1
|
Khademi Z, Mahmoudi Z, Sukhorukov VN, Jamialahmadi T, Sahebkar A. CRISPR/Cas9 Technology: A Novel Approach to Obesity Research. Curr Pharm Des 2024; 30:1791-1803. [PMID: 38818919 DOI: 10.2174/0113816128301465240517065848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/01/2024]
Abstract
Gene editing technology, particularly Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has transformed medical research. As a newly developed genome editing technique, CRISPR technology has strongly assisted scientists in enriching their comprehension of the roles of individual genes and their influences on a vast spectrum of human malignancies. Despite considerable progress in elucidating obesity's molecular pathways, current anti-obesity medications fall short in effectiveness. A thorough understanding of the genetic foundations underlying various neurobiological pathways related to obesity, as well as the neuro-molecular mechanisms involved, is crucial for developing effective obesity treatments. Utilizing CRISPR-based technologies enables precise determination of the roles of genes that encode transcription factors or enzymes involved in processes, such as lipogenesis, lipolysis, glucose metabolism, and lipid storage within adipose tissue. This innovative approach allows for the targeted suppression or activation of genes regulating obesity, potentially leading to effective weight management strategies. In this review, we have provided a detailed overview of obesity's molecular genetics, the fundamentals of CRISPR/Cas9 technology, and how this technology contributes to the discovery and therapeutic targeting of new genes associated with obesity.
Collapse
Affiliation(s)
- Zahra Khademi
- Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Mahmoudi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Genome Editing and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:179-190. [DOI: 10.1007/978-981-19-5642-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Ortega-Pinazo J, Díaz T, Martínez B, Jiménez A, Pinto-Medel MJ, Ferro P. Quality assessment on the long-term cryopreservation and nucleic acids extraction processes implemented in the andalusian public biobank. Cell Tissue Bank 2019; 20:255-265. [PMID: 30903409 DOI: 10.1007/s10561-019-09764-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Human samples are commonly collected and long-term stored in biobanks for current and future analyses. Even though techniques for freezing human blood are well established, the storage time can compromise the cell viability as well as the yield and quality of nucleic acids (RNA and DNA) extracted from them. In this study, a protocol to obtain peripheral blood mononuclear cells (PBMCs) from 70 subjects, which were stored at - 196 °C from EDTA tubes for a long-term, was assessed. In parallel; a protocol to obtain DNA from the same subjects, which were stored at - 80 °C from citrate tubes, was also studied. Samples stored from 2008 to 2012 were studied and the results obtained showed that there were no statistically significant differences in the RNA or DNA extracted in terms of purity, integrity and functionality The freezing protocol used by the Málaga Biobank shows that viable PBMCs and DNA could be kept for a period of, at least, 10 years, with a high quality and performance. Furthermore, RNA extracted from these PBMCs presents also a good quality and performance. Therefore, the samples frozen according to the conditions of the protocols assessed in this study could be optimal for biomedical research.
Collapse
Affiliation(s)
- J Ortega-Pinazo
- Neuroscience UGC, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - T Díaz
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - B Martínez
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - A Jiménez
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - M J Pinto-Medel
- Neuroscience UGC, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - P Ferro
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain.
| |
Collapse
|
4
|
Tian X, Gu T, Patel S, Bode AM, Lee MH, Dong Z. CRISPR/Cas9 - An evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol 2019; 3:8. [PMID: 30911676 PMCID: PMC6423228 DOI: 10.1038/s41698-019-0080-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
The development of genetic engineering in the 1970s marked a new frontier in genome-editing technology. Gene-editing technologies have provided a plethora of benefits to the life sciences. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/ Cas9) system is a versatile technology that provides the ability to add or remove DNA in the genome in a sequence-specific manner. Serious efforts are underway to improve the efficiency of CRISPR/Cas9 targeting and thus reduce off-target effects. Currently, various applications of CRISPR/Cas9 are used in cancer biology and oncology to perform robust site-specific gene editing, thereby becoming more useful for biological and clinical applications. Many variants and applications of CRISPR/Cas9 are being rapidly developed. Experimental approaches that are based on CRISPR technology have created a very promising tool that is inexpensive and simple for developing effective cancer therapeutics. This review discusses diverse applications of CRISPR-based gene-editing tools in oncology and potential future cancer therapies.
Collapse
Affiliation(s)
- Xueli Tian
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Tingxuan Gu
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Satyananda Patel
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, 55912 USA
| | - Mee-Hyun Lee
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Zigang Dong
- Basic Medical College, Zhengzhou University, 450001 Zhengzhou, Henan China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, 450008 Zhengzhou, Henan China
- The Hormel Institute, University of Minnesota, Austin, 55912 USA
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
5
|
Wang L, Zheng W, Liu S, Li B, Jiang X. Delivery of CRISPR/Cas9 by Novel Strategies for Gene Therapy. Chembiochem 2018; 20:634-643. [PMID: 30393919 DOI: 10.1002/cbic.201800629] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 01/03/2023]
Abstract
Precise editing of the genome of a living body is a goal pursued by scientists in many fields. In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome-editing systems have become a revolutionary toolbox for gene editing across various species. However, the low transfection efficiency of the CRISPR/Cas9 system to mammalian cells in vitro and in vivo is a big obstacle hindering wide and deep application. In this review, recently developed delivery strategies for various CRISPR/Cas9 formulations and their applications in treating gene-related diseases are briefly summarized. This review should inspire others to explore more efficient strategies for CRISPR system delivery and gene therapy.
Collapse
Affiliation(s)
- Le Wang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, China.,Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Shaoqin Liu
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, China
| | - Bing Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China.,Biomedical Engineering Institute, Jinan University, No.601, West Huangpu Avenue, TianHe District, Guangzhou, 510632, China
| | - Xingyu Jiang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, China.,Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China.,Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
6
|
Lin G, Li L, Panwar N, Wang J, Tjin SC, Wang X, Yong KT. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
de-la-Cruz M, Millán-Aldaco D, Soriano-Nava DM, Drucker-Colín R, Murillo-Rodríguez E. The artificial sweetener Splenda intake promotes changes in expression of c-Fos and NeuN in hypothalamus and hippocampus of rats. Brain Res 2018; 1700:181-189. [PMID: 30201258 DOI: 10.1016/j.brainres.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/16/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity is the result of the interaction of multiple variables, including the excessive increase of sugar-sweetened beverages consumption. Diets aimed to treat obesity have suggested the use of artificial sweeteners. However, recent evidence has shown several health deficits after intake of artificial sweeteners, including effects in neuronal activity. Therefore, the influence of artificial sweeteners consumption such as Splenda, on the expression of c-Fos and neuronal nuclear protein (NeuN) in hypothalamus and hippocampus remains to be determined. OBJECTIVES We investigated the effects on c-Fos or NeuN expression in hypothalamus and hippocampus of Splenda-treated rats. METHODS Splenda was diluted in water (25, 75 or 250 mg/100 mL) and orally given to rats during 2 weeks ad libitum. Next, animals were sacrificed by decapitation and brains were collected for analysis of c-Fos or NeuN immunoreactivity. RESULTS Consumption of Splenda provoked an inverted U-shaped dose-effect in c-Fos expression in ventromedial hypothalamic nucleus while similar findings were observed in dentate gyrus of hippocampus. In addition, NeuN immunoreactivity was enhanced in ventromedial hypothalamic nucleus at 25 or 75 mg/100 mL of Splenda intake whereas an opposite effect was observed at 250 mg/100 mL of artificial sweetener consumption. Lastly, NeuN positive neurons were increased in CA2/CA3 fields of hippocampus from Splenda-treated rats (25, 75 or 250 mg/100 mL). CONCLUSION Consuming Splenda induced effects in neuronal biomarkers expression. To our knowledge, this study is the first description of the impact of intake Splenda on c-Fos and NeuN immunoreactivity in hypothalamus and hippocampus in rats.
Collapse
Affiliation(s)
- Miriel de-la-Cruz
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group
| | - Diana Millán-Aldaco
- Depto. de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México, Mexico
| | - Daniela Marcia Soriano-Nava
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group
| | - René Drucker-Colín
- Depto. de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México, Mexico
| | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group.
| |
Collapse
|