successful clinical introduction of BRCA-PARP synthetic lethality for the treatment of breast and ovarian cancer with defective BRCA. Subsequently, large-scale screenings with RNAi, CRISPR/Cas9-sgRNAs, and chemical libraries have been applied to identify synthetic lethal partners of tumor suppressors. Natural products are an important source for the discovery of pharmacologically active small molecules. However, little effort has been made in the discovery of synthetic lethal small molecules from natural products. This review introduces recent advances in the discovery of natural products targeting cancer cell dependency and discusses potentials of natural products in the precision cancer medicine.
Collapse
Affiliation(s)
- Changxiang Shi
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Shishi Tao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guowen Ren
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Pui Kei Mou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China. .,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
23
|
Yang TT, Li H, Dong LJ. Role of glycolysis in retinal vascular endothelium, glia, pigment epithelium, and photoreceptor cells and as therapeutic targets for related retinal diseases. Int J Ophthalmol 2021; 14:1302-1309. [PMID: 34540603 DOI: 10.18240/ijo.2021.09.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Glycolysis produces large amounts of adenosine triphosphate (ATP) in a short time. The retinal vascular endothelium feeds itself primarily through aerobic glycolysis with less ATP. But when it generates new vessels, aerobic glycolysis provides rapid and abundant ATP support for angiogenesis, and thus inhibition of glycolysis in endothelial cells can be a target for the treatment of neovascularization. Aerobic glycolysis has a protective effect on Müller cells, and it can provide with a target for visual protection and maintenance of the blood-retinal barrier. Under physiological conditions, the mitochondria of RPE can use lactic acid produced by photoreceptor cells as an energy source to provide ATP for survival. In pathological conditions, because RPE cells avoid their oxidative damage by increasing glycolysis, a large number of glycolysis products accumulate, which in turn has a toxic effect on photoreceptor cells. This shows that stabilizing the function of RPE mitochondria may become a target for the treatment of diseases such as retinal degeneration. The decrease of aerobic glycolysis leads to the decline of photoreceptor cell function and impaired vision; therefore, aerobic glycolysis of stable photoreceptor cells provides a reliable target for delaying vision loss. It is of great significance to study the role of glycolysis in various retinal cells for the targeted treatment of ocular fundus diseases.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Editorial Department of Chinese Journal of Ocular Fundus Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hui Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Li-Jie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
24
|
Yang CX, Chen L, Yang YW, Mou Q, Du ZQ. Acute heat stress reduces viability but increases lactate secretion of porcine immature Sertoli cells through transcriptome reprogramming. Theriogenology 2021; 173:183-192. [PMID: 34392171 DOI: 10.1016/j.theriogenology.2021.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Sertoli cells, important constituents of the somatic niche, supports the growth and development of spermatogonia. Heat stress (HS), among multiple intrinsic and external factors, can induce physiological and biochemical changes in Sertoli cells. However, the underlying molecular mechanism remains largely unclear. Here, we showed that acute heat stress (43 °C, 0.5 h) could reduce cell viability, promote apoptosis, and increase the lactate production of porcine immature Sertoli cells (iSCs) cultured in vitro. Then, transcriptome sequencing identified 126 immediately and 3372 prolonged responded differentially expressed genes (DEGs) after acute heat stress (43 °C, 0.5 h) (HS0.5), and 36 h recovery culture following heat stress (HS0.5-R36), respectively. Enrichment analyses found different signaling pathways: immediate changes including cell response to heat, regulation of cellular response to stress, heat shock protein binding, chaperon-mediated protein folding, and sterol biosynthetic process, but prolonged changes mainly involving cell cycle, regulation of apoptotic process/cell proliferation, reproductive process, P53, PI3K-Akt and Glycolysis/Gluconeogenesis. Furthermore, transcriptional patterns of 9 DEGs (Dnajb1, Traf6, Insig1, Gadd45g, Hdac6, Fkbp4, Serpine1, Pfkp and Galm), and 6 heat shock proteins (HSPs) (Hspa6, Hspb1, Hspd1, HSP90aa1, HSP90ab1 and Hsph1) were validated, as well as the protein pattern of HSP90AA1 via immunostaining and western blot. Taken together, heat stress could initiate immediate changes of heat shock-related genes, and reprogram transcriptome and signaling pathways affecting the viability, apoptosis and metabolite production of pig iSCs.
Collapse
Affiliation(s)
- Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| | - Lu Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yu-Wei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Qiao Mou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
25
|
Ilkhani K, Bastami M, Delgir S, Safi A, Talebian S, Alivand MR. The Engaged Role of Tumor Microenvironment in Cancer Metabolism: Focusing on Cancer-Associated Fibroblast and Exosome Mediators. Anticancer Agents Med Chem 2021; 21:254-266. [PMID: 32914721 DOI: 10.2174/1871520620666200910123428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
Metabolic reprogramming is a significant property of various cancer cells, which most commonly arises from the Tumor Microenvironment (TME). The events of metabolic pathways include the Warburg effect, shifting in Krebs cycle metabolites, and the rate of oxidative phosphorylation, potentially providing energy and structural requirements for the development and invasiveness of cancer cells. TME and tumor metabolism shifting have a close relationship through bidirectional signaling pathways between stromal and tumor cells. Cancer- Associated Fibroblasts (CAFs), as the most dominant cells of TME, play a crucial role in the aberrant metabolism of cancer. Furthermore, the stated relationship can affect survival, progression, and metastasis in cancer development. Recently, exosomes are considered one of the most prominent factors in cellular communications considering effective content and bidirectional mediatory effect between tumor and stromal cells. In this regard, CAF-Derived Exosomes (CDE) exhibit an efficient obligation to induce metabolic reprogramming for promoting growth and metastasis of cancer cells. The understanding of cancer metabolism, including factors related to TME, could lead to the discovery of a potential biomarker for diagnostic and therapeutic approaches in cancer management. This review focuses on the association between metabolic reprogramming and engaged microenvironmental, factors such as CAFs, and the associated derived exosomes.
Collapse
Affiliation(s)
- Khandan Ilkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Delgir
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Safi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Balatskyi VV, Palchevska OL, Bortnichuk L, Gan AM, Myronova A, Macewicz LL, Navrulin VO, Tumanovska LV, Olichwier A, Dobrzyn P, Piven OO. β-Catenin Regulates Cardiac Energy Metabolism in Sedentary and Trained Mice. Life (Basel) 2020; 10:life10120357. [PMID: 33348907 PMCID: PMC7766208 DOI: 10.3390/life10120357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023] Open
Abstract
The role of canonical Wnt signaling in metabolic regulation and development of physiological cardiac hypertrophy remains largely unknown. To explore the function of β-catenin in the regulation of cardiac metabolism and physiological cardiac hypertrophy development, we used mice heterozygous for cardiac-specific β-catenin knockout that were subjected to a swimming training model. β-Catenin haploinsufficient mice subjected to endurance training displayed a decreased β-catenin transcriptional activity, attenuated cardiomyocytes hypertrophic growth, and enhanced activation of AMP-activated protein kinase (AMPK), phosphoinositide-3-kinase-Akt (Pi3K-Akt), and mitogen-activated protein kinase/extracellular signal-regulated kinases 1/2 (MAPK/Erk1/2) signaling pathways compared to trained wild type mice. We further observed an increased level of proteins involved in glucose aerobic metabolism and β-oxidation along with perturbed activity of mitochondrial oxidative phosphorylation complexes (OXPHOS) in trained β-catenin haploinsufficient mice. Taken together, Wnt/β-catenin signaling appears to govern metabolic regulatory programs, sustaining metabolic plasticity in adult hearts during the adaptation to endurance training.
Collapse
Affiliation(s)
- Volodymyr V. Balatskyi
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Oksana L. Palchevska
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, 46-580 Warsaw, Poland
| | - Lina Bortnichuk
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Ana-Maria Gan
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Anna Myronova
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Larysa L. Macewicz
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
| | - Viktor O. Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Lesya V. Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024 Kyiv, Ukraine;
| | - Adam Olichwier
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (A.-M.G.); (V.O.N.); (A.O.)
- Correspondence: (P.D.); (O.O.P.); Tel.: +48-022-589-24-59 (P.D.); +38-044-526-07-39 (O.O.P.); Fax: +48-022-822-53-42 (P.D.); +38-044-526-07-59 (O.O.P.)
| | - Oksana O. Piven
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnogo Street, 03680 Kyiv, Ukraine; (V.V.B.); (O.L.P.); (L.B.); (A.M.); (L.L.M.)
- Correspondence: (P.D.); (O.O.P.); Tel.: +48-022-589-24-59 (P.D.); +38-044-526-07-39 (O.O.P.); Fax: +48-022-822-53-42 (P.D.); +38-044-526-07-59 (O.O.P.)
| |
Collapse
|
27
|
The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Transl Psychiatry 2020; 10:400. [PMID: 33199680 PMCID: PMC7669888 DOI: 10.1038/s41398-020-01086-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Intellectual abilities and their clinical presentations are extremely heterogeneous in autism spectrum disorder (ASD). The main causes of ASD remain unclear. ASD is frequently associated with sleep disorders. Biologic rhythms are complex systems interacting with the environment and controlling several physiological pathways, including brain development and behavioral processes. Recent findings have shown that the deregulation of the core clock neurodevelopmental signaling is correlated with ASD clinical presentation. One of the main pathways involved in developmental cognitive disorders is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving circadian expression of genes involved in physiologic and metabolic functions. In ASD, the increase of the canonical WNT/β-catenin pathway is enhancing by the dysregulation of circadian rhythms. ASD progression is associated with a major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, the aerobic glycolysis. This review focuses on the interest of circadian rhythms dysregulation in metabolic reprogramming in ASD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
|
28
|
Li R, Li P, Wang J, Liu J. STIP1 down-regulation inhibits glycolysis by suppressing PKM2 and LDHA and inactivating the Wnt/β-catenin pathway in cervical carcinoma cells. Life Sci 2020; 258:118190. [PMID: 32777299 DOI: 10.1016/j.lfs.2020.118190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/18/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
AIMS Glycolysis is an important process for cervical carcinoma development. Previous studies have indicated that stress-induced phosphoprotein 1 (STIP1) is associated with development of multiple tumors. Nevertheless, the role and mechanism of STIP1 in glycolysis of cervical carcinoma remain unclear. MAIN METHODS The association between STIP1 and survival probability and the correlation between STIP1 expression and pyruvate kinase M2 (PKM2) as well as lactate dehydrogenase isoform A (LDHA) levels in cervical carcinoma were analyzed via The Cancer Genome Atlas (TCGA). The expression of STIP1, PKM2, LDHA, and cytochrome c (Cyt C) was measured via western blot or quantitative reverse transcription polymerase chain reaction. Cell viability and apoptosis were examined via cell counting kit 8 and flow cytometry, respectively. Glycolysis was assessed via detection of glucose consumption and lactate production. The protein involved in the Wnt/β-catenin pathway was measured via western blot. KEY FINDINGS STIP1 abundance was elevated in cervical carcinoma cells. High expression of STIP1 indicated poor survival probability. Knockdown of STIP1 inhibited cervical carcinoma cell viability and promoted apoptosis. STIP1 expression was positively correlated with PKM2 and LDHA levels in cervical carcinoma. Silence of STIP1 inhibited glycolysis and decreased PKM2 and LDHA expression. Down-regulation of STIP1 repressed the Wnt/β-catenin pathway. Overexpression of β-catenin reversed the effect of STIP1 silence on viability, apoptosis, glycolysis, and levels of PKM2 and LDHA. SIGNIFICANCE STIP1 knockdown suppressed glycolysis in cervical carcinoma by inhibiting PKM2 and LDHA expression and activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Rui Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Pin Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China.
| | - Jin Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China
| |
Collapse
|
29
|
Zhang H, Qin D, Jiang Z, Zhang J. SNHG9/miR-199a-5p/Wnt2 Axis Regulates Cell Growth and Aerobic Glycolysis in Glioblastoma. J Neuropathol Exp Neurol 2020; 78:939-948. [PMID: 31504670 DOI: 10.1093/jnen/nlz078] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aerobic glycolysis is a characteristic in cancers that is important for cancer cell proliferation. Emerging evidence shows that long non-coding RNA (LncRNA) participates in glucose metabolism and cell proliferation in cancer. This study explored the effect of LncRNA: SNHG9 in glioblastoma. The mRNA expression of SNHG9 in human glioma tissues and glioblastoma cell lines was measured by qRT-PCR. Glioblastoma cell lines (U87 and U251) were transfected with miR-199a-5p or SNHG9-expressing plasmid and cell viability as well as concentrations of glucose and lactate were measured. The extracellular acidification was evaluated by glycolysis stress test. The Wnt2 levels were determined by qRT-PCR and Western blot. Results showed that the mRNA expression of SNHG9 was elevated in glioblastoma tissues. The elevated SNHG9 expression was related to lower survival rate in patients with glioma. SNHG9 could downregulate miR-199a-5p and upregulate Wnt2 in glioblastoma cells. Overexpression of SNHG9 in glioblastoma cells promoted aerobic glycolysis and cell proliferation, which could be attenuated by miR-199a-5p. Results of this study indicated an effect of SNHG9/miR-199a-5p/Wnt2 axis in regulating cell growth and aerobic glycolysis in glioblastoma.
Collapse
Affiliation(s)
- Han Zhang
- Quanzhou 1st Hospital Affiliated to Fujian Medical University, Inpatient Department, Chendong Branch of Quanzhou 1st Hospital
| | - Danxia Qin
- Quanzhou 1st Hospital Affiliated to Fujian Medical University, Inpatient Department, Dongjie Branch of Quanzhou 1st Hospital, Quanzhou, Fujian, China
| | - Zhixian Jiang
- Quanzhou 1st Hospital Affiliated to Fujian Medical University, Inpatient Department, Chendong Branch of Quanzhou 1st Hospital
| | - Jinning Zhang
- Quanzhou 1st Hospital Affiliated to Fujian Medical University, Inpatient Department, Chendong Branch of Quanzhou 1st Hospital
| |
Collapse
|
30
|
Donato L, Scimone C, Alibrandi S, Nicocia G, Rinaldi C, Sidoti A, D’Angelo R. Discovery of GLO1 New Related Genes and Pathways by RNA-Seq on A2E-Stressed Retinal Epithelial Cells Could Improve Knowledge on Retinitis Pigmentosa. Antioxidants (Basel) 2020; 9:E416. [PMID: 32413970 PMCID: PMC7278727 DOI: 10.3390/antiox9050416] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022] Open
Abstract
Endogenous antioxidants protect cells from reactive oxygen species (ROS)-related deleterious effects, and an imbalance in the oxidant/antioxidant systems generates oxidative stress. Glyoxalase 1 (GLO1) is a ubiquitous cellular enzyme involved in detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis whose excess can produce oxidative stress. In retinitis pigmentosa, one of the most diffuse cause of blindness, oxidative damage leads to photoreceptor death. To clarify the role of GLO1 in retinitis pigmentosa onset and progression, we treated human retinal pigment epithelium cells by the oxidant agent A2E. Transcriptome profiles between treated and untreated cells were performed by RNA-Seq, considering two time points (3 and 6 h), after the basal one. The exposure to A2E highlighted significant expression differences and splicing events in 370 GLO1 first-neighbor genes, and 23 of them emerged from pathway clustered analysis as main candidates to be associated with retinitis pigmentosa. Such a hypothesis was corroborated by the involvement of previously analyzed genes in specific cellular activities related to oxidative stress, such as glyoxylate and dicarboxylate metabolism, glycolysis, axo-dendritic transport, lipoprotein activity and metabolism, SUMOylation and retrograde transport at the trans-Golgi network. Our findings could be the starting point to explore unclear molecular mechanisms involved in retinitis pigmentosa etiopathogenesis.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Giacomo Nicocia
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy; (C.S.); (S.A.); (C.R.); (R.D.)
- Department of Biomolecular strategies, genetics and avant-garde therapies, I.E.ME.S.T., 90139 Palermo, Italy
| |
Collapse
|
31
|
Song J, Han D, Lee H, Kim DJ, Cho JY, Park JH, Seok SH. A Comprehensive Proteomic and Phosphoproteomic Analysis of Retinal Pigment Epithelium Reveals Multiple Pathway Alterations in Response to the Inflammatory Stimuli. Int J Mol Sci 2020; 21:ijms21093037. [PMID: 32344885 PMCID: PMC7246457 DOI: 10.3390/ijms21093037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
Overwhelming and persistent inflammation of retinal pigment epithelium (RPE) induces destructive changes in the retinal environment. However, the precise mechanisms remain unclear. In this study, we aimed to investigate RPE-specific biological and metabolic responses against intense inflammation and identify the molecular characteristics determining pathological progression. We performed quantitative analyses of the proteome and phosphoproteome of the human-derived RPE cell line ARPE-19 after treatment with lipopolysaccharide (LPS) for 45 min or 24 h using the latest isobaric tandem-mass tags (TMTs) labeling approach. This approach led to the identification of 8984 proteins, of which 261 showed a 1.5-fold change in abundance after 24 h of treatment with LPS. A parallel phosphoproteome analysis identified 20,632 unique phosphopeptides from 3207 phosphoproteins with 3103 phosphorylation sites. Integrated proteomic and phosphoproteomic analyses showed significant downregulation of proteins related to mitochondrial respiration and cell cycle checkpoint, while proteins related to lipid metabolism, amino acid metabolism, cell-matrix adhesion, and endoplasmic reticulum (ER) stress were upregulated after LPS stimulation. Further, phosphorylation events in multiple pathways, including MAPKK and Wnt/β-catenin signalings, were identified as involved in LPS-triggered pathobiology. In essence, our findings reveal multiple integrated signals exerted by RPE under inflammation and are expected to give insight into the development of therapeutic interventions for RPE disorders.
Collapse
Affiliation(s)
- Juha Song
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea;
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (H.L.)
| | - Heonyi Lee
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (D.H.); (H.L.)
| | - Da Jung Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea; (D.J.K.); (J.-Y.C.)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Korea; (D.J.K.); (J.-Y.C.)
- Department of Biomedical Sciences, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul 08826, Korea
- Correspondence: (J.-H.P.); (S.H.S.); Tel.: +82-2-880-1256 (J.-H.P.); +82-2-740-8302 (S.H.S.); Fax: +82-2-763-5206 (S.H.S.)
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea;
- Department of Biomedical Sciences, Seoul National University College of Medicine, Chongno-gu, Seoul 03080, Korea
- Correspondence: (J.-H.P.); (S.H.S.); Tel.: +82-2-880-1256 (J.-H.P.); +82-2-740-8302 (S.H.S.); Fax: +82-2-763-5206 (S.H.S.)
| |
Collapse
|
32
|
Han G, Wei P, He M, Teng H. Glucose Metabolic Characterization of Human Aqueous Humor in Relation to Wet Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2020; 61:49. [PMID: 32232346 PMCID: PMC7401462 DOI: 10.1167/iovs.61.3.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Energy compromise underpins wet age-related macular degeneration (wAMD) pathogenesis, but the relationship between glucose metabolism and the disease remains unclear. Here, we characterized aqueous humor (AH) to elucidate glucose-related metabolic signatures in patients with wAMD. Methods In total, 25 eyes of 25 patients with wAMD were divided into phakic (15 eyes), pseudophakic (10 eyes), and intravitreal injections of ranibizumab (13 eyes) wAMD groups. Twenty patients with cataract (21 eyes) served as controls. Ultrahigh-performance liquid chromatography tandem mass spectrometry was used to quantitatively characterize AH. Results Twenty-one metabolites related to glucose metabolism were identified in AH from 45 patients. Tricarboxylic acid (TCA)-related metabolic substrates, including citrate, were detected in AH and were significantly increased in AMD (P < 0.01) and AMD pseudophakic groups (P < 0.05). In contrast, α-ketoglutarate levels were decreased in the AMD group (P < 0.05). The α-ketoglutarate/citrate ratio was significantly decreased, corresponding to 71.71% and 93.6% decreases in the AMD (phakic and pseudophakic) groups as compared with controls (P < 0.001), revealing a significant positive correlation with glutamine. A lower mean glutamine and higher glutamate level were detected in AMD cases compared with controls. No significant differences were observed for lactic acid or other Krebs cycle metabolites. Intravitreal injection significantly alleviated mean central foveal thickness but did not significantly alter metabolites. Conclusions Compromised glucose TCA cycle and altered glutamine metabolism are implicated in the AH metabolism in wAMD. These findings highlight potential treatments for alleviating wAMD from a metabolic perspective.
Collapse
|
33
|
Chen L, Hu N, Wang C, Zhao H. HOTAIRM1 knockdown enhances cytarabine-induced cytotoxicity by suppression of glycolysis through the Wnt/β-catenin/PFKP pathway in acute myeloid leukemia cells. Arch Biochem Biophys 2020; 680:108244. [DOI: 10.1016/j.abb.2019.108244] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 02/02/2023]
|
34
|
Vallée A, Lecarpentier Y, Vallée R, Guillevin R, Vallée JN. Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/β-Catenin Pathway. Int J Mol Sci 2020; 21:ijms21030820. [PMID: 32012797 PMCID: PMC7037737 DOI: 10.3390/ijms21030820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is considered as the main worldwide cause of blindness in elderly adults. Exudative AMD type represents 10 to 15% of macular degeneration cases, but is the main cause of vision loss and blindness. Circadian rhythm changes are associated with aging and could further accelerate it. However, the link between circadian rhythms and exudative AMD is not fully understood. Some evidence suggests that dysregulation of circadian functions could be manifestations of diseases or could be risk factors for the development of disease in elderly adults. Biological rhythms are complex systems interacting with the environment and control several physiological pathways. Recent findings have shown that the dysregulation of circadian rhythms is correlated with exudative AMD. One of the main pathways involved in exudative AMD is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving the circadian expression of genes involved in physiological and metabolic functions. In exudative AMD, the increase of the canonical WNT/β-catenin pathway is enhanced by the dysregulation of circadian rhythms. Exudative AMD progression is associated with major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, of aerobic glycolysis. This review focuses on the interest of circadian rhythm dysregulation in exudative AMD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France
| | - Rodolphe Vallée
- University Hospital Group of Paris-Seine-Saint-Denis, APHP, University of Paris-13 Sorbonne Paris-Cité, 93000 Paris, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, 86021 Poitiers, France
| |
Collapse
|
35
|
Vallée A, Vallée JN, Lecarpentier Y. Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. J Mol Cell Cardiol 2019; 133:36-46. [PMID: 31153873 DOI: 10.1016/j.yjmcc.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Atherosclerosis, a chronic inflammatory and age-related disease, is a complex mechanism presenting a dysregulation of vessel structures. During this process, the canonical WNT/β-catenin pathway is increased whereas PPARγ is downregulated. The two systems act in an opposite manner. This paper reviews the opposing interplay of these systems and their metabolic-reprogramming pathway in atherosclerosis. Activation of the WNT/β-catenin pathway enhances the transcription of targets involved in inflammation, endothelial dysfunction, the proliferation of vascular smooth muscle cells, and vascular calcification. This complex mechanism, which is partly controlled by the WNT/β-catenin pathway, presents several metabolic dysfunctions. This phenomenon, called aerobic glycolysis (or the Warburg effect), consists of a shift in ATP production from mitochondrial oxidative phosphorylation to aerobic glycolysis, leading to the overproduction of intracellular lactate. This mechanism is partially due to the injury of mitochondrial respiration and an increase in the glycolytic pathway. In contrast, PPARγ agonists downregulate the WNT/β-catenin pathway. Therefore, the development of therapeutic targets, such as PPARγ agonists, for the treatment of atherosclerosis could be an interesting and innovative way of counteracting the canonical WNT pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, Paris, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| |
Collapse
|
36
|
Cunningham F, Van Bergen T, Canning P, Lengyel I, Feyen JHM, Stitt AW. The Placental Growth Factor Pathway and Its Potential Role in Macular Degenerative Disease. Curr Eye Res 2019; 44:813-822. [PMID: 31055948 DOI: 10.1080/02713683.2019.1614197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is growing evidence that placental growth factor (PlGF) is an important player in multiple pathologies, including tumorigenesis, inflammatory disorders and degenerative retinopathies. PlGF is a member of the vascular endothelial growth factor (VEGF) family and in the retina, binding of this growth factor to specific receptors is associated with pathological angiogenesis, vascular leakage, neurodegeneration and inflammation. Although they share some receptor signalling pathways, many of the actions of PlGF are distinct from VEGF and this has revealed the enticing prospect that it could be a useful therapeutic target for treating early and late stages of diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Recent research suggests that modulation of PlGF could also be important in the geographic atrophy (GA) form of late AMD by protecting the outer retina and the retinal pigment epithelium (RPE). This review discusses PlGF and its signalling pathways and highlights the potential of blocking the bioactivity of this growth factor to treat irreversible visual loss due to the two main forms of AMD.
Collapse
Affiliation(s)
- Fiona Cunningham
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| | | | - Paul Canning
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| | - Imre Lengyel
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| | | | - Alan W Stitt
- a Centre for Experimental Medicine, Queen's University Belfast , Belfast , Northern Ireland
| |
Collapse
|
37
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
38
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington's disease. Rev Neurosci 2018; 29:547-555. [PMID: 29303786 DOI: 10.1515/revneuro-2017-0075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
Neurodegenerative cells are the sites of numerous metabolic and energetic abnormalities with abnormalities in energy production. Energy is the primary determinant of neuronal viability. In neurodegenerative cells, metabolic enzymes are modified by the dysregulation of the canonical WNT/β-catenin pathway. In amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), WNT/β-catenin pathway is upregulated. We focused this review on the hypothesis of aerobic glycolysis stimulated by the upregulation of WNT/β-catenin pathway in ALS and HD. Upregulation of WNT/β-catenin pathway induces aerobic glycolysis, named Warburg effect, through activation of glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1 (PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactate dehydrogenase kinase-A (LDH-A), and inactivation of pyruvate dehydrogenase complex (PDH). Aerobic glycolysis consists of a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production compared with oxidative phosphorylation because of the shunt of the TCA cycle. Dysregulation of energetic metabolism promotes cell death and disease progression in ALD and HD. Aerobic glycolysis regulation is an attractive mechanism for developing therapeutic interventions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratoire de Mathématiques et Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.,CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
39
|
Schori C, Trachsel C, Grossmann J, Zygoula I, Barthelmes D, Grimm C. The Proteomic Landscape in the Vitreous of Patients With Age-Related and Diabetic Retinal Disease. Invest Ophthalmol Vis Sci 2018; 59:AMD31-AMD40. [PMID: 30025106 DOI: 10.1167/iovs.18-24122] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In contrast to neovascular AMD (nAMD), no treatment option exists for dry AMD. Hence, the identification of specific biomarkers is required to facilitate diagnosis and therapy of dry AMD. Methods The proteome of 34 vitreous humor samples (dry AMD: n = 6; nAMD: n = 10; proliferative diabetic retinopathy [PDR]: n = 9; epiretinal membrane [ERM]: n = 9) was analyzed by liquid chromatography coupled mass spectrometry. Then, label-free relative quantification of dry AMD, nAMD, and PDR relative to ERM, which was defined as the reference group, was performed. Application of a bioinformatics pipeline further analyzed the vitreous proteome by cluster and gene set enrichment analysis. A selection of differentially regulated proteins was validated by ELISA. Results A total of 677 proteins were identified in the vitreous of the four patient groups and quantified relatively to ERM. Different clusters of regulated proteins for each patient group were identified and showed characteristic enrichment of specific pathways including "oxidative stress" for dry AMD, "focal adhesion" for nAMD, and "complement and coagulation cascade" for PDR patients. We identified cholinesterase (CHLE) to be specifically upregulated in dry AMD and ribonuclease (pancreatic; RNAS1) together with serine carboxypeptidase (probable; CPVL) to be upregulated in both forms of AMD. Conclusions The described pathways specific for the different patient groups and the identification of characteristic differentially regulated proteins provide a first step toward the definition of biomarkers for dry AMD. The presented data will facilitate the investigation of mechanistic connections of proteins to the respective disease.
Collapse
Affiliation(s)
- Christian Schori
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Ioanna Zygoula
- Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Barthelmes
- Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland.,Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Curr Hypertens Rep 2018; 20:62. [PMID: 29884931 DOI: 10.1007/s11906-018-0860-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Heterogeneous causes can determinate hypertension. RECENT FINDINGS The renin-angiotensin system (RAS) has a major role in the pathophysiology of blood pressure. Angiotensin II and aldosterone are overexpressed during hypertension and lead to hypertension development and its cardiovascular complications. In several tissues, the overactivation of the canonical WNT/β-catenin pathway leads to inactivation of peroxisome proliferator-activated receptor gamma (PPARγ), while PPARγ stimulation induces a decrease of the canonical WNT/β-catenin pathway. In hypertension, the WNT/β-catenin pathway is upregulated, whereas PPARγ is decreased. The WNT/β-catenin pathway and RAS regulate positively each other during hypertension, whereas PPARγ agonists can decrease the expression of both the WNT/β-catenin pathway and RAS. We focus this review on the hypothesis of an opposite interplay between PPARγ and both the canonical WNT/β-catenin pathway and RAS in regulating the molecular mechanism underlying hypertension. The interactions between PPARγ and the canonical WNT/β-catenin pathway through the regulation of the renin-angiotensin system in hypertension may be an interesting way to better understand the actions and the effects of PPARγ agonists as antihypertensive drugs.
Collapse
|
41
|
WNT7A/B promote choroidal neovascularization. Exp Eye Res 2018; 174:107-112. [PMID: 29864439 DOI: 10.1016/j.exer.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022]
Abstract
Perturbations in WNT signaling are associated with congenital eye disorders, including familial exudative vitreoretinopathy and Norrie disease. More recently, activation of the WNT pathway has also been shown to be associated with age-related macular degeneration (AMD). In this study, we identified that in choroidal neovascular membranes from AMD patients, β-catenin is activated specifically in the vascular endothelium, suggesting that WNT promotes pathologic angiogenesis by directly affecting vascular endothelial cells. WNT7B has been shown to be important during eye development for regression of the fetal hyaloid vasculature. However, it has not yet been established whether WNT7A and/or WNT7B are involved in neovascular AMD pathogenesis. Here, we show that WNT7A and WNT7B increase the proliferation of human dermal microvascular endothelial cells in a dose-dependent manner. Both WNT7A and WNT7B also stimulated vascular sprouting from mouse choroidal explants in vitro. To evaluate in vivo relevance, we generated mice systemically deficient in Wnt7a and/or Wnt7b. Genetic deletion of both Wnt7a and Wnt7b decreased the severity of laser injury-induced choroidal neovascularization (CNV), while individual deletion of either Wnt7a or Wnt7b did not have a significant effect on CNV, suggesting that WNT7A and WNT7B have redundant pro-angiogenic roles in vivo. Cumulatively, these findings identify specific WNT isoforms that may play a pathologic role in CNV as observed in patients with neovascular AMD. Although the source of increased WNT7A and/or WNT7B in CNV requires further investigation, WNT signaling may be a potential target for therapeutic intervention if these results are demonstrated to be relevant in human disease.
Collapse
|
42
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neurosci Bull 2018; 34:573-588. [PMID: 29582250 PMCID: PMC5960455 DOI: 10.1007/s12264-018-0219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France.
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
43
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018; 19:ijms19041212. [PMID: 29659554 PMCID: PMC5979570 DOI: 10.3390/ijms19041212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Rémy Guillevin
- Data Analysis and Computations Through Imaging Modeling-Mathématiques (DACTIM), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348 (Laboratoire de Mathématiques et Application), University of Poitiers, Centre Hospitalier Universitaire (CHU) de Poitiers, 86000 Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France.
- LMA (Laboratoire de Mathématiques et Applications), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, Université de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
44
|
Vallée A. [Aerobic glycolysis activation through canonical WNT/β-catenin pathway in ALS]. Med Sci (Paris) 2018; 34:326-330. [PMID: 29658475 DOI: 10.1051/medsci/20183404013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Energy is the major determinant of neuronal viability. We focus our synthesis on the hypothesis of the development of aerobic glycolysis by the stimulation of the canonical WNT/β-catenin pathway in amyotrophic lateral sclerosis (ALS). The stimulation of the canonical WNT/β-catenin pathway induces the activation of aerobic glycolysis, also called Warburg effect, via the stimulation of glycolytic enzymes such as Glut (glucose transporter), PKM2 (pyruvate kinase M2), PDK1 (pyruvate dehydrogenase kinase 1), LDH-A (lactate dehydrogenase A) and MCT-1 (monocarboxylate transporter 1). The aerobic glycolysis consists to a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production than oxidative phosphorylation due to the shunt of the TCA cycle. Dysregulation of cellular energy metabolism promotes cell death and participates to the progression of ALS. Controlling the expression of the canonical WNT/β-catenin signaling pathway is an attractive strategy to regulate aerobic glycolysis initiation and the progression of ALS.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratoire de mathématiques et applications (LMA), UMR CNRS 7348, CHU de Poitiers, Université de Poitiers, 2, rue de la Milèterie, 86021 Poitiers, France
| |
Collapse
|
45
|
Vallée A, Lecarpentier Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front Immunol 2018; 9:745. [PMID: 29706964 PMCID: PMC5908886 DOI: 10.3389/fimmu.2018.00745] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammation and oxidative stress are common and co-substantial pathological processes accompanying, promoting, and even initiating numerous cancers. The canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) generally work in opposition. If one of them is upregulated, the other one is downregulated and vice versa. WNT/β-catenin signaling is upregulated in inflammatory processes and oxidative stress and in many cancers, although there are some exceptions for cancers. The opposite is observed with PPARγ, which is generally downregulated during inflammation and oxidative stress and in many cancers. This helps to explain in part the opposite and unidirectional profile of the canonical WNT/β-catenin signaling and PPARγ in these three frequent and morbid processes that potentiate each other and create a vicious circle. Many intracellular pathways commonly involved downstream will help maintain and amplify inflammation, oxidative stress, and cancer. Thus, many WNT/β-catenin target genes such as c-Myc, cyclin D1, and HIF-1α are involved in the development of cancers. Nuclear factor-kappaB (NFκB) can activate many inflammatory factors such as TNF-α, TGF-β, interleukin-6 (IL-6), IL-8, MMP, vascular endothelial growth factor, COX2, Bcl2, and inducible nitric oxide synthase. These factors are often associated with cancerous processes and may even promote them. Reactive oxygen species (ROS), generated by cellular alterations, stimulate the production of inflammatory factors such as NFκB, signal transducer and activator transcription, activator protein-1, and HIF-α. NFκB inhibits glycogen synthase kinase-3β (GSK-3β) and therefore activates the canonical WNT pathway. ROS activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling in many cancers. PI3K/Akt also inhibits GSK-3β. Many gene mutations of the canonical WNT/β-catenin pathway giving rise to cancers have been reported (CTNNB1, AXIN, APC). Conversely, a significant reduction in the expression of PPARγ has been observed in many cancers. Moreover, PPARγ agonists promote cell cycle arrest, cell differentiation, and apoptosis and reduce inflammation, angiogenesis, oxidative stress, cell proliferation, invasion, and cell migration. All these complex and opposing interactions between the canonical WNT/β-catenin pathway and PPARγ appear to be fairly common in inflammation, oxidative stress, and cancers.
Collapse
Affiliation(s)
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
46
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway-PPAR Gamma, Energy Metabolism and Circadian Rhythms. Neuromolecular Med 2018; 20:174-204. [PMID: 29572723 DOI: 10.1007/s12017-018-8486-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
Entropy production rate is increased by several metabolic and thermodynamics abnormalities in neurodegenerative diseases (NDs). Irreversible processes are quantified by changes in the entropy production rate. This review is focused on the opposing interactions observed in NDs between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In amyotrophic lateral sclerosis and Huntington's disease, WNT/beta-catenin pathway is upregulated, whereas PPAR gamma is downregulated. In Alzheimer's disease and Parkinson's disease, WNT/beta-catenin pathway is downregulated while PPAR gamma is upregulated. The dysregulation of the canonical WNT/beta-catenin pathway is responsible for the modification of thermodynamics behaviors of metabolic enzymes. Upregulation of WNT/beta-catenin pathway leads to aerobic glycolysis, named Warburg effect, through activated enzymes, such as glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactic dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). Downregulation of WNT/beta-catenin pathway leads to oxidative stress and cell death through inactivation of Glut, PKM2, PDK1, MCT-1, LDH-A but activation of PDH. In addition, in NDs, PPAR gamma is dysregulated, whereas it contributes to the regulation of several key circadian genes. NDs show many dysregulation in the mediation of circadian clock genes and so of circadian rhythms. Thermodynamics rhythms operate far-from-equilibrium and partly regulate interactions between WNT/beta-catenin pathway and PPAR gamma. In NDs, metabolism, thermodynamics and circadian rhythms are tightly interrelated.
Collapse
Affiliation(s)
- Alexandre Vallée
- DRCI, Hôpital Foch, Suresnes, France.
- LMA (Laboratoire de Mathématiques et Applications) CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- DRCI, Hôpital Foch, Suresnes, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
47
|
Fan Q, Yang L, Zhang X, Ma Y, Li Y, Dong L, Zong Z, Hua X, Su D, Li H, Liu J. Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/β-catenin signaling pathway activation in hepatocellular carcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:9. [PMID: 29351758 PMCID: PMC5775607 DOI: 10.1186/s13046-018-0673-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/01/2018] [Indexed: 02/08/2023]
Abstract
Background Autophagy is a dynamic physiological process that can generate energy and nutrients for cell survival during stress. Autophagy can regulate the migration and invasive ability in cancer cells. However, the connection between autophagy and metabolism is unclear. Monocarboxylate transporter 1 (MCT1) plays an important role in lactic acid transport and H+ clearance in cancer cells, and Wnt/β-catenin signaling can increase cancer cell glycolysis. We investigated whether autophagy promotes glycolysis in hepatocellular carcinoma (HCC) cells by activating the Wnt/β-catenin signaling pathway, accompanied by MCT1 upregulation. Methods Autophagic activity was evaluated using western blotting, immunoblotting, and transmission electron microscopy. The underlying mechanisms of autophagy activation on HCC cell glycolysis were studied via western blotting, and Transwell, lactate, and glucose assays. MCT1 expression was detected using quantitative reverse transcription–PCR (real-time PCR), western blotting, and immunostaining of HCC tissues and the paired adjacent tissues. Results Autophagy promoted HCC cell glycolysis accompanied by MCT1 upregulation. Wnt/β-catenin signaling pathway activation mediated the effect of autophagy on HCC cell glycolysis. β-Catenin downregulation inhibited the autophagy-induced glycolysis in HCC cells, and reduced MCT1 expression in the HCC cells. MCT1 was highly expressed in HCC tissues, and high MCT1 expression correlated positively with the expression of microtubule-associated protein light chain 3 (LC3). Conclusion Activation of autophagy can promote metastasis and glycolysis in HCC cells, and autophagy induces MCT1 expression by activating Wnt/β-catenin signaling. Our study describes the connection between autophagy and glucose metabolism in HCC cells and may provide a potential therapeutic target for HCC treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-0673-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xiaodong Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.,Tumour Angiogenesis and Microenvironment Laboratory (TAML), Department of Oncology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Lei Dong
- Departments of Laparoscopic Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116001, China
| | - Zhihong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 100013, China
| | - Xiangdong Hua
- Department of Hepatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China
| | - Dongming Su
- Center of Cellular therapy, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
48
|
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease which is characterized by a deficit in social interactions and communication with repetitive and restrictive behavior. In altered cells, metabolic enzymes are modified by the dysregulation of the canonical WNT/β-catenin pathway. In ASD, the canonical WNT/β-catenin pathway is upregulated. We focus this review on the hypothesis of Warburg effect stimulated by the overexpression of the canonical WNT/β-catenin pathway in ASD. Upregulation of WNT/β-catenin pathway induces aerobic glycolysis, named Warburg effect, through activation of glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactate dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). The aerobic glycolysis consists to a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production than oxidative phosphorylation because of the shunt of the TCA cycle. Dysregulation of energetic metabolism might promote cell deregulation and progression of ASD. Warburg effect regulation could be an attractive target for developing therapeutic interventions in ASD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, CHU Poitiers, University of Poitiers, Poitiers, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
49
|
Kelly K, Wang JJ, Zhang SX. The unfolded protein response signaling and retinal Müller cell metabolism. Neural Regen Res 2018; 13:1861-1870. [PMID: 30233053 PMCID: PMC6183030 DOI: 10.4103/1673-5374.239431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5'-triphosphate (ATP) to generate visual signal and transmit the information to the brain. Disruptions in retinal metabolism can cause neuronal dysfunction and degeneration resulting in severe visual impairment and even blindness. The homeostasis of retinal metabolism is tightly controlled by multiple signaling pathways, such as the unfolded protein response (UPR), and the close interactions between retinal neurons and other retinal cell types including vascular cells and Müller glia. The UPR is a highly conserved adaptive cellular response and can be triggered by many physiological stressors and pathophysiological conditions. Activation of the UPR leads to changes in glycolytic rate, ATP production, de novo serine synthesis, and the hexosamine biosynthetic pathway, which are considered critical components of Müller glia metabolism and provide metabolic support to surrounding neurons. When these pathways are disrupted, neurodegeneration occurs rapidly. In this review, we summarize recent advance in studies of the UPR in Müller glia and highlight the potential role of the UPR in retinal degeneration through regulation of Müller glia metabolism.
Collapse
Affiliation(s)
- Kristen Kelly
- Department of Ophthalmology and Neuroscience Program, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Neuroscience Program, Ross Eye Institute, University at Buffalo; SUNY Eye Institute, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Neuroscience Program, Ross Eye Institute, University at Buffalo; SUNY Eye Institute, State University of New York, Buffalo, NY, USA
| |
Collapse
|
50
|
Vallée A, Lecarpentier Y, Vallée JN. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process. Int J Mol Sci 2017; 18:ijms18122537. [PMID: 29186898 PMCID: PMC5751140 DOI: 10.3390/ijms18122537] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is characterized by fibroblast proliferation and fibroblast differentiation into myofibroblasts, which generate a relaxation-free contraction mechanism associated with excessive collagen synthesis in the extracellular matrix, which promotes irreversible tissue retraction evolving towards fibrosis. From a thermodynamic point of view, the mechanisms leading to fibrosis are irreversible processes that can occur through changing the entropy production rate. The thermodynamic behaviors of metabolic enzymes involved in fibrosis are modified by the dysregulation of both transforming growth factor β (TGF-β) signaling and the canonical WNT/β-catenin pathway, leading to aerobic glycolysis, called the Warburg effect. Molecular signaling pathways leading to fibrosis are considered dissipative structures that exchange energy or matter with their environment far from the thermodynamic equilibrium. The myofibroblastic cells arise from exergonic processes by switching the core metabolism from oxidative phosphorylation to glycolysis, which generates energy and reprograms cellular energy metabolism to induce the process of myofibroblast differentiation. Circadian rhythms are far-from-equilibrium thermodynamic processes. They directly participate in regulating the TGF-β and WNT/β-catenin pathways involved in energetic dysregulation and enabling fibrosis. The present review focusses on the thermodynamic implications of the reprogramming of cellular energy metabolism, leading to fibroblast differentiation into myofibroblasts through the positive interplay between TGF-β and WNT/β-catenin pathways underlying in fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratory of Mathematics and Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 86021 Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 86021 Poitiers, France.
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), 80025 Amiens, France.
| |
Collapse
|