1
|
Park HS, Bang JH, Jung WH, Yang JY, Shin HJ, Son JH, Han JW, Lee SH, Chung KH, Kim K, Chang HS, Park TK. Development of Non-Invasive miRNA Markers for Assessing the Quality of Human Induced Pluripotent Stem Cell-Derived Retinal Organoids. Int J Mol Sci 2024; 25:8011. [PMID: 39125582 PMCID: PMC11312389 DOI: 10.3390/ijms25158011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Human retinal organoids (ROs) have emerged as valuable tools for studying retinal development, modeling human retinal diseases, and screening drugs. However, their application is limited primarily due to time-intensive generation, high costs, and low reproducibility. Quality assessment of RO differentiation is crucial for their application in research. However, traditional methods such as morphological evaluation and immunohistochemical analysis have limitations due to their lack of precision and invasiveness, respectively. This study aims to identify non-invasive biomarkers for RO differentiation quality using exosomal microRNAs (miRNAs), which are known to reflect cell-specific functions and development in the retina. We differentiated ROs from human induced pluripotent stem cells (hiPSCs) and classified them into 'superior' and 'inferior' groups based on morphological and immunohistochemical criteria. Exosomes from the conditioned media were isolated and analyzed for miRNA content. Our findings revealed distinct miRNA profiles between superior and inferior ROs, with superior ROs exhibiting higher miRNA diversity and specifically up- or down-regulated miRNAs. Gene ontology and pathway enrichment analyses indicated that the target genes of these miRNAs are involved in neuron proliferation and differentiation. The study suggests the potential of exosomal hsa-miR-654-3p and hsa-miR-451a as non-invasive biomarkers for real-time monitoring of RO quality, facilitating the development of standardized, efficient, and cost-effective culture methods.
Collapse
Affiliation(s)
- Hyo Song Park
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Ji-Hong Bang
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
| | - Wook Hyun Jung
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Jin Young Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| | - Hee Jeong Shin
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| | - Ji-Hye Son
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea;
| | - Jung Woo Han
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Si Hyung Lee
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Kyung Hwun Chung
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| | - Kyunggon Kim
- Department of Digital Medicine, Brain Korea 21 plus, College of Medicine, University of Ulsan and Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea;
| | - Tae Kwann Park
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| |
Collapse
|
2
|
Zhang C, Wu Y, Yue Q, Zhang X, Hao Y, Liu J. RETRACTED ARTICLE: MiR-28-5p Promotes Osteosarcoma Development by Suppressing URGCP Expression. Biochem Genet 2024; 62:574. [PMID: 36995530 DOI: 10.1007/s10528-023-10369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Affiliation(s)
- Chuanlin Zhang
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yuhuai Wu
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Qiaoning Yue
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Xiguang Zhang
- Department of Orthopedic, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yinglu Hao
- Department of Cardiology, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Nieer Road, Yuxi, 653100, Yunnan, China.
| | - Jianping Liu
- Department of Epidemiology, People's Hospital of Yuxi City, The 6th Affiliated Hospital of Kunming Medical University, Nieer Road, Yuxi, 653100, Yunnan, China.
| |
Collapse
|
3
|
Wu W, Wang L, Li S. Hox transcript antisense RNA knockdown inhibits osteosarcoma progression by regulating the phosphoinositide 3-kinase/AKT pathway through the microRNA miR-6888-3p/spleen tyrosine kinase axis. Bioengineered 2022; 13:9397-9410. [PMID: 35435107 PMCID: PMC9161905 DOI: 10.1080/21655979.2022.2059614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Long non-coding RNA HOX transcript antisense RNA (lncRNA HOTAIR) is thought to be a key regulator of the occurrence and development of osteosarcoma (OS). The expression of HOTAIR, microRNA miR-6888-3p, spleen tyrosine kinase (SYK), and phosphoinositide 3-kinase/AKT (PI3K/AKT) pathway-related proteins in OS was detected by quantitative reverse transcription-PCR (qRT-PCR) and western blotting. Changes in the proliferation and migration of OS cells were detected by Cell Counting Kit-8 (CCK-8) and transwell assays after the knockdown of HOTAIR, miR-6888-3p, or SYK. Luciferase assays, RNA immunoprecipitation (RIP), and RNA pull-down assays were used to detect the relationship between miR-6888-3p and HOTAIR or SYK. We found that HOTAIR and SYK were highly expressed in OS, whereas miR-6888-3p expression was low. In addition, downregulation of HOTAIR or SYK significantly inhibited the growth and migration of OS cells and the PI3K/AKT pathway, both in vitro and in vivo. Additionally, downregulation of miR-6888-3p promoted the proliferation and migration of OS cells and activated the PI3K/AKT pathway. Mechanistically, these results suggest that the HOTAIR sponge, miR-6888-3p, regulates SYK expression. To summarize, HOTAIR regulates SYK by acting on miR-6888-3p, thereby promoting the proliferation and migration of OS cells.
Collapse
Affiliation(s)
- Wei Wu
- College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China.,Department of Orthopedics, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Linxiu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Sen Li
- Department of Spinal Surgery, Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Wu X, Yan L, Liu Y, Shang L. Circ_0000527 promotes osteosarcoma cell progression through modulating miR-646/ARL2 axis. Aging (Albany NY) 2021; 13:6091-6102. [PMID: 33617480 PMCID: PMC7950279 DOI: 10.18632/aging.202602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/25/2020] [Indexed: 01/04/2023]
Abstract
Accumulating evidence shows that circRNAs play critical roles in the development of human tumors. We observed that circ_0000527 was overexpressed in osteosarcoma cells (SAOS-2, HOS, MG-63 and U2OS) compared in hFOB1.19 cells. We demonstrated that the circ_0000527 level was higher in osteosarcoma specimens than in non-tumor specimens. The ectopic expression of circ_0000527 was shown to induce cell growth, cell cycle progression and the secretion of inflammatory mediators, including IL-1β, IL-6, IL-8 and TNF-α. We demonstrated that circ_0000527 sponges miR-646 in osteosarcoma cells and that ARL2 is a target gene of miR-646. MiR-646 expression was decreased and ARL2 was overexpressed in osteosarcoma cells (SAOS-2, HOS, MG-63 and U2OS) compared to hFOB1.19 cells. Overexpression of circ_0000527 was demonstrated to induce ARL2 expression in MG-63 cells. We showed that miR-646 was downregulated in osteosarcoma specimens compared to that of non-tumor specimens and that the level of circ_0000527 was negatively correlated with miR-646 expression in osteosarcoma specimens. The elevated expression of circ_0000527 was shown to promote cell growth and cell cycle progression by modulating miR-646 expression. The ectopic expression of circ_0000527 was shown to promote cell growth, cell cycle progression and the secretion of inflammatory mediators by modulating ARL2. The present study suggested that the circ_0000527/miR-646/ARL2 axis may be a potential treatment target for osteosarcoma.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lilin Shang
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| |
Collapse
|
6
|
Wu X, Yan L, Liu Y, Shang L. LncRNA ROR1-AS1 accelerates osteosarcoma invasion and proliferation through modulating miR-504. Aging (Albany NY) 2020; 13:219-227. [PMID: 33401251 PMCID: PMC7835057 DOI: 10.18632/aging.103498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (LncRNAs) play vital roles in the progression and development of tumors. However, the functional role of ROR1-AS1 in osteosarcoma has not been investigated. We found that ROR1-AS1 was upregulated in osteosarcoma tissues compared to non-tumor samples. Elevated expression of ROR1-AS1 promoted cyclin D1, PCNA and ki-67 expression and increased cell cycle and growth in MG-63 cell. Moreover, overexpression of ROR1-AS1 induced cell migration in MG-63 cell, promoting N-cadherin and vimentin expression and inhibiting E-cadherin expression. Dual-luciferase assay proved that ROR1-AS1 served as one sponge for miR-504 and ROR1-AS1 overexpression suppressed miR-504 expression in MG-63 cell. ROR1-AS1 expression was lower in osteosarcoma tissues compared to non-tumor samples. Pearson's correlation assay showed a negative correlation between miR-504 and ROR1-AS1 expression. MiR-504 overexpression partly abrogated ROR1-AS1-induced effects on osteosarcoma cell migration and proliferation. These data implied that ROR1-AS1 played as an oncogene and might be a new treatment target for osteosarcoma.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lilin Shang
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| |
Collapse
|
7
|
Zhong L, Xu Z, Jin X, He Y, Zhang J, Jiang T, Chen J. miR-451a suppression of IL-6R can inhibit proliferation and increase apoptosis through the JAK2/STAT3 pathway in multiple myeloma. Oncol Lett 2020; 20:339. [PMID: 33123250 PMCID: PMC7583731 DOI: 10.3892/ol.2020.12202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
The IL-6R/JAK2/STAT3 pathway mediated by interleukin-6 (IL-6) plays an important role in the occurrence and development of multiple myeloma (MM), which is associated with decreased microRNA-451a. However, the biological function of microRNA-451a in MM remains unclear. The bone marrow (BM) of patients with MM was sampled, and the plasma cells were enriched. BM miR-451a, IL-6 and IL-6R levels and Ki-67 expression intensity were evaluated using reverse transcription-quantitative PCR, ELISA and flow cytometry, respectively. U266 cell proliferation, viability and apoptosis were measured using BrdU, CCK-8 and Annexin V/propidium iodide assays, respectively. Total and phospo-(p-)JAK2 and p-STAT3 levels were measured by western blotting. Dual-luciferase reporter assays were performed to validate the predicted target binding sites. miR-451a expression was low in patients with MM and was associated with the Revised International Staging System (R-ISS) stage. IL-6 concentrations were significantly higher in patients with MM than in normal controls and were inversely associated with miR-451a levels (r=-0.96, P<0.0001). IL-6R levels were positively correlated with the R-ISS stage. miR-451a was downregulated, and IL-6R was upregulated in myeloma cell lines. Treatment with an miR-451a mimic inhibited viability and induced apoptosis in U266 cells. p-JAK2 and p-STAT3 levels were significantly lower in mimic-treated U266 cells than in control cells. Thus, miR-451a was shown to regulate myeloma cell proliferation and apoptosis via the IL-6R/JAK2/STAT3 pathway and may be used to predict patient prognosis.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Clinical Laboratory, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China
| | - Zhuyu Xu
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Xin Jin
- Department of Clinical Laboratory, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yuan He
- Department of Clinical Laboratory, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jianbo Zhang
- Department of Clinical Laboratory, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Tao Jiang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Jiao Chen
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
8
|
Zhong L, Jin X, Xu Z, Zeng M, Chen D, He Y, Zhang J, Jiang T, Chen J. Circulating miR-451a levels as a potential biomarker to predict the prognosis of patients with multiple myeloma. Oncol Lett 2020; 20:263. [PMID: 32989397 PMCID: PMC7517596 DOI: 10.3892/ol.2020.12126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
The natural course of multiple myeloma (MM) varies greatly between patients. The Revised MM International Staging System (R-ISS) identifies high-risk patients, but it is unsuitable for assessing minimal residual disease (MRD). Furthermore, the focal location of myeloma cells and clonal evolution often produce false negative results in flow cytometry. Extracellular microRNA (miRNA/miR) expression levels are stable in bodily fluids, and are retrievable and measurable from fresh or archived serum or plasma samples. Therefore, the present study aimed to investigate the clinical utility of circulating miRNA levels in patients with MM, particularly miR-451a, which is commonly downregulated in MM, and whether it could predict the prognosis and relapse of patients with MM. In total, 66 patients with MM, stratified using the R-ISS criteria, were recruited, while 10 healthy subjects (transplantation donors) were enrolled as controls. Reverse transcription-quantitative PCR was used to evaluate miR-451a expression in bone marrow (BM) and in the circulation. IL-6 levels were measured using ELISA, while western blotting was conducted to analyze the protein expression levels of the IL-6 receptor (IL-6R). During follow-up, MRD was assessed via multiparameter flow cytometry (MFC). miR-451a was identified to target IL-6R using a dual-luciferase reporter assay. Circulating miR-451a levels were low in patients with MM, and was found to be 0.39 times that of the control group (U=4.00; P<0.001). Among the 66 patients with MM, the median level of miR-451a was 0.73 and 0.41 times that of the control group in R-ISS stage I MM (15 patients) and R-ISS stage II stage (17 patients), respectively; patients with R-ISS stage III MM (34 patients) had the lowest level, at 0.24 times the value of the control group. Circulating miR-451a levels had a strong positive correlation with miR-451a levels in BM, but negatively correlated with IL-6 and IL-6R levels. After two courses of consolidation chemotherapy, 19 patients achieved complete remission, 10 of whom presented steady circulating miR-451a levels during follow-up; the other nine patients had an abrupt decrease in circulating miR-451a levels. The turning points in the trend appeared 4–8 weeks before positive results were obtained via MFC, and 4–16 weeks before clinical relapse. Moreover, miR-451a overexpression notably downregulated the expression of the IL-6R mRNA and protein. Collectively, circulating miR-451a levels potentially represent a novel biomarker to monitor MRD and predict relapse.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China.,Department of Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China
| | - Xin Jin
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Zhuyu Xu
- Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Minghui Zeng
- Department of Pharmacy, Qionglai Municipal Medical Center Hospital of Sichuan Province, Chengdu, Sichuan 611530, P.R. China
| | - Dongmei Chen
- Department of Clinical and Experimental Medicine, Southwest Medical University Clinical Medical School, Luzhou, Sichuan 646000, P.R. China
| | - Yuan He
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jianbo Zhang
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Tao Jiang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jiao Chen
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
9
|
Chen H, Liu T, Ouyang H, Lin S, Zhong H, Zhang H, Yang Y. Upregulation of FTX Promotes Osteosarcoma Tumorigenesis by Increasing SOX4 Expression via miR-214-5p. Onco Targets Ther 2020; 13:7125-7136. [PMID: 32821116 PMCID: PMC7419629 DOI: 10.2147/ott.s238070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long-chain non-coding RNA (LncRNA) plays a key role in the biological processes of tumors. LncRNA-FTX has been the invasion of tumors. However, its function and mechanism in osteosarcoma have not been studied. METHODS qRT-PCR was measured the expression levels of FTX and miR-214-5p in osteosarcoma. The protein levels of SRY-related HMG box transcription factor 4 (SOX4) were detected by Western Blot. Cholecystokinin (CCK-8) assay, cell colony formation and Transwell assay, Annexin V-FITC/PI assay were analyzed the effects of FTX and miR-214-5p on cell proliferation, cell invasion and apoptosis. The relationship between FTX, miR-214-5p and SOX4 was analyzed by bioinformatics analysis and Luciferase. The tumor changes in mice were detected by vivo experiments in nude mice. RESULTS The expression levels of FTX were increased in osteosarcoma tissues and cell lines and negatively correlated with the expression levels of miR-214-5p. FTX could modulate the expression of miR-214-5p in osteosarcoma cell lines. sh-FTX inhibited the growth and metastasis of osteosarcoma. FTX could regulate the growth of osteosarcoma through miR-214-5p. The knockdown of miR-214-5p reversed the inhibitory effect of sh-FTX on osteosarcoma cell proliferation and growth in mice. Furthermore, FTX regulated the expression of SOX4 by acting as a sponge of miR-214-5p in osteosarcoma. CONCLUSION FTX could promote proliferation, invasion and inhibited apoptosis by regulating miR-214-5p/SOX4 axis in osteosarcoma, suggesting that FTX might be a potential target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Haicong Chen
- Department of Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang524001, Guangdong, People’s Republic of China
| | - Tianfeng Liu
- Department of Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang524001, Guangdong, People’s Republic of China
| | - Hanbin Ouyang
- Department of Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang524001, Guangdong, People’s Republic of China
| | - Sien Lin
- Department of Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang524001, Guangdong, People’s Republic of China
| | - Huan Zhong
- Department of Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang524001, Guangdong, People’s Republic of China
| | - Hongwu Zhang
- Department of Anatomy, School of Basic Medicine Science, Southern Medical University, Guangzhou510515, Guangdong, People’s Republic of China
| | - Yang Yang
- Department of Anatomy, School of Basic Medicine Science, Southern Medical University, Guangzhou510515, Guangdong, People’s Republic of China
| |
Collapse
|
10
|
Liu J, Wu S, Xie X, Wang Z, Lei Q. The role of significantly deregulated MicroRNAs in osteosarcoma based on bioinformatic analysis. Technol Health Care 2020; 29:333-341. [PMID: 32568133 DOI: 10.3233/thc-202138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This study aimed to identify potential key microRNAs (miRNAs) in osteosarcoma and construct miRNA-mRNA negative regulatory networks through analysis of the Gene Expression Omnibus (GEO) database. METHODS The differentially expressed miRNAs (DE-miRNAs) in GSE28423 were screened, and their prognostic value was assessed with the prognostic data of GSE39058. The target genes of prognostic DE-miRNAs were predicted and underwent Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In addition, the expression of all predicted target genes were assessed using the mRNA array data of GSE28424. Finally, the gene-drug interaction network was constructed. RESULTS We identified 205 DE-miRNAs between osteosarcoma cells and normal bone. Among them, high expression of miR-411-3p and miR-487b-5p were correlated with prolonged survival. Furthermore, 2659 genes predicted as targets of miR-411-3p or miR-487b-5p were clustered in 42 significant GO categories, including "regulation of neurotransmitter secretion" and "phosphoprotein binding", as well as 23 significant KEGG pathways, such as "MAPK signaling pathway" and "Ras signaling pathway". Five of the 75 overlapping target genes of miR-411-3p and miR-487b-5p were downregulated in osteosarcoma, including ZBTB20, ADAMTS4, GLIPR2, CLIC5 and CBX7. CONCLUSIONS Our findings might help clarify molecular mechanisms underlying the oncogenesis and development, and offer potential targets for osteosarcoma.
Collapse
Affiliation(s)
- Junwei Liu
- Department of Orthopedic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siyu Wu
- Department of Orthopedic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyu Xie
- Department of Orthopedic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziming Wang
- Department of Orthopedic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qianqian Lei
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
11
|
Bai H, Wu S. miR-451: A Novel Biomarker and Potential Therapeutic Target for Cancer. Onco Targets Ther 2019; 12:11069-11082. [PMID: 31908476 PMCID: PMC6924581 DOI: 10.2147/ott.s230963] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded small RNAs involved in a variety of cellular processes, including ontogeny, cell proliferation, differentiation, and apoptosis. They can also function as oncogenes or tumor suppressor genes. Recent studies have revealed that miRNA-451 (miR-451) is involved in the regulation of various human physiological and pathological processes. Furthermore, it has been shown that miR-451 not only directly affects the biological functions of tumor cells but also indirectly affects tumor cell invasion and metastasis upon secretion into the tumor microenvironment via exosomes. Thus, miR-451 also influences the progression of tumorigenesis and drug resistance. This review summarizes the expression of miR-451 in various cancer types and the relationship between miR-451 and the diagnosis, treatment, and drug resistance of solid tumors. In addition, we address possible mechanisms of action of miR-451 and its potential application as a biomarker in the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Hua Bai
- Department of Gynecology and Obstetrics, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Suhui Wu
- Department of Gynecology and Obstetrics, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
12
|
Kong W, Feng L, Yang M, Chen Q, Wang H, Wang X, Hou J. Prognostic value of microRNA-451 in various cancers: A meta-analysis. Pathol Res Pract 2019; 215:152726. [PMID: 31708373 DOI: 10.1016/j.prp.2019.152726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Increasing evidence shows microRNA-451 plays a crucial role in various tumors, but there is inconsistency. The aim of this study was to explore the prognostic role of miR-451 in various tumors. METHODS Online PubMed, EMBASE, Web of Science, and the Cochrane library database were searched through February 2019. Hazard ratios (HRs) were extracted and used to describe the association between expression of microRNA-451 and survival outcome, and the correlation between microRNA-451 and clinicopathologic features were described by pooled odds ratios (ORs). RESULTS Sixteen retrospective studies containing 2122 patients were incorporated in this meta-analysis. High expression of miR-451 was considered statistically associated with prolonged overall survival (OS) (HR = 0.62, 95% CI 0.49-0.80, p < 0.001) as well as RFS/DFS (HR = 0.55, 95% CI 0.42-0.71, p < 0.001) compared with low expression of miR-451. Besides, the pooled ORs revealed significant association between high expression of miR-451 with lymph node invasion (yes vs. no) (OR = 0.64, 95% CI 0.46-0.90, P = 0.01), tumor diameter (big vs. small) (OR = 0.77, 95% CI 0.60-0.97, P = 0.028) and tumor stage (III + IV vs. I + II) (OR = 0.62, 95% CI 0.42-0.93, P = 0.019). CONCLUSION MicroRNA-451 may serve as a promising clinical prognostic biomarker in various carcinomas.
Collapse
Affiliation(s)
- Weihao Kong
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingwei Yang
- Department of Radiation Oncology, The First affiliated hospital of Anhui Medical University, Heifei, China
| | - Qihang Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hengyi Wang
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China.
| | - Xingyu Wang
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China.
| | - Jun Hou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
13
|
Smith CM, Catchpoole D, Hutvagner G. Non-Coding RNAs in Pediatric Solid Tumors. Front Genet 2019; 10:798. [PMID: 31616462 PMCID: PMC6764412 DOI: 10.3389/fgene.2019.00798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Pediatric solid tumors are a diverse group of extracranial solid tumors representing approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as a result of disruptions in the developmental process of precursor cells which lead them to accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors typically feature a low number of genetic mutations in protein-coding genes which could explain the emergence of these phenotypes. It is likely that oncogenesis occurs after a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a group of functional RNA molecules that lack protein coding potential but are essential in the regulation and maintenance of many epigenetic and post-translational mechanisms. Indeed, research has accumulated a large body of evidence implicating many ncRNAs in the regulation of well-established oncogenic networks. In this review we cover a range of extracranial solid tumors which represent some of the rarer and enigmatic childhood cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-coding RNAs, which are likely to play a key role in the development of these cancers and emphasize their functional contributions and molecular interactions during tumor formation.
Collapse
Affiliation(s)
- Christopher M Smith
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Daniel Catchpoole
- School of Software, University of Technology Sydney, Sydney, Australia.,The Tumour Bank-CCRU, Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
14
|
Lu XD, Han WX, Liu YX. Suppression of miR-451a accelerates osteogenic differentiation and inhibits bone loss via Bmp6 signaling during osteoporosis. Biomed Pharmacother 2019; 120:109378. [PMID: 31541885 DOI: 10.1016/j.biopha.2019.109378] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 11/15/2022] Open
Abstract
Bone homeostasis is known as a dynamic balance, including bone formation through osteoblasts and bone resorption by osteoclasts. MicroRNAs (miRs) play a critical role in regulating bone formation and homeostasis. In the study, the effects of miR-451a on bone homeostasis were investigated. The results indicated that the primary osteoblasts and mesenchymal stem cells (MSCs), as the main source of osteoblasts, isolated from miR-451a-knockout (KO) mice showed promoted osteogenesis. in vivo, an ovariectomized (OVX) animal model was used to further explore the effect of miR-451a on osteoporosis. Micro-computed tomography (μCT) indicated a promoted bone volume in miR-451a-KO mice compared to wild-type (WT) mice after OVX operation, demonstrating a redundant bone formation after the knockout of miR-451a. Importantly, we for the first time found that bone morphogenetic protein 6 (Bmp6) was a direct target of miR-451a, elevating bone formation through regulating SMAD1/5/8 expression. In conclusion, reducing miR-451a expression levels could enhance bone formation during the progression of osteoporosis, which might be at least partly via the meditation of Bmp6 expression.
Collapse
Affiliation(s)
- Xiang-Dong Lu
- Department of Orthopedics, The Second Hospital of Shan Xi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Wen-Xing Han
- Department of Orthopedics Dept. Unit 6, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Yan-Xiong Liu
- Departmentof Spinal Surgery, Affiliated Hospital of Yan'anUniversity, Yan'anCity, Shaanxi Province, 716000, China.
| |
Collapse
|
15
|
Khordadmehr M, Jigari-Asl F, Ezzati H, Shahbazi R, Sadreddini S, Safaei S, Baradaran B. A comprehensive review on miR-451: A promising cancer biomarker with therapeutic potential. J Cell Physiol 2019; 234:21716-21731. [PMID: 31140618 DOI: 10.1002/jcp.28888] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are proposed as a family of short noncoding molecules able to manage and control the expression of the gene targets at the posttranscriptional level. They contribute in several fundamental physiological mechanisms as well as a verity of human and animal diseases such as cancer progression. Among these tiny RNAs, miR-451 placed on chromosome 17 at 17q11.2 presents an essential role in many biological processes in health condition and also in pathogenesis of different diseases. Besides, it has been recently considered as a valuable biomarker for cancer detection, prognosis and treatment. Therefore, this review will provide the critical functions of miR-451 on biological mechanisms including cell cycle and proliferation, cell survival and apoptosis, differentiation and development as well as disease initiation and progression such as tumor formation, migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Farinaz Jigari-Asl
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Ezzati
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Shao Y, Dong LJ, Takahashi Y, Chen J, Liu X, Chen Q, Ma JX, Li XR. miRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy. Am J Physiol Endocrinol Metab 2019; 316:E443-E452. [PMID: 30576241 PMCID: PMC6459296 DOI: 10.1152/ajpendo.00360.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to explore the role of microRNA-451a (miR-451a) in diabetic retinopathy through activating transcription factor 2 (ATF2). The epiretinal membrane samples from patients with proliferative diabetic retinopathy (PDR) were immunolabeled with an antibody for Ki-67 to identify the proliferative cells. The expression of miR-451a was measured by qRT-PCR in the retina of Akita mice and in RPE cells under diabetic conditions. The potential downstream targets of miR-451a were predicted by bioinformatics and confirmed by dual luciferase assay, qRT-PCR, and Western blotting. Mitochondrial function, cell proliferation, and migration assays were used to detect the functional change after transfection of miR-451a mimic and inhibitor. Proliferative RPE cells were identified in the epiretinal membrane from PDR patients. The expression of miR-451a was downregulated both in the retina of Akita mice and 4-hydroxynonenal (4-HNE)-treated RPE cells. Bioinformatic analysis and luciferase assay identified ATF2 as a potential target of miR-451a. miR-451a inhibited proliferation and migration of RPE cells. The mitochondrial function was enhanced by miR-451a mimic, but suppressed by miR-451a inhibitor. In diabetic conditions, miR-451a showed a protective effect on mitochondrial function. The results of qRT-PCR and Western blotting revealed that overexpression of miR-451a downregulated the expression of ATF2 and its downstream target genes CyclinA1, CyclinD1, and MMP2. In conclusion, miR-451a/ATF2 plays a vital role in the regulation of proliferation and migration in RPE cells through regulation of mitochondrial function, which may provide new perspectives for developing effective therapies for PDR.
Collapse
Affiliation(s)
- Yan Shao
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Li-Jie Dong
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| | - Yusuke Takahashi
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medicine, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Jianglei Chen
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Xun Liu
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| | - Qian Chen
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Eye Institute of Xiamen University & Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University , Xiamen, Fujian , China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Xiao-Rong Li
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology , Tianjin , China
| |
Collapse
|
17
|
Karvande A, Kushwaha P, Ahmad N, Adhikary S, Kothari P, Tripathi AK, Khedgikar V, Trivedi R. Glucose dependent miR-451a expression contributes to parathyroid hormone mediated osteoblast differentiation. Bone 2018; 117:98-115. [PMID: 30218791 DOI: 10.1016/j.bone.2018.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
Parathyroid hormone (PTH; amino acid 1-34, known as teriparatide) has reported promoting differentiation and glucose uptake in osteoblasts. However, how PTH regulates glucose metabolism to facilitate osteoblast differentiation is not understood. Here, we report that PTH promotes glucose dependent miR-451a expression which stimulates osteoblast differentiation. In addition to glucose uptake, PTH suppresses AMPK phosphorylation via PI3K-mTOR-AKT axis thereby preventing phosphorylation and inactivation of octamer-binding transcription factor 1 (OCT-1) which has been reported to act on the promoter region of miR-451a. Modulation of AMPK activity controls miR-451a levels in differentiating osteoblasts. Moreover, pharmacological inhibition of PI3K-mTOR-AKT axis suppressed miR-451a via increased AMPK activity. We report that this glucose regulated miRNA is an anabolic target and transfection of miR-451a mimic induces osteoblast differentiation and mineralization in vitro. These actions were mediated through the suppression of Odd-skipped related 1 (Osr1) and activation of Runx2 transcription. When injected in vivo, the miR-451a mimic significantly increased osteoblastogenesis, mineralization, reversed ovariectomy induced bone loss and improved bone strength. Together, these findings suggest that enhanced osteoblast differentiation associated with bone formation in case of PTH therapy is also a consequence of elevated miR-451a levels via glucose regulation. Consequently, this miRNA has the potential to be a therapeutic target for conditions of bone loss.
Collapse
Affiliation(s)
- Anirudha Karvande
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Priyanka Kushwaha
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Naseer Ahmad
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sulekha Adhikary
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Priyanka Kothari
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vikram Khedgikar
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
18
|
Gao Z, Zhang P, Xie M, Gao H, Yin L, Liu R. miR-144/451 cluster plays an oncogenic role in esophageal cancer by inhibiting cell invasion. Cancer Cell Int 2018; 18:184. [PMID: 30479563 PMCID: PMC6238332 DOI: 10.1186/s12935-018-0679-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Background miRNA clusters are widely expressed across species, accumulating evidence has illustrated that miRNA cluster functioned more efficiently than single miRNA in cancer oncogenesis. It is likely that miRNA clusters are more stable and reliable than individual miRNA to be biomarkers for diagnosis and therapy. We previously found low expression of miR-144/451 was closely related with the risk for esophageal cancer. Researches on miR-144/451 cluster were mostly focused on individual miRNA but not the whole cluster, the regulatory mechanism of miRNA cluster were largely unknown. Methods In present study, we firstly analysed biological functions of individual miRNAs of miR-144/451 in ECa9706 transfected with miRNA mimics. We further analysed the biological function of the whole cluster in stable transgenic cell overexpressing miR-144/451. We then performed genome-wide mRNA microarray to detect differentially expressed gene profiles in stable transgenic cells. Results Overexpression of miR-144-3p promoted early apoptosis of ECa9706 and inhibited cell migration, cell invasion and cell proliferation. miR-144-5p and miR-451a inhibited cell proliferation, at the same time, miR-451a inhibited cell migration. Overexpression of miR-144/451 leads to the arrest cell cycle from S to G2 and G2 to M,while the invasion ability was obviously inhibited. We further observed c-Myc, p-ERK were downregulated in cells overexpressing miR-144/451, while p53 was up-regulated. The downstream effectors of c-Myc, MMP9 and p-cdc2 were downregulated in miR-144/451 stable transgenic cell. miR-144/451 may or partly inhibited cell cycles and invasion of ECa9706 through inhibiting ERK/c-Myc signaling pathway. Conclusion Collectively, we analysed the function of miR-144/451 cluster from individual to overall level. miR-144/451 cluster played proto oncogene role in esophageal cancer by inhibiting cell invasion. Electronic supplementary material The online version of this article (10.1186/s12935-018-0679-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhikui Gao
- 1Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009 China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou, 313000 China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu, 062552 China
| | - Han Gao
- 1Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009 China
| | - Lihong Yin
- 1Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009 China
| | - Ran Liu
- 1Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009 China
| |
Collapse
|
19
|
Chang J, Yao M, Li Y, Zhao D, Hu S, Cui X, Liu G, Shi Q, Wang Y, Yang Y. MicroRNAs for osteosarcoma in the mouse: a meta-analysis. Oncotarget 2018; 7:85650-85674. [PMID: 27852052 PMCID: PMC5356766 DOI: 10.18632/oncotarget.13333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/25/2016] [Indexed: 01/18/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone carcinoma with high morbidity that happens mainly in children and young adults. As the key components of gene-regulatory networks, microRNAs (miRNAs) control many critical pathophysiological processes, including initiation and progression of cancers. The objective of this study is to summarize and evaluate the potential of miRNAs as targets for prevention and treatment of OS in mouse models, and to explore the methodological quality of current studies. We searched PubMed, Web of Science, Embase, Wan Fang Database, VIP Database, China Knowledge Resource Integrated Database, and Chinese BioMedical since their beginning date to 10 May 2016. Two reviewers separately screened the controlled studies, which estimate the effects of miRNAs on osteosarcoma in mice. A pair-wise analysis was performed. Thirty six studies with enough randomization were selected and included in the meta-analysis. We found that blocking oncogenic or restoring decreased miRNAs in cancer cells could significantly suppress the progression of OS in vivo, as assessed by tumor volume and tumor weight. This meta-analysis suggests that miRNAs are potential therapeutic targets for OS and correction of the altered expression of miRNAs significantly suppresses the progression of OS in mouse models, however, the overall methodological quality of studies included here was low, and more animal studies with the rigourous design must be carried out before a miRNA-based treatment could be translated from animal studies to clinical trials.
Collapse
Affiliation(s)
- Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yimian Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaopu Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuejun Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Kim YH, Goh TS, Lee CS, Oh SO, Kim JI, Jeung SH, Pak K. Prognostic value of microRNAs in osteosarcoma: A meta-analysis. Oncotarget 2018; 8:8726-8737. [PMID: 28060730 PMCID: PMC5352436 DOI: 10.18632/oncotarget.14429] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary bone malignancy. We meta-analyzed the prognostic value of altered miRNAs in patients with osteosarcoma. METHODS Sources from MEDLINE (from inception to August 2016) and EMBASE (from inception to August 2016) were searched. Studies of osteosarcoma with results of miRNA and studies that reported survival data were included and two authors performed the data extraction independently. Any discrepancies were resolved by a consensus. The outcome was overall survival and event-free survival assessed using hazard ratios (HRs). RESULTS After reviewing the full text of 65 articles, 25 studies including 2,278 patients were eligible in this study. The pooled HR for deaths was 1.40 (95% confidence interval [CI] 1.01-1.94, p=0.04) with random-effects model (χ2=113.08, p<0.00001, I2=79%) for patients of osteosarcoma with lower expression of miRNA. However, the pooled HR for events was not significant (HR 0.97, 0.63-1.48, p=0.87, χ2=72.65, p<0.00001, I2=79%). In pathway analysis of miRNAs, miRNA449a, 199-5p, 542-5p have common target genes. CONCLUSIONS Expression level of miRNA in patients of osteosarcoma is important as a prognostic factor.
Collapse
Affiliation(s)
- Yun Hak Kim
- BEER, Busan Society of Evidence-Based Medicine and Research, Busan, Republic of Korea.,Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Tae Sik Goh
- BEER, Busan Society of Evidence-Based Medicine and Research, Busan, Republic of Korea.,Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chi-Seung Lee
- Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Sae Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Jeung Il Kim
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Seung Hyeon Jeung
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Kyoungjune Pak
- BEER, Busan Society of Evidence-Based Medicine and Research, Busan, Republic of Korea.,Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
21
|
Tumor suppressor activity of miR-451: Identification of CARF as a new target. Sci Rep 2018; 8:375. [PMID: 29321561 PMCID: PMC5762681 DOI: 10.1038/s41598-017-18559-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
microRNAs (miRs) have recently emerged as small non-coding regulators of gene expression. We performed a loss-of-function screening by recruiting retrovirus mediated arbitrary manipulation of genome coupled with escape of cells from 5-Aza-2′-deoxycytidine (5-Aza-dC)-induced senescence. miRNA pool from cells that emerged from 5-Aza-dC-induced senescence was subjected to miR-microarray analysis with respect to the untreated control. We identified miR-451 as one of the upregulated miRs and characterized its functional relevance to drug resistance, cell growth, tumor suppressor proteins p53 and pRb, and stress response. We report that miR-451 caused growth arrest in cells leading to their resistance to 5-Aza-dC-induced senescence. Decrease in cyclin D1, CDK4 and phosphorylated pRB supported the growth arrest in miR-451 transfected cells. We demonstrate that Collaborator of ARF (CARF) protein is a new target of miR-451 that intermediates its function in tumor suppressor and stress signaling.
Collapse
|
22
|
He Y, Ma J, Wang A, Wang W, Luo S, Liu Y, Ye X. A support vector machine and a random forest classifier indicates a 15-miRNA set related to osteosarcoma recurrence. Onco Targets Ther 2018; 11:253-269. [PMID: 29379305 PMCID: PMC5759858 DOI: 10.2147/ott.s148394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Osteosarcoma, which originates in the mesenchymal tissue, is the prevalent primary solid malignancy of the bone. It is of great importance to explore the mechanisms of metastasis and recurrence, which are two primary reasons accounting for the high death rate in osteosarcoma. DATA AND METHODS Three miRNA expression profiles related to osteosarcoma were downloaded from GEO DataSets. Differentially expressed miRNAs (DEmiRs) were screened using MetaDE.ES of the MetaDE package. A support vector machine (SVM) classifier was constructed using optimal miRNAs, and its prediction efficiency for recurrence was detected in independent datasets. Finally, a co-expression network was constructed based on the DEmiRs and their target genes. RESULTS In total, 78 significantly DEmiRs were screened. The SVM classifier constructed by 15 miRNAs could accurately classify 58 samples in 65 samples (89.2%) in the GSE39040 database, which was validated in another two databases, GSE39052 (84.62%, 22/26) and GSE79181 (91.3%, 21/23). Cox regression showed that four miRNAs, including hsa-miR-10b, hsa-miR-1227, hsa-miR-146b-3p, and hsa-miR-873, significantly correlated with tumor recurrence time. There were 137, 147, 145, and 77 target genes of the above four miRNAs, respectively, which were assigned to 17 gene ontology functionally annotated terms and 14 Kyoto Encyclopedia of Genes and Genomes pathways. Among them, the "Osteoclast differentiation" pathway contained a total of seven target genes and was analyzed further. CONCLUSION The 15-miRNAs-based SVM classifier provides a potential useful tool to predict the recurrence of osteosarcoma. Our results suggest the possible mechanisms of osteosarcoma metastasis and recurrence and provide fresh DEmiRs as potential biomarkers or therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Yunfei He
- Department of Orthopaedics, Changzheng Hospital Affiliated with Second Military Medical University, Shanghai
- Department of Orthopaedics, Lanzhou General Hospital of Lanzhou Military Command Region, Lanzhou
| | - Jun Ma
- Department of Orthopaedics, Changzheng Hospital Affiliated with Second Military Medical University, Shanghai
| | - An Wang
- Department of Orthopaedics, Changzheng Hospital Affiliated with Second Military Medical University, Shanghai
- Department of Orthopaedics, Shanghai Armed Police Force Hospital, Shanghai, People’s Republic of China
| | - Weiheng Wang
- Department of Orthopaedics, Changzheng Hospital Affiliated with Second Military Medical University, Shanghai
| | - Shengchang Luo
- Department of Orthopaedics, Changzheng Hospital Affiliated with Second Military Medical University, Shanghai
| | - Yaoming Liu
- Department of Orthopaedics, Lanzhou General Hospital of Lanzhou Military Command Region, Lanzhou
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital Affiliated with Second Military Medical University, Shanghai
| |
Collapse
|
23
|
Cheng J, Chen J, Wang Z, Yu D, Zu Y. The functional role of microRNAs in laryngeal carcinoma. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractMicroRNAs are a class of non-coding, small RNAs, which modulate gene expression at the post-transcriptional level. Numerous studies have showed microRNAs are involved in the pathogenesis of laryngeal cancer through regulating tumor-related genes such as oncogenes or tumor suppressor genes. In this review, we summarize recent progress on the function of microRNAs in laryngeal cancer. We focus on potential use of microRNAs in laryngeal cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Jinzhang Cheng
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, Changchun130041, China
| | - Junjun Chen
- Department of Pharmacy, the Second Hospital, Jilin University, Changchun130041, China
| | - Zonggui Wang
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, Changchun130041, China
| | - Dan Yu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, Changchun130041, China
| | - Yuanzhang Zu
- Department of Ophthalmology and Otolaryngology, the Second Hospital of YongJi Country, Jilin, 132100, China
| |
Collapse
|
24
|
Liu SY, Deng SY, He YB, Ni GX. miR-451 inhibits cell growth, migration and angiogenesis in human osteosarcoma via down-regulating IL 6R. Biochem Biophys Res Commun 2017; 482:987-993. [PMID: 27908732 DOI: 10.1016/j.bbrc.2016.11.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/27/2016] [Indexed: 02/08/2023]
Abstract
Osteosarcoma (OS) has become one of the most common primary malignant tumors in the children and adolescents with a poor prognosis owing to its high malignant and metastatic potential. Although increasing evidence indicates that miR-451 could inhibit the growth and metastasis of OS, its effect on angiogenesis in OS is still very poor. What is more, the mechanism by which miR-451 affects the OS has not been fully elucidated. In the present study, miR-451 was reduced in human osteosarcoma tissues compared with the adjacent bone tissues, and the introduction of miR-451 dramatically inhibited the growth, migration and angiogenesis in OS. Additionally, it was suggested that IL 6R is a direct target gene of miR-451. Silencing of IL 6R suppressed the growth, migration and angiogenesis of OS, which was consistent with the effect of overexpression of miR-451. In conclusion, our data demonstrate that miR-451 may function as a potential suppressor of tumor growth, migration and angiogenesis in OS via down-regulating IL 6R, suggesting a promising therapeutic avenue for managing OS.
Collapse
Affiliation(s)
- Sheng-Yao Liu
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou 510515, China
| | - Song-Yun Deng
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou 510515, China
| | - Yong-Bin He
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou 510515, China
| | - Guo-Xin Ni
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue (N), Guangzhou 510515, China; Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China.
| |
Collapse
|
25
|
Chen H, Ji X, She F, Gao Y, Tang P. miR-628-3p regulates osteoblast differentiation by targeting RUNX2: Possible role in atrophic non-union. Int J Mol Med 2016; 39:279-286. [PMID: 28035362 PMCID: PMC5358698 DOI: 10.3892/ijmm.2016.2839] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/06/2016] [Indexed: 01/08/2023] Open
Abstract
Atrophic non-union is a serious complication of fractures. The underlying biological mechanisms involved in its pathogenesis are not yet completely understood. MicroRNAs (miRNAs or miRs) are a type of endogenous small non-coding RNA, which participate in various physiological and pathophysiological processes. In this study, differentially expressed miRNAs were screened in patients with atrophic nonunion. In total, 4 miRNAs (miR-149*, miR-221, miR-628-3p and miR-654-5p) were upregulated and 7 miRNAs (let-7b*, miR-220b, miR-513a-3p, miR-551a, miR-576-5p, miR-1236 and kshv-miR-K12-6-5p) were downregulated at the fracture sites in patients with atrophic non-union. Among the upregulated miRNAs, miR-628-3p and miR-654-5p expression was found to be persistently decreased during osteoblast differentiation, indicating their possible inhibitory effect on osteogenesis. Gain-of-function experiment demonstrated that miR-628-3p, but not miR-654-5p, attenuated osteoblast differentiation. Further, in silico analysis revealed that runt-related transcription factor 2 (RUNX2), the master transcript factor for osteoblast differentiation, was the target of miR-628-3p, which had two binding site-condense regions in the 3′ untranslated region. The exact binding site of miR-628-3p was further identified with luciferase reporter assay. In addition, the overexpression of miR-628-3p appeared to be associated with the suppression of RUNX2 expression at both the mRNA and protein level, suggesting that miR-628-3p inhibits osteoblast differentiation via RUNX2. On the whole, the findings of this study provide evidence of the upregulation of miR-628-3p in patients with atrophic non-union and that miR-628-3p may exert an inhibitory effect on osteogenesis via the suppression of its target gene, RUNX2. The study provides valuable insight into the pathogenesis of atrophic non-union and suggests new potential therapeutic targets for the treatment of this disorder.
Collapse
Affiliation(s)
- Hua Chen
- Department of Orthopaedic Surgery, The General Hospital of People's Liberation Army (301 Hospital), Wukesong, Beijing 100853, P.R. China
| | - Xinran Ji
- Department of Orthopaedic Surgery, The General Hospital of People's Liberation Army (301 Hospital), Wukesong, Beijing 100853, P.R. China
| | - Fei She
- Department of Orthopaedic Surgery (304 Hospital), Haidian, Beijing 100048, P.R. China
| | - Yuan Gao
- Department of Orthopaedic Surgery, The General Hospital of People's Liberation Army (301 Hospital), Wukesong, Beijing 100853, P.R. China
| | - Peifu Tang
- Department of Orthopaedic Surgery, The General Hospital of People's Liberation Army (301 Hospital), Wukesong, Beijing 100853, P.R. China
| |
Collapse
|
26
|
Zhang H, Wang Y, Xu T, Li C, Wu J, He Q, Wang G, Ding C, Liu K, Tang H, Ji F. Increased expression of microRNA-148a in osteosarcoma promotes cancer cell growth by targeting PTEN. Oncol Lett 2016; 12:3208-3214. [PMID: 27899984 PMCID: PMC5103920 DOI: 10.3892/ol.2016.5050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/01/2016] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor, and deregulated microRNAs (miRNAs or miRs) in osteosarcoma have attracted great attention. In the present study, through miRNA microarray analysis, it was identified that miR-148a expression was significantly increased in osteosarcoma tissues. Increased miR-148a expression was significantly correlated with tumor progression and prognosis. Furthermore, increased miR-148a expression could promote osteosarcoma growth in vitro and in vivo, and the tumor-promoting effect was due to enhanced activation of the phosphoinositide 3-kinase signaling pathway caused by miR-148a-mediated inhibition of phosphatase and tensin homolog expression. Together, the present results suggest a role for miR-148a in osteosarcoma development and its potential use in prognosis prediction and cancer therapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yang Wang
- Department of Orthopedics, General Hospital of Beijing Military Region, Beijing 100700, P.R. China
| | - Tianming Xu
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Chen Li
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jiang Wu
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Qianyun He
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Guangchao Wang
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Chen Ding
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Kang Liu
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Hao Tang
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Fang Ji
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
27
|
Ram Kumar RM, Boro A, Fuchs B. Involvement and Clinical Aspects of MicroRNA in Osteosarcoma. Int J Mol Sci 2016; 17:ijms17060877. [PMID: 27271607 PMCID: PMC4926411 DOI: 10.3390/ijms17060877] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents, but its pathogenesis has been difficult to establish because of its well-known heterogeneous nature. OS has been associated with genetic and cytogenetic abnormalities, which include function-impairing mutations in tumor suppressors and the activation of oncogenes. OS tumorigenesis has been linked to alterations of several genes characterized by a high level of genetic instability and recurrent DNA amplifications and deletions. MicroRNAs (miRNAs), 18–25-nucleotide noncoding RNAs, are critical for various biological processes like differentiation, cell growth and cell death. Dysregulation of miRNA expression leads to phenotypic and genotypic changes in cells, which leads to cancer. Studies on miRNAs have initiated a significant effect in both diagnosis and treatment of cancer. This review focuses on the current knowledge of clinical applications of miRNAs for the better diagnosis and management of OS.
Collapse
Affiliation(s)
- Ram Mohan Ram Kumar
- Department of Experimental Pathology, CHUV and University of Lausanne, 1011 Lausanne, Switzerland.
| | - Aleksandar Boro
- Laboratory for Orthopaedic Research, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland.
| | - Bruno Fuchs
- Laboratory for Orthopaedic Research, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland.
| |
Collapse
|
28
|
Abstract
MicroRNA molecules have a variety of roles in cellular development and proliferation processes, including normal osteogenesis. These effects are exerted through post-translational inhibition of target genes. Altered miRNA expression has been demonstrated in several cancers, both in the tumor tissue and in the peripheral circulation. This may influence carcinogenesis if the specific miRNA targets are encoded by tumor suppressor genes or oncogenes. To date, most research investigating the role of microRNAs and primary bone tumors has focused on osteosarcoma and Ewing sarcoma. Several microRNAs including the miR-34 family have been implicated in osteosarcoma tumorigenesis via effects on the Notch signaling pathway. Progression, invasion, and metastasis of osteosarcoma tumor cells is also influenced by microRNA expression. In addition, microRNA expression may affect the response to chemotherapy in osteosarcoma and thus hold potential for future use as either a prognostic indicator or a therapeutic target. The EWS-FLI1 fusion protein produced in Ewing sarcoma has been shown to induce changes in miRNA expression. MicroRNA expression profiling may have some potential for prediction of disease progression and survival in Ewing sarcoma. There is limited evidence to support a role for microRNAs in other primary bone tumors, either malignant or benign; however, early work is suggestive of involvement in chondrosarcoma, multiple osteochondromatosis, and giant cell tumors of bone.
Collapse
|
29
|
Sun J, Wang X, Fu C, Wang X, Zou J, Hua H, Bi Z. Long noncoding RNA FGFR3-AS1 promotes osteosarcoma growth through regulating its natural antisense transcript FGFR3. Mol Biol Rep 2016; 43:427-36. [PMID: 27022737 DOI: 10.1007/s11033-016-3975-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/23/2016] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs), a new class of RNAs with no protein-coding potential, have been reported to have crucial roles in the regulation of a variety of tumors. However, the functions and molecular mechanisms of lncRNAs to osteosarcoma are still largely unknown. The purpose of this study is to examine the expression, functions and molecular mechanisms of a new lncRNA FGFR3 antisense transcript 1 (FGFR3-AS1) in osteosarcoma. The expression of FGFR3-AS1 was examined by real-time quantitative PCR. The regulation of FGFR3 by FGFR3-AS1 was examined by RNase protection assay, real-time quantitative PCR, western blotting, and luciferase reporter assay. The effects of FGFR3-AS1 on osteosarcoma cell proliferation and cell cycle were determined by Cell Counting Kit-8, Ethynyl deoxyuridine incorporation assay and flow cytometry. FGFR3-AS1 was upregulated in osteosarcoma. Increased FGFR3-AS1 expression correlates with large tumor size, advanced Enneking stage, metastasis and poor survival. Through antisense pairing with FGFR3 3'UTR, FGFR3-AS1 increases FGFR3 mRNA stability and upregulates FGFR3 expression. The expression of FGFR3-AS1 and FGFR3 is positively correlated in osteosarcoma tissues. Knockdown of FGFR3-AS1 inhibits the proliferation and cell cycle progression of osteosarcoma cells in vitro. Moreover, knockdown of FGFR3-AS1 inhibits xenograft tumor growth of osteosarcoma cells in vivo. These data demonstrate the mechanisms of how antisense noncoding RNA regulate the expression of sense genes, and show the pivotal functions of FGFR3-AS1 in osteosarcoma.
Collapse
Affiliation(s)
- Jiabing Sun
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Xuming Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Chunjiang Fu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| | - Xiaoyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Jilong Zou
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Hanbing Hua
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Zhenggang Bi
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| |
Collapse
|
30
|
MicroRNA-23a enhances migration and invasion through PTEN in osteosarcoma. Cancer Gene Ther 2015; 22:351-9. [PMID: 26160225 DOI: 10.1038/cgt.2015.27] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/07/2015] [Accepted: 04/11/2015] [Indexed: 02/06/2023]
Abstract
To investigate the biological significance of abundant microRNA-23a (miR-23a) expression in osteosarcoma and its correlation with PTEN in the pathogenesis of osteosarcoma migration and invasion. The human osteosarcoma cell lines MG63, HOS58 and SaoS-2, and the human normal osteoblasts (hFOB1.19) were grown in RPMI 1640 medium supplemented with 10% fetal bovine serum. Gene and protein levels of miR-23a and PTEN were examined to determine the molecular relationship between them in the pathogenesis of osteosarcoma. Inhibition of miR-23a effectively reduced migration and invasion of osteosarcoma cell lines. Bioinformatics and luciferase-reporter assay revealed that miR-23a specifically targeted the 3'-untranslational region of PTEN and regulated its expression. Downregulation of PTEN enhanced migration and invasion of osteosarcoma cell lines. Furthermore, in tumor tissues obtained from osteosarcoma patients, the expression of miR-23a was negatively correlated with PTEN and the high expression of miR-23a combined with low expression of PTEN might serve as a risk factor for cancer patients. Besides, miR-23a-mediated suppression of PTEN led to activation of AKT/ERK pathways and epithelial-mesenchymal transition (EMT) in osteosarcoma cells, and finally enhanced the activity of osteosarcoma cell proliferation and movement and promoted osteosarcoma xenograft tumor growth in mouse models. Our study showed that miR-23a, by downregulation of PTEN, enhanced migration and invasion in osteosarcoma cells.
Collapse
|
31
|
Song R, Tian K, Wang W, Wang L. P53 suppresses cell proliferation, metastasis, and angiogenesis of osteosarcoma through inhibition of the PI3K/AKT/mTOR pathway. Int J Surg 2015; 20:80-7. [PMID: 25936826 DOI: 10.1016/j.ijsu.2015.04.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the role of P53 in the pathogenesis of osteosarcoma and the possible mechanism involved in it. METHODS The anti-proliferative effect of P53 was assessed using the cell counting Kit-8 assay. The migration and invasion potential were analyzed using wound-healing and transwell assays, respectively. The Matrigel capillary tube formation assay was performed to mimic in-vivo angiogenesis. Immunoblotting and immunofluorescence were used to observe protein levels and distribution of actin fibers. Finally, S2448p-mammalian target of rapamycin (mTOR) expression was detected on osteosarcoma tissues using immunohistochemistry. RESULTS Firstly, P53 potently inhibited cell proliferation in osteosarcoma cell line (MG63) and in human normal osteoblasts (hFOB1.19) in vitro at the IC50 ranged from 50 to 500 nmol/l. Then, an inhibitory effect of P53 on metastasis was observed in osteosarcoma cell line MG63, along with the cytoskeletal rearrangements and suppression of the phosphorylation of PI3K downstream factors including AKT and mTOR. CONCLUSION These results show that P53 suppresses cell proliferation and angiogenesis of osteosarcoma through inhibition of the PI3K/AKT/mTOR pathway, which might be an effective novel therapeutic candidate against osteosarcoma in the future.
Collapse
Affiliation(s)
- Ruipeng Song
- Bone Department, The First Affiliated Hospital of Zhengzhou University, China.
| | - Ke Tian
- Bone Department, The First Affiliated Hospital of Zhengzhou University, China.
| | - Weidong Wang
- Bone Department, The First Affiliated Hospital of Zhengzhou University, China.
| | - Limin Wang
- Bone Department, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
32
|
Chang L, Shrestha S, LaChaud G, Scott MA, James AW. Review of microRNA in osteosarcoma and chondrosarcoma. Med Oncol 2015; 32:613. [PMID: 25920607 DOI: 10.1007/s12032-015-0613-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs, which play a complex role in posttranscriptional gene expression and can theoretically be used as a diagnostic or prognostic tool, or therapeutic target for neoplasia. Despite advances in the diagnosis and treatment of skeletal sarcomas, including osteosarcoma and chondrosarcoma, much remains unknown regarding their underpinning molecular mechanisms. Given the recent increasing knowledge base of miRNA roles in neoplasia, both as oncogenes and tumor suppressor genes, this review will focus on the available literature regarding the expression profiles and potential roles of miRNA in skeletal sarcomas. Although this is an emerging field, miRNA profiling may be of use in clarifying competing diagnoses of skeletal sarcomas and possibly indicate patient risk of resistance to traditional chemotherapeutic agents. While detecting and targeting miRNAs is currently limited to experimental investigations, miRNA may be utilized for future clinical management of skeletal sarcomas.
Collapse
Affiliation(s)
- Le Chang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., 13-145 CHS, Los Angeles, CA, 90095, USA
| | | | | | | | | |
Collapse
|
33
|
Suppression of liver receptor homolog-1 by microRNA-451 represses the proliferation of osteosarcoma cells. Biochem Biophys Res Commun 2015; 461:450-5. [PMID: 25869073 DOI: 10.1016/j.bbrc.2015.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022]
Abstract
Liver receptor homolog-1 (LRH-1) plays an important role in the onset and progression of many cancer types. However, the role of LRH-1 in osteosarcoma has not been well investigated. In this study, the critical role of LRH-1 in osteosarcoma cells was described. Quantitative polymerase chain reaction and Western blot analysis results revealed that LRH-1 was highly overexpressed in osteosarcoma cells. LRH-1 was knocked down by small interfering RNA (siRNA), and this phenomenon significantly inhibited osteosarcoma cell proliferation. Bioinformatics analysis results showed that LRH-1 contained putative binding sites of microRNA-451 (miR-451); this result was further validated through a dual-luciferase activity reporter assay. miR-451 was overexpressed in osteosarcoma cells through transfection of miR-451 mimics; miR-451 overexpression then significantly inhibited LRH-1 expression and cell proliferation. The loss of LRH-1 by siRNA or miR-451 mimics significantly impaired Wnt/β-catenin activity, leading to G0/G1 cell cycle arrest. Results showed that LRH-1 is implicated in osteosarcoma. Therefore, miR-451-induced suppression of LRH-1 can be a novel therapy to treat osteosarcoma.
Collapse
|