1
|
Saloni, Sachan M, Rahul, Verma RS, Patel GK. SOXs: Master architects of development and versatile emulators of oncogenesis. Biochim Biophys Acta Rev Cancer 2025; 1880:189295. [PMID: 40058508 DOI: 10.1016/j.bbcan.2025.189295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Transcription factors regulate a variety of events and maintain cellular homeostasis. Several transcription factors involved in embryonic development, has been shown to be closely associated with carcinogenesis when deregulated. Sry-like high mobility group box (SOX) proteins are potential transcription factors which are evolutionarily conserved. They regulate downstream genes to determine cell fate, via various signaling pathways and cellular processes essential for tissue and organ development. Dysregulation of SOXs has been reported to promote or suppress tumorigenesis by modulating cellular reprogramming, growth, proliferation, angiogenesis, metastasis, apoptosis, immune modulation, lineage plasticity, maintenance of the stem cell pool, therapy resistance and cancer relapse. This review provides a crucial understanding of the molecular mechanism by which SOXs play multifaceted roles in embryonic development and carcinogenesis. It also highlights their potential in advancing therapeutic strategies aimed at targeting SOXs and their downstream effectors in various malignancies.
Collapse
Affiliation(s)
- Saloni
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Rahul
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rama Shanker Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Girijesh Kumar Patel
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
2
|
Liu S, Yu H, Zhao Z. The molecular pathogenesis of SOX2 in prostate cancer. Discov Oncol 2025; 16:215. [PMID: 39976818 PMCID: PMC11842661 DOI: 10.1007/s12672-025-01972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
SOX2 is one of the members of the SOX transcription factor family, which is believed to be an important transcription factor that plays a role in embryonic development, maintenance of stem cells, cancer progression, and resistance to cancer treatment. There is increasing evidence suggesting that SOX2 is crucial for the initiation, progression, invasion, metastasis, and treatment resistance of prostate cancer, therefore understanding the mechanism of SOX2 in prostate cancer can provide better targets for the treatment of prostate cancer. This article reviews the structural domains, normal physiological functions, and role in prostate cancer progression of SOX2, providing potential targets for prostate cancer treatment.
Collapse
Affiliation(s)
- Shixue Liu
- Jining Medical University, Jining, 272067, Shandong, China
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, China.
| | - Zhankui Zhao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, China.
- Department of Urology, Seventh People'S Hospital of Shanghai University of TCM, Shanghai, 200137, Shanghai, China.
| |
Collapse
|
3
|
Balaji N, Kukal S, Bhat A, Pradhan N, Minocha S, Kumar S. A quartet of cancer stem cell niches in hepatocellular carcinoma. Cytokine Growth Factor Rev 2024; 79:39-51. [PMID: 39217065 DOI: 10.1016/j.cytogfr.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular Carcinoma (HCC), the most prevalent type of primary liver cancer, is known for its aggressive behavior and poor prognosis. The Cancer Stem Cell theory, which postulates the presence of a small population of self-renewing cells called Cancer Stem Cells (CSCs), provides insights into various clinical and molecular features of HCC such as tumor heterogeneity, metabolic adaptability, therapy resistance, and recurrence. These CSCs are nurtured in the tumor microenvironment (TME), where a mix of internal and external factors creates a tumor-supportive niche that is continuously evolving both spatially and temporally, thus enhancing the tumor's complexity. This review details the origins of hepatic CSCs (HCSCs) and the factors influencing their stem-like qualities. It highlights the reciprocal crosstalk between HCSCs and the TME (hypoxic, vascular, invasive, and immune niches), exploring the signaling pathways involved and how these interactions control the malignant traits of CSCs. Additionally, it discusses potential therapeutic approaches targeting the HCSC niche and their possible uses in clinical practice.
Collapse
Affiliation(s)
- Neha Balaji
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Samiksha Kukal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Anjali Bhat
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Nikita Pradhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
4
|
Baek JW, Nam AR, Kim K, Kim PH. Dualistic Effects of PRKAR1A as a Potential Anticancer Target in Cancer Cells and Cancer-Derived Stem Cells. Int J Mol Sci 2024; 25:2876. [PMID: 38474121 DOI: 10.3390/ijms25052876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The integration of innovative medical technologies and interdisciplinary collaboration could improve the treatment of cancer, a globally prevalent and often deadly disease. Despite recent advancements, current cancer therapies fail to specifically address recurrence and target cancer stem cells (CSCs), which contribute to relapse. In this study, we utilized three types of cancer cells, from which three types of CSCs were further derived, to conduct a proteomic analysis. Additionally, shared cell surface biomarkers were identified as potential targets for a comprehensive treatment strategy. The selected biomarkers were evaluated through short hairpin RNA treatment, which revealed contrasting functions in cancer cells and CSCs. Knockdown of the identified proteins revealed that they regulate the epithelial-mesenchymal transition (EMT) and stemness via the ERK signaling pathway. Resistance to anticancer agents was consequently reduced, ultimately enhancing the overall anticancer effects of the treatment. Additionally, the significance of these biomarkers in clinical patient outcomes was confirmed using bioinformatics. Our study suggests a novel cancer treatment strategy that addresses the limitations of current anticancer therapies.
Collapse
Affiliation(s)
- Joong-Won Baek
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - A-Reum Nam
- Department of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
5
|
Manoharan S, Saha S, Murugesan K, Santhakumar A, Perumal E. Natural bioactive compounds and STAT3 against hepatocellular carcinoma: An update. Life Sci 2024; 337:122351. [PMID: 38103726 DOI: 10.1016/j.lfs.2023.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is a challenging and very fatal liver cancer. The signal transducer and activator of transcription 3 (STAT3) pathway is a crucial regulator of tumor development and are ubiquitously active in HCC. Therefore, targeting STAT3 has emerged as a promising approach for preventing and treating HCC. Various natural bioactive compounds (NBCs) have been proven to target STAT3 and have the potential to prevent and treat HCC as STAT3 inhibitors. Numerous kinds of STAT3 inhibitors have been identified, including small molecule inhibitors, peptide inhibitors, and oligonucleotide inhibitors. Due to the undesirable side effects of the conventional therapeutic drugs against HCC, the focus is shifted to NBCs derived from plants and other natural sources. NBCs can be broadly classified into the categories of terpenes, alkaloids, carotenoids, and phenols. Most of the compounds belong to the family of terpenes, which prevent tumorigenesis by inhibiting STAT3 nuclear translocation. Further, through STAT3 inhibition, terpenes downregulate matrix metalloprotease 2 (MMP2), matrix metalloprotease 9 (MMP9) and vascular endothelial growth factor (VEGF), modulating metastasis. Terpenes also suppress the anti-apoptotic proteins and cell cycle markers. This review provides comprehensive information related to STAT3 abrogation by NBCs in HCC with in vitro and in vivo evidences.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Shreejit Saha
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Krishnasanthiya Murugesan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Aksayakeerthana Santhakumar
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
6
|
Liu L, Chen J, Ye F, Yan Y, Wang Y, Wu J. A Novel RNA Methylation-Related Prognostic Signature and its Tumor Microenvironment Characterization in Hepatocellular Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241276895. [PMID: 39155614 PMCID: PMC11331574 DOI: 10.1177/15330338241276895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system. RNA methylation plays an important role in tumorigenesis and metastasis, which could alter gene expression and even function at multiple levels, such as RNA splicing, stability, translocation, and translation. In this study, we aimed to conduct a comprehensive analysis of RNA methylation-related genes (RMGs) in HCC and their relationship with survival and clinical features. METHODS A retrospective analysis was performed using publicly available HCC-related datasets. The differentially expressed genes (DEGs) between HCC and controls were identified from TCGA-LlHC and intersected with RMGs to obtain differentially expressed RNA methylation-related genes (DERMGs). Regression analysis was used to screen for prognostic genes and construct risk models. Simultaneously, clinical, immune infiltration and therapeutic efficacy analyses were performed. Finally, multivariate cox regression was used to identify independent risk factors, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the expression levels of the core genes of the model. RESULTS A 21-gene risk model for HCC was established with excellent performance based on ROC curves and survival analysis. Risk scores correlated with tumor grade, pathologic T, and TNM stage. Immune infiltration analysis showed correlations with immune scores, 11 immune cells, and 30 immune checkpoints. Low-risk patients showed a higher susceptibility to immunotherapy. The risk score and TNM stage were independent prognostic factors. qRT-PCR confirmed higher expression of PRDM9, ALPP, and GAD1 in HCC. CONCLUSIONS This study identified RNA methylation-related signature genes in HCC and constructed a risk model that predicts patient outcomes and reflects the immune microenvironment. Prognostic genes are involved in complex regulatory mechanisms, which may be useful for cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Luzheng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fei Ye
- Department of Blood Cell Therapy, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanggang Yan
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
7
|
Abatti LE, Lado-Fernández P, Huynh L, Collado M, Hoffman M, Mitchell J. Epigenetic reprogramming of a distal developmental enhancer cluster drives SOX2 overexpression in breast and lung adenocarcinoma. Nucleic Acids Res 2023; 51:10109-10131. [PMID: 37738673 PMCID: PMC10602899 DOI: 10.1093/nar/gkad734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
Enhancer reprogramming has been proposed as a key source of transcriptional dysregulation during tumorigenesis, but the molecular mechanisms underlying this process remain unclear. Here, we identify an enhancer cluster required for normal development that is aberrantly activated in breast and lung adenocarcinoma. Deletion of the SRR124-134 cluster disrupts expression of the SOX2 oncogene, dysregulates genome-wide transcription and chromatin accessibility and reduces the ability of cancer cells to form colonies in vitro. Analysis of primary tumors reveals a correlation between chromatin accessibility at this cluster and SOX2 overexpression in breast and lung cancer patients. We demonstrate that FOXA1 is an activator and NFIB is a repressor of SRR124-134 activity and SOX2 transcription in cancer cells, revealing a co-opting of the regulatory mechanisms involved in early development. Notably, we show that the conserved SRR124 and SRR134 regions are essential during mouse development, where homozygous deletion results in the lethal failure of esophageal-tracheal separation. These findings provide insights into how developmental enhancers can be reprogrammed during tumorigenesis and underscore the importance of understanding enhancer dynamics during development and disease.
Collapse
Affiliation(s)
- Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Lado-Fernández
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Linh Huynh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Aguilar-Chaparro MA, Rivera-Pineda SA, Hernández-Galdámez HV, Piña-Vázquez C, Villa-Treviño S. The CD44std and CD44v9 subpopulations in non-tumorigenic invasive SNU-423 cells present different features of cancer stem cells. Stem Cell Res 2023; 72:103222. [PMID: 37844417 DOI: 10.1016/j.scr.2023.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer, in which CD44 isoforms have been proposed as markers to identify cancer stem cells (CSCs). However, it is unclear what characteristics are associated with CSCs that exclusively express CD44 isoforms. The objective of the present study was to determine the expression of CD44 isoforms and their properties in CSCs. Analysis of transcriptomic data from HCC patient samples identified CD44v8-10 as a potential marker in HCC. In SNU-423 cells, CD44 expression was detected in over 99% of cells, and two CD44 isoforms, namely, CD44std and CD44v9, were identified in this cell line. CD44 subpopulations, including both CD44v9+ (CD44v9) and CD44v9- (CD44std) cells, were obtained by purification using a magnetic cell separation kit for human CD44v9+ cancer stem cells. CD44v9 cells showed greater potential for colony and spheroid formation, whereas CD44std cells demonstrated significant migration and invasion capabilities. These findings suggested that CD44std and CD44v9 may be used to identify features in CSC populations and provide insights into their roles in HCC.
Collapse
Affiliation(s)
- Mario Alejandro Aguilar-Chaparro
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Sonia Andrea Rivera-Pineda
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Hury Viridiana Hernández-Galdámez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico.
| |
Collapse
|
9
|
Povero D, Chen Y, Johnson SM, McMahon CE, Pan M, Bao H, Petterson XMT, Blake E, Lauer KP, O'Brien DR, Yu Y, Graham RP, Taner T, Han X, Razidlo GL, Liu J. HILPDA promotes NASH-driven HCC development by restraining intracellular fatty acid flux in hypoxia. J Hepatol 2023; 79:378-393. [PMID: 37061197 PMCID: PMC11238876 DOI: 10.1016/j.jhep.2023.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 03/26/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND & AIMS The prevalence of non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) is rising rapidly, yet its underlying mechanisms remain unclear. Herein, we aim to determine the role of hypoxia-inducible lipid droplet associated protein (HILPDA)/hypoxia-inducible gene 2 (HIG2), a selective inhibitor of intracellular lipolysis, in NASH-driven HCC. METHODS The clinical significance of HILPDA was assessed in human NASH-driven HCC specimens by immunohistochemistry and transcriptomics analyses. The oncogenic effect of HILPDA was assessed in human HCC cells and in 3D epithelial spheroids upon exposure to free fatty acids and either normoxia or hypoxia. Lipidomics profiling of wild-type and HILPDA knockout HCC cells was assessed via shotgun and targeted approaches. Wild-type (Hilpdafl/fl) and hepatocyte-specific Hilpda knockout (HilpdaΔHep) mice were fed a Western diet and high sugar in drinking water while receiving carbon tetrachloride to induce NASH-driven HCC. RESULTS In patients with NASH-driven HCC, upregulated HILPDA expression is strongly associated with poor survival. In oxygen-deprived and lipid-loaded culture conditions, HILPDA promotes viability of human hepatoma cells and growth of 3D epithelial spheroids. Lack of HILPDA triggered flux of polyunsaturated fatty acids to membrane phospholipids and of saturated fatty acids to ceramide synthesis, exacerbating lipid peroxidation and apoptosis in hypoxia. The apoptosis induced by HILPDA deficiency was reversed by pharmacological inhibition of ceramide synthesis. In our experimental mouse model of NASH-driven HCC, HilpdaΔHep exhibited reduced hepatic steatosis and tumorigenesis but increased oxidative stress in the liver. Single-cell analysis supports a dual role of hepatic HILPDA in protecting HCC cells and facilitating the establishment of a pro-tumorigenic immune microenvironment in NASH. CONCLUSIONS Hepatic HILPDA is a pivotal oncometabolic factor in the NASH liver microenvironment and represents a potential novel therapeutic target. IMPACT AND IMPLICATIONS Non-alcoholic steatohepatitis (NASH, chronic metabolic liver disease caused by buildup of fat, inflammation and damage in the liver) is emerging as the leading risk factor and the fastest growing cause of hepatocellular carcinoma (HCC), the most common form of liver cancer. While curative therapeutic options exist for HCC, it frequently presents at a late stage when such options are no longer effective and only systemic therapies are available. However, systemic therapies are still associated with poor efficacy and some side effects. In addition, no approved drugs are available for NASH. Therefore, understanding the underlying metabolic alterations occurring during NASH-driven HCC is key to identifying new cancer treatments that target the unique metabolic needs of cancer cells.
Collapse
Affiliation(s)
- Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Scott M Johnson
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Cailin E McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Meixia Pan
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hanmei Bao
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xuan-Mai T Petterson
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Emily Blake
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Kimberly P Lauer
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Daniel R O'Brien
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Yue Yu
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Rondell P Graham
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Timucin Taner
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Xianlin Han
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| |
Collapse
|
10
|
Shi DM, Dong SS, Zhou HX, Song DQ, Wan JL, Wu WZ. Genomic and transcriptomic profiling reveals key molecules in metastatic potentials and organ-tropisms of hepatocellular carcinoma. Cell Signal 2023; 104:110565. [PMID: 36539000 DOI: 10.1016/j.cellsig.2022.110565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Metastasis is a landmark event for rapid postsurgical relapse and death of HCC patients. Although distinct genomic and transcriptomic profiling of HCC metastasis had been reported previously, the causal relationships of somatic mutants, mRNA levels and metastatic potentials were difficult to be established in clinic. Therefore, 11 human HCC cell lines and 7 monoclonal derivatives with definite metastatic potentials and tropisms were subjected to whole exome sequencing (WES) and whole transcriptome sequencing (WTS). TP53, MYO5A, ROS1 and ARID2 were the prominent mutants of metastatic drivers in HCC cells. During HCC clonal evaluation, TP53, MYO5A and ROS1 mutations occurred in the early stage, EXT2 and NIN in the late stage. NF1 mutant was unique in lung tropistic cell lines, RNF126 mutant in lymphatic tropistic ones. PER1, LMO2, GAS7, NR4A3 expression levels were positively associated with relapse-free survival (RFS) of HCC patients. The integrative analysis revealed 58 genes exhibited both somatic mutation and dysregulated mRNA levels in high metastatic cells. Altogether, metastatic drivers could accumulate gradually at different stages during HCC progression, some drivers might modulate HCC metastatic potentials and the others regulate metastatic tropisms.
Collapse
Affiliation(s)
- Dong-Min Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Department of Medical Oncology, Changzheng Hospital, Shanghai, People's Republic of China
| | - Shuang-Shuang Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Hong-Xing Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Dong-Qiang Song
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jin-Liang Wan
- Department of Medical Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| |
Collapse
|
11
|
Wang Q, Li S, Xu C, Hua A, Wang C, Xiong Y, Deng Q, Chen X, Yang T, Wan J, Ding ZY, Zhang BX, Yang X, Li Z. A novel lonidamine derivative targeting mitochondria to eliminate cancer stem cells by blocking glutamine metabolism. Pharmacol Res 2023; 190:106740. [PMID: 36958408 DOI: 10.1016/j.phrs.2023.106740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Cancer stem cells (CSCs) have been blamed as the main culprit of tumor initiation, progression, metastasis, chemoresistance, and recurrence. However, few anti-CSCs agents have achieved clinical success so far. Here we report a novel derivative of lonidamine (LND), namely HYL001, which selectively and potently inhibits CSCs by targeting mitochondria, with 380-fold and 340-fold lower IC50 values against breast cancer stem cells (BCSCs) and hepatocellular carcinoma stem cells (HCSCs), respectively, compared to LND. Mechanistically, we reveal that HYL001 downregulates glutaminase (GLS) expression to block glutamine metabolism, blunt tricarboxylic acid cycle, and amplify mitochondrial oxidative stress, leading to apoptotic cell death. Therefore, HYL001 displays significant antitumor activity in vivo, both as a single agent and combined with paclitaxel. Furthermore, HYL001 represses CSCs of fresh tumor tissues derived from liver cancer patients. This study provides critical implications for CSCs biology and development of potent anti-CSCs drugs.
Collapse
Affiliation(s)
- Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tian Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ze-Yang Ding
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| |
Collapse
|
12
|
Larcombe MR, Hsu S, Polo JM, Knaupp AS. Indirect Mechanisms of Transcription Factor-Mediated Gene Regulation during Cell Fate Changes. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200015. [PMID: 36911290 PMCID: PMC9993476 DOI: 10.1002/ggn2.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 06/18/2023]
Abstract
Transcription factors (TFs) are the master regulators of cellular identity, capable of driving cell fate transitions including differentiations, reprogramming, and transdifferentiations. Pioneer TFs recognize partial motifs exposed on nucleosomal DNA, allowing for TF-mediated activation of repressed chromatin. Moreover, there is evidence suggesting that certain TFs can repress actively expressed genes either directly through interactions with accessible regulatory elements or indirectly through mechanisms that impact the expression, activity, or localization of other regulatory factors. Recent evidence suggests that during reprogramming, the reprogramming TFs initiate opening of chromatin regions rich in somatic TF motifs that are inaccessible in the initial and final cellular states. It is postulated that analogous to a sponge, these transiently accessible regions "soak up" somatic TFs, hence lowering the initial barriers to cell fate changes. This indirect TF-mediated gene regulation event, which is aptly named the "sponge effect," may play an essential role in the silencing of the somatic transcriptional network during different cellular conversions.
Collapse
Affiliation(s)
- Michael R. Larcombe
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| | - Sheng Hsu
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| | - Jose M. Polo
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
- South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth Australia5005Australia
- Adelaide Centre for Epigenetics, Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Anja S. Knaupp
- Department of Anatomy and Developmental BiologyMonash UniversityClaytonVictoria3168Australia
- Development and Stem Cells ProgramMonash Biomedicine Discovery InstituteClaytonVictoria3168Australia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoria3168Australia
| |
Collapse
|
13
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156:113860. [DOI: 10.1016/j.biopha.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
|
14
|
Xie Q, Hua X, Huang C, Liao X, Tian Z, Xu J, Zhao Y, Jiang G, Huang H, Huang C. SOX2 Promotes Invasion in Human Bladder Cancers through MMP2 Upregulation and FOXO1 Downregulation. Int J Mol Sci 2022; 23:ijms232012532. [PMID: 36293387 PMCID: PMC9604292 DOI: 10.3390/ijms232012532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
SOX2, a member of the SRY-related HMG-box (SOX) family, is abnormally expressed in many tumors and associated with cancer stem cell-like properties. Previous reports have shown that SOX2 is a biomarker for cancer stem cells in human bladder cancer (BC), and our most recent study has indicated that the inhibition of SOX2 by anticancer compound ChlA-F attenuates human BC cell invasion. We now investigated the mechanisms through which SOX2 promotes the invasive ability of BC cells. Our studies revealed that SOX2 promoted SKP2 transcription and increased SKP2-accelerated Sp1 protein degradation. As Sp1 is a transcriptionally regulated gene, HUR transcription was thereby attenuated, and, in the absence of HUR, FOXO1 mRNA was degraded fast, which promoted BC cell invasion. In addition, SOX2 promoted BC invasion through the upregulation of nucleolin transcription, which resulted in increased MMP2 mRNA stability and expression. Collectively, our findings show that SOX2 promotes BC invasion through both SKP2-Sp1-HUR-FOXO1 and nucleolin-MMP2 dual axes.
Collapse
Affiliation(s)
- Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Department of Clinical Laboratory, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| | - Xin Liao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haishan Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| |
Collapse
|
15
|
Hu H, Zhong T, Jiang S. H2AFX might be a prognostic biomarker for hepatocellular carcinoma. Cancer Rep (Hoboken) 2022; 6:e1684. [PMID: 35903980 PMCID: PMC9875689 DOI: 10.1002/cnr2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND H2AFX can play a central role in DNA repair, replication, transcription regulation, and chromosomal stability. However, there is little research to explore the expression of H2AFX in cancers. Moreover, the correlation between the expression of H2AFX and tumor immunity, which affects the prognosis of hepatocellular carcinoma (HCC), is not clear. This article aimed to observe the correlation between H2AFX and tumor tissue infiltration biomarkers in HCC and its prognostic potential in HCC. METHOD Oncomine and TIMER database were used to assess the expression level of H2AFX mRNA, and GEPIA and Kaplan-Meier databases were used to evaluate its prognostic potential. The TIMER database analyzed the relationship between h2afx expression level and tumor immune cell infiltration markers in liver cancer tissues. RESULTS The results showed that H2AFX was overexpressed in tumor tissues than normal tissues in HCC via analysis, and its expression level was correlated with the survival rate of HCC. Moreover, the expression level of H2AFX was related to various immune biomarkers. These results show that overexpression of H2AFX would reflect the poor prognosis of HCC, and these would also reflect that the gene H2AFX can affect the infiltration of HCC immune cells and then play a role in regulating tumor immunity. CONCLUSION Our study showed that the gene H2AFX might be a potential poor prognostic biomarker in HCC and might be involved in the infiltration of HCC immune cells.
Collapse
Affiliation(s)
- Hailiang Hu
- Department of Blood TransfusionThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| | - Tao Zhong
- Department of Blood TransfusionThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| | - Suwei Jiang
- Department of Biological and Environmental EngineeringHefei UniversityHefeiAnhuiP. R. China
| |
Collapse
|
16
|
Shonibare Z, Monavarian M, O’Connell K, Altomare D, Shelton A, Mehta S, Jaskula-Sztul R, Phaeton R, Starr MD, Whitaker R, Berchuck A, Nixon AB, Arend RC, Lee NY, Miller CR, Hempel N, Mythreye K. Reciprocal SOX2 regulation by SMAD1-SMAD3 is critical for anoikis resistance and metastasis in cancer. Cell Rep 2022; 40:111066. [PMID: 35905726 PMCID: PMC9899501 DOI: 10.1016/j.celrep.2022.111066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Growth factors in tumor environments are regulators of cell survival and metastasis. Here, we reveal the dichotomy between TGF-β superfamily growth factors BMP and TGF-β/activin and their downstream SMAD effectors. Gene expression profiling uncovers SOX2 as a key contextual signaling node regulated in an opposing manner by BMP2, -4, and -9 and TGF-β and activin A to impact anchorage-independent cell survival. We find that SOX2 is repressed by BMPs, leading to a reduction in intraperitoneal tumor burden and improved survival of tumor-bearing mice. Repression of SOX2 is driven by SMAD1-dependent histone H3K27me3 recruitment and DNA methylation at SOX2's promoter. Conversely, TGF-β, which is elevated in patient ascites, and activin A can promote SOX2 expression and anchorage-independent survival by SMAD3-dependent histone H3K4me3 recruitment. Our findings identify SOX2 as a contextual and contrastingly regulated node downstream of TGF-β members controlling anchorage-independent survival and metastasis in ovarian cancers.
Collapse
Affiliation(s)
- Zainab Shonibare
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA,Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mehri Monavarian
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Kathleen O’Connell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Abigail Shelton
- Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Shubham Mehta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, and Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mark D. Starr
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Andrew B. Nixon
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Rebecca C. Arend
- Department of Gynecology Oncology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Nam Y. Lee
- Department of Chemistry and Biochemistry, Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - C. Ryan Miller
- Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Nadine Hempel
- Department of Pharmacology, and Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| | - Karthikeyan Mythreye
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama School of Medicine, Birmingham, AL, USA; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
17
|
Zhao W, Mo H, Liu R, Chen T, Yang N, Liu Z. Matrix stiffness-induced upregulation of histone acetyltransferase KAT6A promotes hepatocellular carcinoma progression through regulating SOX2 expression. Br J Cancer 2022; 127:202-210. [PMID: 35332266 PMCID: PMC9296676 DOI: 10.1038/s41416-022-01784-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/15/2021] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lysine acetyltransferase 6 A (KAT6A) is a MYST-type histone acetyltransferase (HAT) enzyme, which contributes to histone modification and cancer development. However, its biological functions and molecular mechanisms, which respect to hepatocellular carcinoma (HCC), are still largely unknown. METHODS Immunohistochemical, western blot and qRT-PCR analysis of KAT6A were performed. A series of in vitro and in vivo experiments were conducted to reveal the role of KAT6A in the progression of HCC. RESULTS We demonstrated that KAT6A expression was upregulated in HCC tissues and cell lines. Clinical analysis showed that increased KAT6A was significantly associated with malignant prognostic features and shorter survival. Gain- and loss-of-function experiments indicated that KAT6A promoted cell viability, proliferation and colony formation of HCC cells in vitro and in vivo. We confirmed that KAT6A acetylates lysine 23 of histone H3 (H3K23), and then enhances the association of the nuclear receptor binding protein TRIM24 and H3K23ac. Consequently, TRIM24 functions as a transcriptional activator to activate SOX2 transcription and expression, leading to HCC tumorigenesis. Restoration of SOX2 at least partially abolished the biological effects of KAT6A on HCC cells. Overexpression of KAT6A acetyltransferase activity-deficient mutants or TRIM24 mutants lacking H3K23ac binding sites did not affect SOX2 expression and HCC biological function. Moreover, matrix stiffness can upregulate the expression of KAT6A in HCC cells. CONCLUSIONS Our data support the first evidence that KAT6A plays an oncogenic role in HCC through H3K23ac/TRIM24-SOX2 pathway, and represents a promising therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Wei Zhao
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China
| | - Nan Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China.
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China.
| |
Collapse
|
18
|
Sun G, Zheng W, Tan P, Zhou J, Tang W, Cao H, Liu L, Shi X, Li Z, Zhang W. Comprehensive Analysis of VCAN Expression Profiles and Prognostic Values in HCC. Front Genet 2022; 13:900306. [PMID: 35812745 PMCID: PMC9263583 DOI: 10.3389/fgene.2022.900306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the world’s most common cause of cancer death. Therefore, more molecular mechanisms need to be clarified to meet the urgent need to develop new detection and treatment strategies. Methods: We used TCGAportal, Kaplan–Meier Plotter, the Cistrome DB Toolkit Database, MExpress, GEPIA2, and other databases to discuss the expression profiles, possible biological function, and potential prognostic value of versican (VCAN) in HCC. We conducted cell experiments such as Transwell migration and invasion assays, wound healing assay, and CCK8 experiment to explore the function of VCAN in HCC. Result: We selected three HCC transcriptome databases GSE124535, GSE136247, and GSE144269 and analyzed the overexpressed genes contained in them. The overlapping genes were found by the Venn map, and two interacting network modules were found by Mcode. Module 1 was mainly related to mitosis and cell cycle, and module 2 was mainly related to EMT, angiogenesis, glycolysis, and so on. We found that the seed gene in module 2 is VCAN. Data from TCGAportal showed that compared with normal tissues, the expression of VCAN was up-regulated in HCC tissues. The patients with high expression of VCAN had shorter distant recurrence-free survival and overall survival. Multiple possible VCAN interactions had also been identified. These results revealed that the level of VCAN was higher in the subtypes of HCC with higher malignant degree and was connected to the poor prognosis. In addition, the treatment of VCAN with DNA methyltransferase inhibitors and transcription factor inhibitors may improve the prognosis of patients with HCC. Conclusion: Our findings systematically elucidated the expression profile and different prognostic values of VCAN in HCC, which may provide new therapeutic targets and potential prognostic biomarkers for HCC patients.
Collapse
Affiliation(s)
- Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Pengyu Tan
- Department of Food Science and Engineering, Nanjing Xiaozhuang University, Nanjing, China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Hongyong Cao, ; Li Liu, ; Xuesong Shi, ; Zhouxiao Li, ; Wenling Zhang,
| | - Li Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Hongyong Cao, ; Li Liu, ; Xuesong Shi, ; Zhouxiao Li, ; Wenling Zhang,
| | - Xuesong Shi
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Hongyong Cao, ; Li Liu, ; Xuesong Shi, ; Zhouxiao Li, ; Wenling Zhang,
| | - Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hongyong Cao, ; Li Liu, ; Xuesong Shi, ; Zhouxiao Li, ; Wenling Zhang,
| | - Wenling Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Hongyong Cao, ; Li Liu, ; Xuesong Shi, ; Zhouxiao Li, ; Wenling Zhang,
| |
Collapse
|
19
|
Winkler S, Winkler I, Figaschewski M, Tiede T, Nordheim A, Kohlbacher O. De novo identification of maximally deregulated subnetworks based on multi-omics data with DeRegNet. BMC Bioinformatics 2022; 23:139. [PMID: 35439941 PMCID: PMC9020058 DOI: 10.1186/s12859-022-04670-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background With a growing amount of (multi-)omics data being available, the extraction of knowledge from these datasets is still a difficult problem. Classical enrichment-style analyses require predefined pathways or gene sets that are tested for significant deregulation to assess whether the pathway is functionally involved in the biological process under study. De novo identification of these pathways can reduce the bias inherent in predefined pathways or gene sets. At the same time, the definition and efficient identification of these pathways de novo from large biological networks is a challenging problem. Results We present a novel algorithm, DeRegNet, for the identification of maximally deregulated subnetworks on directed graphs based on deregulation scores derived from (multi-)omics data. DeRegNet can be interpreted as maximum likelihood estimation given a certain probabilistic model for de-novo subgraph identification. We use fractional integer programming to solve the resulting combinatorial optimization problem. We can show that the approach outperforms related algorithms on simulated data with known ground truths. On a publicly available liver cancer dataset we can show that DeRegNet can identify biologically meaningful subgraphs suitable for patient stratification. DeRegNet can also be used to find explicitly multi-omics subgraphs which we demonstrate by presenting subgraphs with consistent methylation-transcription patterns. DeRegNet is freely available as open-source software. Conclusion The proposed algorithmic framework and its available implementation can serve as a valuable heuristic hypothesis generation tool contextualizing omics data within biomolecular networks.
Collapse
Affiliation(s)
- Sebastian Winkler
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany. .,International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.
| | - Ivana Winkler
- International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.,Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mirjam Figaschewski
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Thorsten Tiede
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Alfred Nordheim
- Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,Leibniz Institute on Aging (FLI), Jena, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Tübingen, Germany.,Translational Bioinformatics, University Hospital Tuebingen, Tübingen, Germany
| |
Collapse
|
20
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
21
|
Gharib AF, Elsawy WH, Alrehaili AA, Amin HS, Alhuthali HM, Bakhuraysah MM, El Askary A. The Application of Molecular Techniques for Assessment of SOX2 and miR126 Expression as Prognostic Markers in Esophageal Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1514412. [PMID: 39290848 PMCID: PMC11407893 DOI: 10.1155/2022/1514412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 09/19/2024]
Abstract
Objective To study the problem in esophageal cancer, the function of SOX2 and miR-126 has not been completely explored. The objective of this study was to find out how SOX2 and miR-126 act in esophageal cancer and their relation to the clinical and prognostic features. Methods The expression of SOX2 and miR-126 was properly assessed in the carcinoma of the esophagus, and the nearby healthy tissues surgically excised from 35 included patients. Results SOX2 was elevated in esophageal cancer relative to normal tissues contrary to the miR-126 levels. This inverse relationship was linked to adverse clinical features. Background SOX2 has been involved as an oncogene in various types of malignant tumors; microRNA-126 (miR-126) is extensively expressed in vascular endothelial cells, which control angiogenesis. Furthermore, many published reports reasonably concluded that based on the prime characteristic of malignant cells, miR-126 may act appropriately as a promotor or a suppressor for the malignant growth. Conclusion In esophageal cancer, SOX2 works as an oncogene, whereas miR-126 acts as a tumor suppressor gene. SOX2 overexpression and miR-126 downregulation were shown to be linked to a poor prognosis.
Collapse
Affiliation(s)
- Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Wael H Elsawy
- Department of Clinical Oncology, Faculty of Medicine, Zagazig University, Egypt
| | - Amani A Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Hanan S Amin
- Department of Clinical Chemistry, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Maha M Bakhuraysah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
22
|
de Wet L, Williams A, Gillard M, Kregel S, Lamperis S, Gutgesell LC, Vellky JE, Brown R, Conger K, Paner GP, Wang H, Platz EA, De Marzo AM, Mu P, Coloff JL, Szmulewitz RZ, Vander Griend DJ. SOX2 mediates metabolic reprogramming of prostate cancer cells. Oncogene 2022; 41:1190-1202. [PMID: 35067686 PMCID: PMC8858874 DOI: 10.1038/s41388-021-02157-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023]
Abstract
New strategies are needed to predict and overcome metastatic progression and therapy resistance in prostate cancer. One potential clinical target is the stem cell transcription factor SOX2, which has a critical role in prostate development and cancer. We thus investigated the impact of SOX2 expression on patient outcomes and its function within prostate cancer cells. Analyses of SOX2 expression among a case-control cohort of 1028 annotated tumor specimens demonstrated that SOX2 expression confers a more rapid time to metastasis and decreased patient survival after biochemical recurrence. SOX2 ChIP-Seq analyses revealed SOX2-binding sites within prostate cancer cells which differ significantly from canonical embryonic SOX2 gene targets, and prostate-specific SOX2 gene targets are associated with multiple oncogenic pathways. Interestingly, phenotypic and gene expression analyses after CRISPR-mediated deletion of SOX2 in castration-resistant prostate cancer cells, as well as ectopic SOX2 expression in androgen-sensitive prostate cancer cells, demonstrated that SOX2 promotes changes in multiple metabolic pathways and metabolites. SOX2 expression in prostate cancer cell lines confers increased glycolysis and glycolytic capacity, as well as increased basal and maximal oxidative respiration and increased spare respiratory capacity. Further, SOX2 expression was associated with increased quantities of mitochondria, and metabolomic analyses revealed SOX2-associated changes in the metabolism of purines, pyrimidines, amino acids and sugars, and the pentose phosphate pathway. Analyses of SOX2 gene targets with central functions metabolism (CERK, ECHS1, HS6SDT1, LPCAT4, PFKP, SLC16A3, SLC46A1, and TST) document significant expression correlation with SOX2 among RNA-Seq datasets derived from patient tumors and metastases. These data support a key role for SOX2 in metabolic reprogramming of prostate cancer cells and reveal new mechanisms to understand how SOX2 enables metastatic progression, lineage plasticity, and therapy resistance. Further, our data suggest clinical opportunities to exploit SOX2 as a biomarker for staging and imaging, as well as a potential pharmacologic target.
Collapse
Affiliation(s)
- Larischa de Wet
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Anthony Williams
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | - Marc Gillard
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | - Steven Kregel
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Sophia Lamperis
- Department of Pathology, The University of Illinois at Chicago, Chicago, IL, 60637, USA
| | - Lisa C Gutgesell
- Department of Pathology, The University of Illinois at Chicago, Chicago, IL, 60637, USA
| | - Jordan E Vellky
- Department of Pathology, The University of Illinois at Chicago, Chicago, IL, 60637, USA
| | - Ryan Brown
- Department of Pathology, The University of Illinois at Chicago, Chicago, IL, 60637, USA
| | - Kelly Conger
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60637, USA
| | - Gladell P Paner
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Heng Wang
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Angelo M De Marzo
- Departments of Pathology, Urology, and Oncology, and the Brady Urological Research Institute and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ping Mu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan L Coloff
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60637, USA
| | - Russell Z Szmulewitz
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | - Donald J Vander Griend
- Department of Pathology, The University of Illinois at Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
23
|
Enrichment of SOX2-Positive Cells in BRAF V600E Mutated and Recurrent Ameloblastoma. J Pers Med 2022; 12:jpm12010077. [PMID: 35055392 PMCID: PMC8780877 DOI: 10.3390/jpm12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Ameloblastoma is the most common benign odontogenic neoplasm, but with an aggressive behavior and a high recurrence rate. Nowadays wide surgical resection is the current recommended treatment, which can cause further loss of function and esthetics. Recent studies point to the stem/progenitor cells as both initiators and propagators of the tumors. Elucidation of the cellular and molecular mechanisms underlying the tumor stem cells is of broad interest for understanding tumorigenesis and for developing effective targeted therapies. SRY related HMG box gene 2 (SOX2) is a transcription factor that plays important roles in development, stem cell renewal, and cancer formation. Few studies have revealed increased SOX2 expression in atypical ameloblastoma and ameloblastic carcinoma. For the development of personalized medicine for ameloblastoma, biomarkers that provide prognostic or predictive information regarding a tumor’s nature or its response to treatment are essential. Thus, in this study, we aimed to study if SOX2-positive cells exist in ameloblastomas and their correlation with the clinicopathologic parameters. Our data suggested BRAF(V600E) mutation might contribute to the expansion of SOX2-positive cells. The identification of BRAF(V600E) mutation and the amplification of SOX2-positive cells in ameloblastomas imply the possible benefit of applying BRAF and SOX2 inhibitors in recurrent and un-resectable ameloblastomas.
Collapse
|
24
|
Abstract
The proliferation, metastasis and therapy response of tumour cells are tightly regulated by interaction among various signalling networks. The microRNAs (miRNAs) can bind to 3'-UTR of mRNA and down-regulate expression of target gene. The miRNAs target various molecular pathways in regulating biological events such as apoptosis, differentiation, angiogenesis and migration. The aberrant expression of miRNAs occurs in cancers and they have both tumour-suppressor and tumour-promoting functions. On the contrary, SOX proteins are capable of binding to DNA and regulating gene expression. SOX2 is a well-known member of SOX family that its overexpression in different cancers to ensure progression and stemness. The present review focuses on modulatory impact of miRNAs on SOX2 in affecting growth, migration and therapy response of cancers. The lncRNAs and circRNAs can function as upstream mediators of miRNA/SOX2 axis in cancers. In addition, NF-κB, TNF-α and SOX17 are among other molecular pathways regulating miRNA/SOX2 axis in cancer. Noteworthy, anti-cancer compounds including bufalin and ovatodiolide are suggested to regulate miRNA/SOX2 axis in cancers. The translation of current findings to clinical course can pave the way to effective treatment of cancer patients and improve their prognosis.
Collapse
|
25
|
Seok J, Gil M, Dayem AA, Saha SK, Cho SG. Multi-Omics Analysis of SOX4, SOX11, and SOX12 Expression and the Associated Pathways in Human Cancers. J Pers Med 2021; 11:jpm11080823. [PMID: 34442467 PMCID: PMC8400412 DOI: 10.3390/jpm11080823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
The Sry-related HMG BOX (SOX) gene family encodes transcription factors containing highly conserved high-mobility group domains that bind to the minor groove in DNA. Although some SOX genes are known to be associated with tumorigenesis and cancer progression, their expression and prognostic value have not been systematically studied. We performed multi-omic analysis to investigate the expression of SOX genes in human cancers. Expression and phylogenetic tree analyses of the SOX gene family revealed that the expression of three closely related SOX members, SOX4, SOX11, and SOX12, was increased in multiple cancers. Expression, mutation, and alteration of the three SOX members were evaluated using the Oncomine and cBioPortal databases, and the correlation between these genes and clinical outcomes in various cancers was examined using the Kaplan–Meier, PrognoScan, and R2 database analyses. The genes commonly correlated with the three SOX members were categorized in key pathways related to the cell cycle, mitosis, immune system, and cancer progression in liver cancer and sarcoma. Additionally, functional protein partners with three SOX proteins and their probable signaling pathways were explored using the STRING database. This study suggests the prognostic value of the expression of three SOX genes and their associated pathways in various human cancers.
Collapse
Affiliation(s)
| | | | | | | | - Ssang-Goo Cho
- Correspondence: ; Tel.: +82-2-450-4207 or +82-2-444-4207
| |
Collapse
|
26
|
SOX2 and Bcl-2 as a Novel Prognostic Value in Hepatocellular Carcinoma Progression. ACTA ACUST UNITED AC 2021; 28:3015-3029. [PMID: 34436030 PMCID: PMC8395510 DOI: 10.3390/curroncol28040264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Sex-determining region Y-box 2 (SOX2) is a stem cell transcription factor and a major regulator of self-renewal and pluripotency of cancer stem cells (CSCs). In many types of cancer, SOX2 is dysregulated due to overexpression associated with tumor progression and low survival rate. Many HCC cases encounter recurrence and metastasis which might be due to CSCs and also apoptosis. Since little is known about the expression pattern of SOX2 and apoptotic genes in HCC, we aimed to determine the prognostic significance of SOX2, Bax, and Bcl-2 in clinicopathological features, tumor progression, and survival rate of the HCC patients. The expression of SOX2, Bax, and Bcl-2 were evaluated using qRT-PCR in 53 formalin-fixed, paraffin-embedded tissues (FFPE) of patients and 44 controls. Correlation of these genes was analyzed with clinicopathological features and tumor progression. The correlationship between SOX2 expression and ALBI grade as prognostic indicators were calculated. Survival rates were determined by Kaplan–Meier survival curves. SOX2 and Bcl-2 were remarkably overexpressed in HCC patients compared to controls (p = 0.04 and p = 0.003, respectively). A significant association was found for both SOX2 and Bcl-2 overexpression with TNM staging (p = 0.02, p = 0.04) and tumor grading (p = 0.01, p = 0.003), respectively. A significant correlation was observed: patients with SOX2 overexpression had a lower 5-year overall survival rate (p = 0.04); however, there was no significant association between Bcl-2 and survival (p = 0.5). Collectively, overexpression of SOX2 and Bcl-2, alone or combined, may be a potential marker to evaluate prognosis and response to HCC treatment.
Collapse
|
27
|
Phattarataratip E, Panitkul T, Khodkaew W, Anupuntanun P, Jaroonvechatam J, Pitarangsikul S. Expression of SOX2 and OCT4 in odontogenic cysts and tumors. Head Face Med 2021; 17:29. [PMID: 34261507 PMCID: PMC8278639 DOI: 10.1186/s13005-021-00283-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background Aberrant expression of stem cell markers has been observed in several types of neoplasms. This trait attributes to the acquired stem-like property of tumor cells and can impact patient prognosis. The objective of this study was to comparatively analyze the expression and significance of SOX2 and OCT4 in various types of odontogenic cysts and tumors. Methods Fifty-five cases of odontogenic cysts and tumors, including 15 ameloblastomas (AM), 5 adenomatoid odontogenic tumors (AOT), 5 ameloblastic fibromas (AF), 5 calcifying odontogenic cysts (COC), 10 dentigerous cysts (DC) and 15 odontogenic keratocysts (OKC) were investigated for the expression of SOX2 and OCT4 immunohistochemically. Results Most OKCs (86.7 %) and all AFs expressed SOX2 in more than 50 % of epithelial cells. Its immunoreactivity was moderate-to-strong in all epithelial cell types in both lesions. In contrast, SOX2 expression was undetectable in AOTs and limited to the ameloblast-like cells in a minority of AM and COC cases. Most DCs showed positive staining in less than 25 % of cystic epithelium. Significantly greater SOX2 expression was noted in OKC compared with DC or AM, and in AF compared with COC or AOT. OCT4 rarely expressed in odontogenic lesions with the immunoreactivity being mild and present exclusively in OKCs. Conclusions SOX2 is differentially expressed in odontogenic cysts and tumors. This could be related to their diverse cells of origin or stages of histogenesis. The overexpression of SOX2 and OCT4 in OKC indicates the acquired stem-like property. Future studies should investigate whether the overexpression of OCT4 and SOX2 contributes to the aggressive behaviors of the tumors.
Collapse
Affiliation(s)
- Ekarat Phattarataratip
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand.
| | - Tarit Panitkul
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand
| | - Watunyoo Khodkaew
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand
| | - Pattarapong Anupuntanun
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand
| | - Jirapat Jaroonvechatam
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand
| | - Sirawit Pitarangsikul
- Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, 10330, Bangkok, Thailand
| |
Collapse
|
28
|
Li J, Haque M, Shang C, Hassan B, Liu D, Chen W, Lai R. Identification and Characterization of Cancer Stem-Like Cells in ALK-Positive Anaplastic Large Cell Lymphoma Using the SORE6 Reporter. Curr Issues Mol Biol 2021; 43:543-557. [PMID: 34287231 PMCID: PMC8929104 DOI: 10.3390/cimb43020041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023] Open
Abstract
Transcription factors Sox2 and Oct4 are essential in maintaining the pluripotency of embryonic stem cells and conferring stemness in cancer stem-like (CSL) cells. SORE6, an in-vitro reporter system, was designed to quantify the transcription activity of Sox2/Oct4 and identify CSL cells in non-hematologic cancers. Using SORE6, we identified and enriched CSL cells in ALK-positive anaplastic large cell lymphoma (ALK + ALCL). Two ALK + ALCL cell lines, SupM2 and UCONN-L2, contained approximately 20% of SORE6+ cells, which were purified based on their expression of green fluorescent protein. We then performed functional studies using single-cell clones derived from SORE6− and SORE6+ cells. Compared to SORE6− cells, SORE6+ cells were significantly more chemoresistant and clonogenic in colony-formation assays. Sox2/Oct4 are directly involved in conferring these CSL properties, since the shRNA knockdown of Sox2 in SORE6+ significantly lowered their chemoresistance, while enforced expression of Sox2/Oct4 in SORE6− cells produced opposite effects. Using Western blots, we found that the expression and subcellular localization of Sox2/Oct4 were similar between SORE6− and SORE6+ cells. However, in SORE6+ but not SORE6− cells, Sox2 and Oct4 abundantly bound to a probe containing the SORE6 consensus sequence. c-Myc, previously shown to regulate cancer stemness in ALK + ALCL, regulated the SORE6 activity. In conclusion, SORE6 is useful in identifying/enriching CSL cells in ALK + ALCL.
Collapse
Affiliation(s)
- Jing Li
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.L.); (M.H.); (C.S.); (B.H.); (D.L.); (W.C.)
- Electron Microscopy Center, Basic Medical Science College, Harbin Medical University, Harbin 150080, China
| | - Moinul Haque
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.L.); (M.H.); (C.S.); (B.H.); (D.L.); (W.C.)
- College of Medicine and Health, University College Cork, T12 AK54 Cork, Ireland
| | - Chuquan Shang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.L.); (M.H.); (C.S.); (B.H.); (D.L.); (W.C.)
| | - Bardes Hassan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.L.); (M.H.); (C.S.); (B.H.); (D.L.); (W.C.)
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dongzhe Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.L.); (M.H.); (C.S.); (B.H.); (D.L.); (W.C.)
- Laboratory of Biology and Chemistry, Basic Medical Science College, Harbin Medical University, Harbin 150080, China
| | - Will Chen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.L.); (M.H.); (C.S.); (B.H.); (D.L.); (W.C.)
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.L.); (M.H.); (C.S.); (B.H.); (D.L.); (W.C.)
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2R7, Canada
- Correspondence:
| |
Collapse
|
29
|
Selective Anti-Cancer Effects of Plasma-Activated Medium and Its High Efficacy with Cisplatin on Hepatocellular Carcinoma with Cancer Stem Cell Characteristics. Int J Mol Sci 2021; 22:ijms22083956. [PMID: 33921230 PMCID: PMC8069277 DOI: 10.3390/ijms22083956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.
Collapse
|
30
|
Pu J, Wu X, Wu Y, Shao Z, Luo C, Tang Q, Wang J, Wei H, Lu Y. Anti-oncogenic effects of SOX2 silencing on hepatocellular carcinoma achieved by upregulating miR-222-5p-dependent CYLD via the long noncoding RNA CCAT1. Aging (Albany NY) 2021; 13:12207-12223. [PMID: 33952719 PMCID: PMC8109057 DOI: 10.18632/aging.103797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/01/2020] [Indexed: 01/17/2023]
Abstract
In this study, we determined the involvement of SOX2 and its downstream signaling molecules in hepatocellular carcinoma (HCC) progression. We carried out lentiviral transfection in HepG2 cells to determine the roles of SOX2, CCAT1, EGFR, miR-222-5p, and CYLD in HepG2 cells. We first determined the interaction between SOX2 and CCAT1 and that between miR-222-5p and CYLD and their effect on tumor growth in vivo was analyzed in HCC-xenograft bearing nude mice xenografts. SOX2 and CCAT1 were highly expressed in HCC tissues and HepG2 cells. SOX2 bound to the regulatory site of CCAT1. Silencing of SOX2 or CCAT1 inhibited HepG2 cell proliferation, migration, and invasion as well as decreased the expression of CCAT1 and EGFR. CCAT1 silencing reduced EGFR expression, but EGFR expression was increased in HCC tissues and HepG2 cells, which promoted proliferation, migration, and invasion in vitro. EGFR upregulated miR-222-5p, leading to downregulation of CYLD. miR-222-5p inhibition or CYLD overexpression repressed cell functions in HepG2 cells. SOX2 silencing decreased CCAT1, EGFR, and miR-222-5p expression but increased CYLD expression. Loss of SOX2 also reduced the growth rate of tumor xenografts. In summary, SOX2-mediated HCC progression through an axis involving CCAT1, EGFR, and miR-222-5p upregulation and CYLD downregulation.
Collapse
Affiliation(s)
- Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Xianjian Wu
- Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Yi Wu
- Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Zesheng Shao
- Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Chunying Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R. China.,Graduate College of Youjiang Medical University for Nationalities, Baise 533000, P.R. China
| |
Collapse
|
31
|
Osman NAA, Khalil AI, Yousef RK. The Clinical and Prognostic Implications of Pluripotent Stem Cell Markers Expression and Their Correlation with the WNT signal pathway in Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2020; 21:2961-2970. [PMID: 33112555 PMCID: PMC7798175 DOI: 10.31557/apjcp.2020.21.10.2961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives: This study aimed to investigate the expression of SOX2, SOX9, p53, and β-catenin in hepatocellular carcinoma (HCC) and their correlation with clinicopathological parameters of prognostic importance. Materials and Methods: Seventy-five patients were enrolled in this study. All patients had full clinical and follow-up data and available paraffin blocks. Immunohistochemical analysis was performed and correlated with clinicopathological factors and patient survival. Results: We detected the positive expression of SOX2, SOX9, p53, and β-catenin in 76%, 50.7%, 50.7%, and 77.9% of HCC specimens respectively. All studied markers showed a significant increase in the expression in tumor tissue specimens compared to non-tumor tissue. Both SOX2 and SOX9 expressions were significantly associated with adverse prognostic factors in HCC. Significant positive correlations were found between SOX2 and SOX9 and both p53 and β-catenin expression (r= 0.528, 0.485 and; r = 0.253, 0.327, respectively; p< 0.0001 for both of them). Regarding survival, we found that HCC patients with positive SOX2 and SOX9 expressions had significantly shorter overall survival (p=0.0001, each). Additionally, larger tumor size, tumor grade, high stage, tumor multiplicity, presence of cirrhosis, tumor necrosis, high p53 expression, and positive β-catenin expression were independent predictors of worse survival. A multivariate Cox analysis revealed that tumor grade, stage, p53, and SOX2 expression were independent predictors of unfavorable prognosis in overall survival (p=0.0001, p=0.0001,p=0.033; and p=0.003, respectively). Conclusions: Our findings might provide an insight into SOX2 and SOX9’s role in HCC and suggest that SOX2 might be targeted for HCC therapy.
Collapse
Affiliation(s)
- Nisreen A A Osman
- Department of Pathology, Faculty of Medicine, Minia University, Egypt
| | | | | |
Collapse
|
32
|
Functional characterization of SOX2 as an anticancer target. Signal Transduct Target Ther 2020; 5:135. [PMID: 32728033 PMCID: PMC7391717 DOI: 10.1038/s41392-020-00242-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
SOX2 is a well-characterized pluripotent factor that is essential for stem cell self-renewal, reprogramming, and homeostasis. The cellular levels of SOX2 are precisely regulated by a complicated network at the levels of transcription, post-transcription, and post-translation. In many types of human cancer, SOX2 is dysregulated due to gene amplification and protein overexpression. SOX2 overexpression is associated with poor survival of cancer patients. Mechanistically, SOX2 promotes proliferation, survival, invasion/metastasis, cancer stemness, and drug resistance. SOX2 is, therefore, an attractive anticancer target. However, little progress has been made in the efforts to discover SOX2 inhibitors, largely due to undruggable nature of SOX2 as a transcription factor. In this review, we first briefly introduced SOX2 as a transcription factor, its domain structure, normal physiological functions, and its involvement in human cancers. We next discussed its role in embryonic development and stem cell-renewal. We then mainly focused on three aspects of SOX2: (a) the regulatory mechanisms of SOX2, including how SOX2 level is regulated, and how SOX2 cross-talks with multiple signaling pathways to control growth and survival; (b) the role of SOX2 in tumorigenesis and drug resistance; and (c) current drug discovery efforts on targeting SOX2, and the future perspectives to discover specific SOX2 inhibitors for effective cancer therapy.
Collapse
|
33
|
Xia X, Guan C, Chen J, Qiu M, Qi J, Wei M, Wang X, Zhang K, Lu S, Zhang L, Hua C, Xue S, Yao L. Molecular characterization of AwSox2 from bivalve Anodonta woodiana: Elucidating its player in the immune response. Innate Immun 2020; 26:381-397. [PMID: 31889462 PMCID: PMC7903536 DOI: 10.1177/1753425919897823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
Sox2 is an embryonal stem cell Ag essential for early embryonic development, tissue homeostasis and immune regulation. In the current study, one complete Sox2 cDNA sequence was cloned from freshwater bivalve Anodonta woodiana and named AwSox2. Histological changes of testis derived from Bisphenol A (BPA) treatment were analyzed by hematoxylin and eosin staining. Expressions of AwSox2 derived from BPA, LPS and polyinosinic:polycytidylic (Poly I:C) challenge were measured by quantitative real-time PCR. The full-length cDNA of AwSox2 contained an open reading frame of 927 nucleotides bearing the typical structural features of Sox2 family. Obvious degeneration, irregular arrangement of spermatids, and clotted dead and intertwined spermatids were observed in BPA-treated groups. Administration of BPA could result in a dose-dependent up-regulation of AwSox2 expression in the male gonadal tissue of A. woodiana. In addition, expression of AwSox2 was significantly induced by LPS and Poly I:C treatment in the hepatopancreas, gill and hemocytes, compared with that of control group. These results indicated that up-regulations of AwSOx2 are closely related to apoptosis of spermatogonial stem cells derived from BPA treatment as well as enhancement of immune defense against LPS and Poly I:C challenge in A. woodiana.
Collapse
Affiliation(s)
- Xichao Xia
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| | - Cuiui Guan
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| | - Jiawei Chen
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Maolin Qiu
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Jinxu Qi
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Mengwei Wei
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Xiaowei Wang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Ke Zhang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Suxiang Lu
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Linguo Zhang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Chunxiu Hua
- Basic Medicine College of Nanyang Medical University, Nanyang,
Henan Province, China
| | - Shipeng Xue
- Basic Medicine College of Nanyang Medical University, Nanyang,
Henan Province, China
| | - Lunguang Yao
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| |
Collapse
|
34
|
Chong LW, Tsai CL, Yang KC, Liao CC, Hsu YC. Targeting protein palmitoylation decreases palmitate‑induced sphere formation of human liver cancer cells. Mol Med Rep 2020; 22:939-947. [PMID: 32468006 PMCID: PMC7339714 DOI: 10.3892/mmr.2020.11172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/15/2020] [Indexed: 01/22/2023] Open
Abstract
Although non-alcoholic fatty liver disease (NAFLD) is considered a benign disorder, hepatic steatosis has been proposed to be involved in the tumorigenesis of liver cancer. However, the underlying mechanism for carcinogenesis in fatty liver diseases remains unclear. Cancer stem cells (CSCs) have been hypothesized to serve a key role in tumorigenesis. Tumor formation begins with a subset of heterogeneous cells that share properties with stem cells, such as self-renewal and undifferentiated properties. Our previous study reported that the saturated fatty acid palmitate (PA) significantly enhanced the CSC properties of the HepG2 human liver cancer cell line; however, its underlying mechanisms are unknown. In the present study, a proteomic approach was used to investigate the palmitoylation of proteins in HepG2 CSCs. CSC behavior was induced in HepG2 cells via 200 µM PA. Proteomic analysis was performed to identify post-transcriptional modifications of proteins in HepG2 CSCs in response to PA treatment. The present study identified proteins modified by palmitoylation in HepG2 CSC spheres formed following PA treatment. It was therefore hypothesized that palmitoylation may be crucial for CSC sphere formation. Furthermore, the present study demonstrated that two palmitoylation inhibitors, tunicamycin (5, 10 and 25 µg/ml) and 2-bromohexadecanoic acid (25, 50 and 150 µM), significantly decreased CSC sphere formation without affecting cell viability. An association was identified between sphere formation capacity and tumor-initiating capacity of CSCs. The results of the present study demonstrated that protein palmitoylation may influence the PA-induced CSC tumor-initiating capacity, and that the inhibition of palmitoylation may be a suitable chemopreventive strategy for treating patients with NAFLD.
Collapse
Affiliation(s)
- Lee-Won Chong
- Division of Hepatology and Gastroenterology, Department of Internal Medicine, Shin Kong Wu Ho Su Memorial Hospital, Taipei, Taiwan, R.O.C
| | - Chia-Ling Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taipei, Taiwan, R.O.C
| | - Kou-Ching Yang
- Division of Hepatology and Gastroenterology, Department of Internal Medicine, Shin Kong Wu Ho Su Memorial Hospital, Taipei, Taiwan, R.O.C
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang‑Ming University, Taipei, Taiwan, R.O.C
| | - Yi-Chao Hsu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taipei, Taiwan, R.O.C
| |
Collapse
|
35
|
Meng Y, Xu Q, Chen L, Wang L, Hu X. The function of SOX2 in breast cancer and relevant signaling pathway. Pathol Res Pract 2020; 216:153023. [PMID: 32703490 DOI: 10.1016/j.prp.2020.153023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The purpose of this study was to explore the functional roles of SOX2 in the progression of breast cancer and relevant molecular mechanism. METHODS A total of 108 breast cancer patients were included, and breast cancer cell line MDA-MB-231 was selected for this research. Real time-qualitative polymerase chain reaction (RT-qPCR) was conducted to measure the expression level of SOX2 mRNA. MTT and Transwell assays were used to detected the proliferation, migration and invasion of breast cancer cells, respectively. Luciferase reporter assay was conducted to reveal the relationship of SOX2 with PTEN. Western blot was performed to detect the expressions of Wnt/β-catenin pathway-related proteins. RESULTS The expression of SOX2 mRNA was up-regulated in breast cancer tissues and cells (P < 0.001). SOX2 expression was significantly associated with TNM stage and lymph node metastasis of breast cancer patients (P < 0.05). SOX2 knockdown significantly inhibited the proliferation, migration and invasion of breast cancer cells (P < 0.05). PTEN was a direct target of SOX2. The inhibition of PTEN could significantly suppress the progression of breast cancer cells with SOX2 overexpression. SOX2 knockdown also inhibited the expressions of β-catenin, TCP-4, FZD7, C-myc and MMP-7 proteins. Moreover, PTEN knockdown reversed the results caused by SOX2 overexpression, that is, increased expressions of β-catenin, TCP-4, FZD7, C-myc and MMP-7 proteins (P < 0.05). CONCLUSION SOX2 promotes the progression of breast cancer through activating Wnt/β-catenin signaling pathway via regulating PTEN.
Collapse
Affiliation(s)
- Yanchun Meng
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Phase I Clinical Trial Center, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qunfang Xu
- Clinical Laboratory, Capital Medical University Electric Teaching Hospital (State Grid Coporation of China Beijing Electric Power Hospital), Beijing, China
| | - Lin Chen
- Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingfei Wang
- Department of Oncology, the 903rd Hospital of PLA, Hangzhou, 310013, China.
| | - Xichun Hu
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Phase I Clinical Trial Center, Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
36
|
A Novel Function for KLF4 in Modulating the De-differentiation of EpCAM -/CD133 - nonStem Cells into EpCAM +/CD133 + Liver Cancer Stem Cells in HCC Cell Line HuH7. Cells 2020; 9:cells9051198. [PMID: 32408542 PMCID: PMC7290717 DOI: 10.3390/cells9051198] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The complex and heterogeneous nature of hepatocellular carcinoma (HCC) hampers the identification of effective therapeutic strategies. Cancer stem cells (CSCs) represent a fraction of cells within tumors with the ability to self-renew and differentiate, and thus significantly contribute to the formation and maintenance of heterogeneous tumor mass. Increasing evidence indicates high plasticity in tumor cells, suggesting that non-CSCs could acquire stem cell properties through de-differentiation or reprogramming processes. In this paper, we reveal KLF4 as a transcription factor that can induce a CSC-like phenotype in non-CSCs through upregulating the EpCAM and E-CAD expression. Our studies indicated that KLF4 could directly bind to the promoter of EpCAM and increase the number of EpCAM+/CD133+ liver cancer stem cells (LCSCs) in the HuH7 HCC cell line. When KLF4 was overexpressed in EpCAM−/CD133− non-stem cells, the expressions of hepatic stem/progenitor cell genes such as CK19, EpCAM and LGR5 were significantly increased. KLF4 overexpressing non-stem cells exhibited greater cell viability upon sorafenib treatment, while the cell migration and invasion capabilities of these cells were suppressed. Importantly, we detected an increased membranous expression and colocalization of β-CAT, E-CAD and EpCAM in the KLF4-overexpressing EpCAM−/CD133− non-stem cells, suggesting that this complex might be required for the cancer stem cell phenotype. Moreover, our in vivo xenograft studies demonstrated that with a KLF4 overexpression, EpCAM−/CD133− non-stem cells attained an in vivo tumor forming ability comparable to EpCAM+/CD133+ LCSCs, and the tumor specimens from KLF4-overexpressing xenografts had increased levels of both the KLF4 and EpCAM proteins. Additionally, we identified a correlation between the KLF4 and EpCAM protein expressions in human HCC tissues independent of the tumor stage and differentiation status. Collectively, our data suggest a novel function for KLF4 in modulating the de-differentiation of tumor cells and the induction of EpCAM+/CD133+ LCSCs in HuH7 HCC cells.
Collapse
|
37
|
Welberry C, Macdonald I, McElveen J, Parsy-Kowalska C, Allen J, Healey G, Irving W, Murray A, Chapman C. Tumor-associated autoantibodies in combination with alpha-fetoprotein for detection of early stage hepatocellular carcinoma. PLoS One 2020; 15:e0232247. [PMID: 32374744 PMCID: PMC7202612 DOI: 10.1371/journal.pone.0232247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to be a leading challenge in modern oncology. Early detection via blood-based screening tests has the potential to cause a stage-shift at diagnosis and improve clinical outcomes. Tumor associated autoantibodies (TA-AAbs) have previously shown the ability to distinguish HCC from patients with high-risk liver disease. This research aimed to further show the utility of TA-AAbs as biomarkers of HCC and assess their use in combination with Alpha-fetoprotein (AFP) for detection of HCC across multiple tumor stages. METHODS Levels of circulating G class antibodies to 44 recombinant tumor associated antigens and circulating AFP were measured in the serum of patients with HCC, non-cancerous chronic liver disease (NCCLD) and healthy controls via enzyme-linked immunosorbent assay (ELISA). TA-AAb cut-offs were set at the highest Youden's J statistic at a specificity ≥95.00%. Panels of TA-AAbs were formed using net reclassification improvement. AFP was assessed at a cut-off of 200 ng/ml. RESULTS Sensitivities ranged from 1.01% to 12.24% at specificities of 95.96% to 100.00% for single TA-AAbs. An ELISA test measuring a panel of 10 of these TA-AAbs achieved a combined sensitivity of 36.73% at a specificity of 89.89% when distinguishing HCC from NCCLD controls. At a cut-off of 200 ng/ml, AFP achieved a sensitivity of 31.63% at a specificity of 100.00% in the same cohort. Combination of the TA-AAb panel with AFP significantly increased the sensitivity for stage one (40.00%) and two (55.00%) HCC over the TA-AAb panel or AFP alone. CONCLUSIONS A panel of TA-AAbs in combination with AFP could be clinically relevant as a replacement for measuring levels of AFP alone in surveillance and diagnosis strategies. The increased early stage sensitivity could lead to a stage shift with positive prognostic outcomes.
Collapse
Affiliation(s)
- Christopher Welberry
- Oncimmune ltd, Nottingham, United Kingdom
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- * E-mail: ,
| | | | | | | | - Jared Allen
- Oncimmune ltd, Nottingham, United Kingdom
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - William Irving
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | | | - Caroline Chapman
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Bowel Cancer Screening Program, Nottingham University NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
38
|
Hua X, Huang M, Deng X, Xu J, Luo Y, Xie Q, Xu J, Tian Z, Li J, Zhu J, Huang C, Zhao QS, Huang H, Huang C. The inhibitory effect of compound ChlA-F on human bladder cancer cell invasion can be attributed to its blockage of SOX2 protein. Cell Death Differ 2020; 27:632-645. [PMID: 31243344 PMCID: PMC7205984 DOI: 10.1038/s41418-019-0377-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Sex-determining region Y-box 2 (SOX2), a well-known stemness biomarker, is highly expressed in a variety of cancers, including human highly invasive bladder cancer (BC). However, the role of SOX2 may vary in different kinds of malignancy. In the present study, we discovered that ChlA-F, a novel conformation derivative of isolate Cheliensisin A (Chel A), remarkably inhibits the invasive ability of human invasive BC cells through downregulation of SOX2 protein expression. We found that ChlA-F treatment dramatically decreases SOX2 protein expression in human high-grade invasive BC cells. Ectopic expression of SOX2 reversed ChlA-F inhibition of cell invasion ability in human bladder cancer cells, suggesting that SOX2 is a major target of ChlA-F during its inhibition of human BC invasion. Mechanistic studies revealed that ChlA-F downregulates SOX2 at both the protein degradation and protein translation levels. Further studies revealed that ChlA-F treatment induces HuR protein expression and that the increased HuR interacts with USP8 mRNA, resulting in elevation of USP8 mRNA stability and protein expression. Elevated USP8 subsequently acts as an E3 ligase to promote SOX2 ubiquitination and protein degradation. We also found that ChlA-F treatment substantially increases c-Jun phosphorylation at Ser63 and Ser73, initiating miR-200c transcription. The increased miR-200c directly binds to the 3'-UTR of SOX2 mRNA to suppress SOX2 protein translation. These results present novel mechanistic insight into understanding SOX2 inhibition upon ChlA-F treatment and provide important information for further exploration of ChlA-F as a new therapeutic compound for the treatment of highly invasive/metastatic human BC patients.
Collapse
Affiliation(s)
- Xiaohui Hua
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Maowen Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204, Kunming, China
| | - Jiheng Xu
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Yisi Luo
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Xu
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Zhongxian Tian
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Junlan Zhu
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Chao Huang
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204, Kunming, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA.
| |
Collapse
|
39
|
Zhou JJ, Xiao Y, Li H, Wu CC, Chen DR, Chen L, Deng WW, Zhang WF, Sun ZJ. Overexpression of Malic Enzyme 2 Indicates Pathological and Clinical Significance in Oral Squamous Cell Carcinoma. Int J Med Sci 2020; 17:799-806. [PMID: 32218701 PMCID: PMC7085265 DOI: 10.7150/ijms.43832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/25/2020] [Indexed: 01/06/2023] Open
Abstract
Our study investigated the expression of malic enzyme 2 (ME2) in human oral squamous cell carcinoma (OSCC) and associated pathological and clinical pattern. We demonstrated that human OSCC tissues expressed a high level of ME2, and the overexpression of ME2 is closely connected to a high pathological grade, lymphatic metastasis, large tumor size and human papillomavirus (HPV) (P < 0.001). Similarly, high levels of ME2 expression in OSCC tissue were shown to be correlated with poor prognosis (P < 0.05). The expression of ME2 was correlated with Slug, SOX2, and aldehyde dehydrogenase-1 (ALDH1) immunoreactivity.ME2 was shown to be overexpressed in OSCC tissue and indicated a poor prognosis for OSCC. ME2 may be correlated with several immune markers.
Collapse
Affiliation(s)
- Jun-Jie Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Cong-Cong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - De-Run Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, Hubei Province, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, Hubei Province, China
| |
Collapse
|
40
|
Wang N, Li MY, Liu Y, Yu J, Ren J, Zheng Z, Wang S, Yang S, Yang SL, Liu LP, Hu BG, Chong CC, Merchant JL, Lai PB, Chen GG. ZBP-89 negatively regulates self-renewal of liver cancer stem cells via suppression of Notch1 signaling pathway. Cancer Lett 2019; 472:70-80. [PMID: 31874246 DOI: 10.1016/j.canlet.2019.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Liver cancer stem cells (LCSCs) initiate hepatocellular carcinoma (HCC) and contribute to its recurrence and treatment resistance. Studies have suggested ZBP-89 as a candidate tumor suppressor in HCC. We explored the role of ZBP-89 in the regulation of LCSCs. This study was performed in liver tissue samples from 104 HCC patients, 2 cell lines and mouse tumor models. We demonstrated that ZBP-89 was weakly expressed in LCSCs. Patients with high expression of LCSC markers displayed reduced survivals and higher recurrence rates after curative surgical operation. The expression of ZBP-89 was predictive for decreased recurrence. LCSC markers were negatively correlated with ZBP-89 in HCC tissues and in enriched liver tumor spheres. The exogenous expression of ZBP-89 attenuated the tumor-sphere formation and secondary colony formation capabilities of LCSCs in vitro and tumorigenicity in vivo. Furthermore, the negative effect of ZBP-89 on cancer stemness was Notch1-dependent. Localized with Notch1 intracellular domain (NICD1) in the nucleus, ZBP-89 repressed the Notch1 signaling pathway by competitive binding to NICD1 with MAML1. Collectively, ZBP-89 negatively regulates HCC stemness via inhibiting the Notch1 signaling.
Collapse
Affiliation(s)
- Nuozhou Wang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yi Liu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianqing Yu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianwei Ren
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiyuan Zheng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shucai Yang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Department of Clinical Laboratory, Pingshan District People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Sheng-Li Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Ping Liu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong Province, China
| | - Bao-Guang Hu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Charing Cn Chong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Juanita L Merchant
- Division of Gastroenterology, Division of Gastroenterology & Hepatology, University of Arizona College of Medicine, PO Box 245028, 1501 N. Campbell Ave, Tucson, AZ, 85724-5028, USA
| | - Paul Bs Lai
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - George Gong Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
41
|
Balavigneswaran CK, Venkatesan R, Karuppiah PS, Kumar G, Paliwal P, Krishnamurthy S, Kadalmani B, Mahto SK, Misra N. Silica Release from Silane Cross-Linked Gelatin Based Hybrid Scaffold Affects Cell Proliferation. ACS APPLIED BIO MATERIALS 2019; 3:197-207. [PMID: 35019436 DOI: 10.1021/acsabm.9b00680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India
| | - Ramya Venkatesan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
| | - Prakash Shyam Karuppiah
- Research and Development Division, VVD and Sons Private Limited, Thoothukudi-621004, Tamil Nadu, India
| | | | | | | | - Balamuthu Kadalmani
- Department of Animal Science, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
| | | | | |
Collapse
|
42
|
Zhang XH, Wang W, Wang YQ, Zhu L, Ma L. The association of SOX2 with clinical features and prognosis in colorectal cancer: A meta-analysis. Pathol Res Pract 2019; 216:152769. [PMID: 31810585 DOI: 10.1016/j.prp.2019.152769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The expression of SOX2 protein has been reported to be correlated with colorectal cancers. In this study, we conducted a meta-analysis to evaluate the association of SOX2 with clinical features and prognosis in colorectal cancer. METHODS The relevant studies up to March 2019 were searched in Two English databases(PubMed and EMBASE)and two Chinese databases (CNKI and Wanfang database). Pooled ORs or HRs were used to assess the strength of the association between SOX2 and clinical parameters. RESULTS 14 studies involving 2077 colorectal cancer patients were included in the meta-analysis. Our results revealed there were no associations between SOX2 and gender and age. However, significant positive associations were observed for N categories (OR = 3.02, 95 %CI = 2.11-4.31), advanced stage (OR = 2.85, 95 %CI = 2.00-4.07), poor differentiation (OR = 1.90, 95 %CI = 1.38-2.64), distant metastasis (OR = 4.66, 95 %CI = 2.77-7.85) and poor OS (HR = 1.49, 95 %CI = 1.09-2.03). CONCLUSION The results indicated that SOX2 protein may serve as a novel prognostic factor for patients with colorectal cancer.
Collapse
Affiliation(s)
- Xian-Hui Zhang
- Department of Laboratory Medicine, Children's Hospital of Shanxi Province, Taiyuan, China
| | - Wei Wang
- Department of Laboratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Ya-Qi Wang
- Department of Laboratory Medicine, Children's Hospital of Shanxi Province, Taiyuan, China
| | - Lei Zhu
- Department of Laboratory Medicine, Children's Hospital of Shanxi Province, Taiyuan, China
| | - Lan Ma
- Department of Laboratory Medicine, Children's Hospital of Shanxi Province, Taiyuan, China.
| |
Collapse
|
43
|
Elfar M, Amleh A. miR-590-3p and Its Downstream Target Genes in HCC Cell Lines. Anal Cell Pathol (Amst) 2019; 2019:3234812. [PMID: 31781476 PMCID: PMC6875279 DOI: 10.1155/2019/3234812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
miRNAs are small non-coding RNA sequences of 18-25 nucleotides. They can regulate different cellular pathways by acting on tumor suppressors, oncogenes, or both. miRNAs are mostly tissue-specific, and their expression varies depending on the cancer or the tissue in which they are found. hsa-miR-590-3p was found to be involved in several types of cancers. In this study, we identified potential downstream target genes of hsa-miR-590-3p computationally. Several bioinformatics tools and more than one approach were used to identify potential downstream target genes of hsa-miR-590-3p. CX3CL1, SOX2, N-cadherin, E-cadherin, and FOXA2 were utilized as potential downstream target genes of hsa-miR-590-3p. SNU449 and HepG2, hepatocellular carcinoma cell lines, were used to carry out various molecular techniques to further validate our in silico results. mRNA and protein expression levels of these genes were detected using RT-PCR and western blotting, respectively. Co-localization of hsa-miR-590-3p and its candidate downstream target gene, SOX2, was carried out using a miRNA in situ hybridization combined with immunohistochemistry staining through anti-SOX2. The results show that there is an inverse correlation between hsa-miR-590-3p expression and SOX2 protein expression in SNU449. Subsequently, we suggest that SOX2 can be a direct downstream target of has-miR-590-3p indicating that it may have a role in the self-renewal and self-maintenance of cancer cells. We also suggest that CX3CL1, E-cadherin, N-cadherin, and FOXA2 show a lot of potential as downstream target genes of hsa-miR-590-3p signifying its role in epithelial-mesenchymal transition. Studying the expression of hsa-miR-590-3p downstream targets can enrich our understanding of the cancer pathogenesis and how it can be used as a therapeutic tool.
Collapse
Affiliation(s)
- Mennatallah Elfar
- Biotechnology Program, The American University in Cairo, Cairo, Egypt
| | - Asma Amleh
- Biotechnology Program, The American University in Cairo, Cairo, Egypt
- Biology Department, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
44
|
Bao Z, Zhan Y, He S, Li Y, Guan B, He Q, Yang X, Li X, Fang D, Zhou L. Increased Expression Of SOX2 Predicts A Poor Prognosis And Promotes Malignant Phenotypes In Upper Tract Urothelial Carcinoma. Cancer Manag Res 2019; 11:9095-9106. [PMID: 31695499 PMCID: PMC6817346 DOI: 10.2147/cmar.s219568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/05/2019] [Indexed: 01/22/2023] Open
Abstract
Background The transcription factor SRY-related HMG-box 2 (SOX2) plays important regulatory roles in diverse biological processes (cell proliferation, migration, invasion and tumorigenicity). However, the relationship between SOX2 and upper tract urothelial carcinoma (UTUC) have not been intensively investigated. This study aims to analyze the expression of SOX2 in UTUC as well as the predictive value for prognosis and the effect on tumor aggressiveness of SOX2. Methods Formalin-fixed, paraffin-embedded blocks containing samples from 341 patients with UTUC who underwent radical nephroureterectomy (RNU) at our institute were analyzed for SOX2 expression by immunohistochemistry (IHC). Associations between the SOX2 expression level and clinicopathological characteristics, disease-free survival (DFS) and cancer-specific survival (CSS) were analyzed. SOX2 expression in a normal urothelial cell line, urothelial carcinoma cell lines, 16 UTUC tissues and their pair-matched adjacent normal tissues was evaluated by RT-qPCR. Using RNA interference in vitro, the effects of SOX2 inhibition on cell proliferation, migration, invasion and tumorigenicity were determined. Results SOX2 expression was significantly upregulated in UTUC tissue samples compared with paired-adjacent nontumorous tissue samples. SOX2 expression was correlated with important clinicopathological features, including tumor stage, tumor grade, tumor architecture and the presence of glandular or sarcoma differentiation, and was an independent predictor of poor DFS and CSS. Further experiments indicated that SOX2 expression was higher in UTUC cell lines than in a normal urothelial cell line. Knocking down SOX2 expression could inhibit malignant phenotypes (cell proliferation, stemness, migration, invasion and tumorigenicity) in UTUC cells. Conclusion SOX2 is an independent prognostic marker of poor DFS and CSS in UTUC patients who have undergone RNU. Moreover, these data suggest that SOX2 may be a promising therapeutic target in UTUC.
Collapse
Affiliation(s)
- Zhengqing Bao
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Yonghao Zhan
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China.,Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, People's Republic of China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Yifan Li
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Bao Guan
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Qun He
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Xinyu Yang
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China.,Andrology Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, People's Republic of China.,Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, People's Republic of China.,Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, Beijing, People's Republic of China
| |
Collapse
|
45
|
Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol 2019; 67:74-82. [PMID: 31412296 DOI: 10.1016/j.semcancer.2019.08.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023]
Abstract
The transcription factor SOX2 is essential for embryonic development and plays a crucial role in maintaining the stemness of embryonic cells and various adult stem cell populations. On the other hand, dysregulation of SOX2 expression is associated with a multitude of cancer types and it has been shown that SOX2 positively affects cancer cell traits such as the capacity to proliferate, migrate, invade and metastasize. Moreover, there is growing evidence that SOX2 mediates resistance towards established cancer therapies and that it is expressed in cancer stem cells. These findings indicate that studying the role of SOX2 in the context of cancer progression could lead to the development of new therapeutic options. In this review, the current knowledge about the role of SOX2 in development, maintenance of stemness, cancer progression and the resistance towards cancer therapies is summarized.
Collapse
Affiliation(s)
- Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jonathan J Elton
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
46
|
Javaeed A, Ghauri SK. Metastatic potential and prognostic significance of SOX2: A meta-analysis. World J Clin Oncol 2019; 10:234-246. [PMID: 31367532 PMCID: PMC6657218 DOI: 10.5306/wjco.v10.i6.234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/31/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND SOX2 is a regulator of pluripotent cellular transcription, yet it has been recently integrated in cancer biology. The present study provides an analytic insight into the correlation of SOX2 overexpression with cancer metastasis and patient survival.
AIM To investigate the association of SOX2 overexpression with metastasis and its implication in the prognosis of cancer patients.
METHODS A meta-analysis was conducted including studies that compared the association of low or high SOX2 expression with lymph node metastasis (LNM) and/or distant metastasis (DM). The following data were additionally extracted: survival, including the overall survival (OS) and disease-free survival (DFS), and prevalence of high and low SOX2 expression. Odds ratios (commonly known as ORs) and their respective 95% confidence intervals (CIs) were used to investigate the association between SOX2 expression and LNM and DM, while hazard ratios (commonly known as HRs) and 95%CIs were applied to evaluate the prognostic markers.
RESULTS In a total of 2643 patients (60.88% males), the pooled prevalence of SOX2 overexpression was 46.22% (95%CI: 39.07%-53.38%) in different types of cancer. SOX2 overexpression significantly correlated with DM (OR = 1.79, 95%CI: 1.20-3.25, P < 0.008) compared to low SOX2 expression. In subgroups analyses, a high SOX2 expression was associated with LNM in cancers of the lung, breast, and colon and associated with DM in hepatic, head and neck, and colon cancers. SOX2 overexpression was also associated with a shorter OS (HR = 1.65, 95%CI: 1.34-2.04, P < 0.001) and DFS (HR = 1.54, 95%CI: 1.14-2.08, P = 0.005).
CONCLUSION A remarkable role of SOX2 overexpression was observed in cancer biology and metastasis. However, many questions in the regulatory pathways need to be addressed to reveal as many functional aspects as possible to tailor new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Arslaan Javaeed
- Department of Pathology, Poonch Medical College, Azad Kashmir, Rawalakot 1235, Pakistan
| | - Sanniya Khan Ghauri
- Department of Emergency Medicine, Shifa International Hospital, Islamabad, 44000, Pakistan
| |
Collapse
|
47
|
Chang Z. Downregulation of SOX2 may be targeted by miR-590-5p and inhibits epithelial-to-mesenchymal transition in non-small-cell lung cancer. Exp Ther Med 2019; 18:1189-1195. [PMID: 31316613 PMCID: PMC6601398 DOI: 10.3892/etm.2019.7642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the leading type of cancer worldwide and sex determining region Y-box 2 (SOX2) has been implicated as an oncogene in various types of cancer. In the present study, SOX2 was positively associated with NSCLC stage and lymph node metastasis. Wound healing and Transwell assays demonstrated that knockdown of SOX2 inhibited A549 and H1299 cell migration. Furthermore, it was identified that knockdown of SOX2 inhibited epithelial-to-mesenchymal transition of NSCLC cells, which was demonstrated by increased expression of epithelial-cadherin and decreased expression of vimentin, zinc finger protein SNAI1 and zinc finger protein SNAI2. It was then demonstrated that SOX2 may be targeted by microRNA (miR)-590-5p, which indicated a potential therapeutic strategy for NSCLC focusing on the miR-590-5p/SOX2 axis.
Collapse
Affiliation(s)
- Zhibo Chang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
48
|
Zhang J, Han C, Ungerleider N, Chen W, Song K, Wang Y, Kwon H, Ma W, Wu T. A Transforming Growth Factor-β and H19 Signaling Axis in Tumor-Initiating Hepatocytes That Regulates Hepatic Carcinogenesis. Hepatology 2019; 69:1549-1563. [PMID: 30014520 PMCID: PMC6335184 DOI: 10.1002/hep.30153] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023]
Abstract
Functions of transforming growth factor-β (TGF-β) in the liver vary depending on specific cell types and their temporal response to TGF-β during different stages of hepatocarcinogenesis (HCG). Through analysis of tumor tissues from hepatocellular carcinoma (HCC) patients, we were able to cluster hepatic epithelial cell-derived TGF-β gene signatures in association with distinct clinical prognoses. To delineate the role of hepatic epithelial TGF-β signaling in HCC development, we used an experimental system in which tumor-initiating hepatocytes (TICs) were isolated from TGF-β receptor II floxed mice (Tgfbr2fl/fl ) and transplanted into syngeneic C57BL/6J mice by splenic injection. Recipient mice were then administered Cre-expressing adenovirus (Ad-Cre) to inactivate Tgfbr2 in transplanted TICs. After latency, Tgfbr2-inactivated TICs formed larger and more tumor nodules in recipient livers compared to TICs without Tgfbr2 inactivation. In vitro analyses revealed that treatment of cultured TICs with TGF-β inhibited expression of progenitor cell factors (including SRY (sex determining region Y)-box 2 [Sox2]). RNA sequencing (RNA-seq) analysis identified H19 as one of the most up-regulated long noncoding RNA (lncRNA) in association with Tgfbr2 inactivation in TICs. Tgfbr2 inactivation by Ad-Cre led to a 5-fold increase of H19 expression in TICs. Accordingly, TGF-β treatment reduced H19 expression. We observed that forced overexpression of Sox2 in TICs increased transcription of H19, whereas knockdown of Sox2 decreased it. Furthermore, depletion of H19 reduced the progenitor property of TICs in vitro and decreased their tumorigenic potential in vivo. Finally, we observed a low level of H19 mRNA expression in human HCC tissues from patients with the epithelial TGF-β gene signature in association with favorable prognosis. Conclusion: Our findings describe a TGF-β and H19 signaling axis by Sox2 in TICs that importantly regulates HCG.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Chang Han
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Ying Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Hyunjoo Kwon
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
49
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
50
|
van Schaijik B, Wickremesekera AC, Mantamadiotis T, Kaye AH, Tan ST, Stylli SS, Itinteang T. Circulating tumor stem cells and glioblastoma: A review. J Clin Neurosci 2019; 61:5-9. [PMID: 30622004 DOI: 10.1016/j.jocn.2018.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/22/2018] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GB) is the most aggressive primary brain tumor in adults. The aggressive nature of GB has been attributed to the presence of cancer stem cells (CSCs) which drive tumorigenesis and are thought to be the root cause of the disease. Circulating tumor stem cells (CTSCs), which can be derived from CSCs, have been identified in numerous types of cancer including GB, have been proposed to contribute to local and distant recurrence. There are many technical difficulties in studying CTSCs, therefore there is a significant gap in the literature pertaining to how they arise and function, and how the understanding of the biology of CTSCs could elucidate the underlying cause of local recurrence and metastasis. An initial epithelial-to-mesenchymal transition (EMT) followed by mesenchymal-to-epithelial transition involving these primitive cells appear to be the critical processes underpinning metastasis. This review focuses on the association between CSCs undergoing EMT to become CTSCs, and how this could arise from the CSC subpopulation in GB, and contribute to the understanding of the pathogenesis and treatment.
Collapse
Affiliation(s)
| | - Agadha C Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand; Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Theo Mantamadiotis
- Department of Microbiology & Immunology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria 3000, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand; Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand.
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | | |
Collapse
|