1
|
Nair SG, Benny S, Jose WM, Aneesh TP. Epigenetics as a strategic intervention for early diagnosis and combatting glycolyis-induced chemoresistance in gynecologic cancers. Life Sci 2024; 358:123167. [PMID: 39447732 DOI: 10.1016/j.lfs.2024.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Prospective prediction from the Australian Institute of Health and Welfare (AIHW) showed a likely incidence of 1 in 23 women diagnosed with gynaecological malignancy, where the incidence of relapse with a drug-resistant clone poses a significant challenge in dealing with it even after initial treatment. Glucose metabolism has been exploited as a therapeutic target under anti-metabolomic study, but the non-specificity narrowed its applicability in cancer. Novel updates over epigenetics as a target in gynaecological cancer offer a rational idea of using this in the metabolic rewiring in mutated glycolytic flux-induced drug resistance. This review focuses on the application of epigenetic intervention at a diagnostic and therapeutic level to shift the current treatment paradigm of gynaecological cancers from reactive medicine to predictive, preventive, and personalised medicine. It presents the likely epigenetic targets that can be exploited potentially to prevent the therapeutic failure associated with glucose metabolism-induced chemotherapeutic drug resistance.
Collapse
Affiliation(s)
- Sachin G Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India
| | - Wesley M Jose
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, AIMS PO, Kochi 682041, Kerala, India.
| | - T P Aneesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, Kerala, India.
| |
Collapse
|
2
|
Grunt TW. Today's cancer research and treatment - highly sophisticated and molecularly targeted, yet firmly bolstered in the classical theories. J Appl Biomed 2024; 22:123-128. [PMID: 39434508 DOI: 10.32725/jab.2024.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer research is linked to modern life-sciences, encompassing achievements in virology, yeast-biology, molecular-biology, genetics, systems-biology, bioinformatics, and so on. With these fascinating developments, it's easy to overlook that the fundamental theories and treatment strategies were established in the early 20th century and have remained valid ever since. Therefore, tribute must be paid to the founders of the field. The main hypotheses on carcinogenesis, the genetic model and the metabolic model, and the concept of cancer-treatment with cytotoxic, targeted or metabolic drugs were proposed more than 100 years ago by great minds such as T. Boveri, O. Warburg, and P. Ehrlich. Hence nothing about these cancer concepts is really new. Through development of powerful new technologies, we have been able to decipher the mechanisms of malignant transformation, thus significantly advancing the field. Our own studies have been focused on the cross-talk between cell-growth-signaling and lipid-metabolism in ovarian cancer to find crossover-points for co-targeting in order to achieve synergistic treatment effects. Notably, a side-effect of the application of current methods of molecular-cell-biology is a deeper knowledge of the laws of normal cell-biology and cell-life. Thus we anticipate the field will advance rapidly in the near future.
Collapse
Affiliation(s)
- Thomas W Grunt
- Medical University of Vienna, Comprehensive Cancer Center (CCC), Ludwig Boltzmann Institute for Hematology & Oncology, Department of Medicine I, Vienna, Austria
| |
Collapse
|
3
|
Bai R, Cui J. Regulation of fatty acid synthase on tumor and progress in the development of related therapies. Chin Med J (Engl) 2024; 137:1894-1902. [PMID: 38273440 PMCID: PMC11332710 DOI: 10.1097/cm9.0000000000002880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 01/27/2024] Open
Abstract
ABSTRACT Fatty acid synthase (FASN) is an essential molecule in lipid metabolic pathways, which are crucial for cancer-related studies. Recent studies have focused on a comprehensive understanding of the novel and important regulatory effects of FASN on malignant biological behavior and immune-cell infiltration, which are closely related to tumor occurrence and development, immune escape, and immune response. FASN-targeting antitumor treatment strategies are being developed. Therefore, in this review, we focused on the effects of FASN on tumor and immune-cell infiltration and reviewed the progress of related anti-tumor therapy development.
Collapse
Affiliation(s)
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
4
|
Ahmad N, Moton S, Kuttikrishnan S, Prabhu KS, Masoodi T, Ahmad S, Uddin S. Fatty acid synthase: A key driver of ovarian cancer metastasis and a promising therapeutic target. Pathol Res Pract 2024; 260:155465. [PMID: 39018927 DOI: 10.1016/j.prp.2024.155465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Fatty acid synthase (FASN) is a critical enzyme essential for the production of fats in the body. The abnormal expression of FASN is associated with different types of malignancies, including ovarian cancer. FASN plays a crucial role in cell growth and survival as a metabolic oncogene, although the specific processes that cause its dysregulation are still unknown. FASN interacts with signaling pathways linked to the progression of cancer. Pharmacologically inhibiting or inactivating the FASN gene has shown potential in causing the death of cancer cells, offering a possible treatment approach. This review examines the function of FASN in ovarian cancer, namely its level of expression, influence on the advancement of the disease, and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Nuha Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tariq Masoodi
- Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sarfraz Ahmad
- Gynecologic Oncology Program, AdventHealth Cancer Institute, Orlando, FL 32804, USA; Florida State University, College of Medicine, Orlando, FL 32801, USA; University of Central Florida, College of Medicine, Orlando, FL 32827, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India.
| |
Collapse
|
5
|
Hu P, Zhou P, Sun T, Liu D, Yin J, Liu L. Therapeutic protein PAK restrains the progression of triple negative breast cancer through degrading SREBP-1 mRNA. Breast Cancer Res 2023; 25:151. [PMID: 38082285 PMCID: PMC10714641 DOI: 10.1186/s13058-023-01749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most challenging subtype of breast cancer. Studies have implicated an upregulation of lipid synthesis pathways in the initiation and progression of TNBC. Targeting lipid synthesis pathways may be a promising therapeutic strategy for TNBC. Our previous study developed a therapeutic protein PAK with passive targeting and inhibiting tumor proliferation. In this study, we further substantiate the efficacy of PAK in TNBC. Transcriptome sequencing analysis revealed PAK-mediated downregulation of genes involved in fatty acid synthesis, including key genes like SREBP-1, FASN, and SCD1. RNA immunoprecipitation experiments demonstrated a significant binding affinity of PAK to SREBP-1 mRNA, facilitating its degradation process. Both in vitro and in vivo models, PAK hampered TNBC progression by downregulating lipid synthesis pathways. In conclusion, this study emphasizes that PAK inhibits the progression of TNBC by binding to and degrading SREBP-1 mRNA, revealing a new strategy for regulating lipid synthesis in the intervention of TNBC and its therapeutic significance.
Collapse
Affiliation(s)
- Pan Hu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Peiyi Zhou
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Tieyun Sun
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
6
|
Kolb S, Hoffmann I, Monjé N, Dragomir MP, Jank P, Bischoff P, Keunecke C, Pohl J, Kunze CA, Marchenko S, Schmitt WD, Kulbe H, Sers C, Sehouli J, Braicu EI, Denkert C, Darb-Esfahani S, Horst D, Sinn BV, Taube ET. LRP1B-a prognostic marker in tubo-ovarian high-grade serous carcinoma. Hum Pathol 2023; 141:158-168. [PMID: 37742945 DOI: 10.1016/j.humpath.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a member of the LDL receptor family and has often been discussed as a tumor suppressor gene, as its down-regulation is correlated with a poor prognosis in multiple carcinoma entities. Due to the high metastasis rate into the fatty peritoneal cavity and current research findings showing a dysregulation of lipid metabolism in tubo-ovarian high-grade serous carcinoma (HGSC), we questioned the prognostic impact of the LRP1B protein expression. We examined a well-characterized large cohort of 571 patients with primary HGSC and analyzed the LRP1B protein expression via immunohistochemical staining (both in tumor and stroma cells separately), performed precise bioimage analysis with QuPath, and calculated the prognostic impact using SPSS. Our results demonstrate that LRP1B functions as a significant prognostic marker for overall survival (OS) and progression-free survival (PFS) in HGSC on the protein level. High cytoplasmic expression of LRP1B in tumor, stroma, and combined tumor and stroma cells has a significantly positive association with a mean prolongation of the OS by 42 months (P = .005), 29 months (P = .005), and 25 months (P = .001), respectively. Additionally, the mean PFS was 18 months longer in tumor (P = .002), 19 months in stroma (P = .004), and 19 months in both cell types combined (P = .01). Our results remained significant in multivariate analysis. We envision LRP1B as a potential prognostic tool that could help us understand the functional role of lipid metabolism in advanced HGSC, especially regarding liposomal medications.
Collapse
Affiliation(s)
- Svenja Kolb
- Department of Gynecology, Vivantes Netzwerk für Gesundheit GmbH Berlin, Vivantes Hospital Neukölln, 12351, Berlin, Germany
| | - Inga Hoffmann
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Nanna Monjé
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Paul Jank
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg, 35043 Marburg, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Carlotta Keunecke
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jonathan Pohl
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Catarina Alisa Kunze
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Sofya Marchenko
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Wolfgang D Schmitt
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Hagen Kulbe
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Tumorbank Ovarian Cancer Network, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg, 35043 Marburg, Germany
| | - Silvia Darb-Esfahani
- MVZ Pathologie Spandau, 13589 Berlin, Spandau, Germany; MVZ Pathologie Berlin-Buch, 13125 Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Bruno V Sinn
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany
| | - Eliane T Taube
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Li M, Yan Y, Liu Y, Zhao J, Guo F, Chen J, Nie L, Zhang Y, Wang Y. Comprehensive analyses of fatty acid metabolism-related lncRNA for ovarian cancer patients. Sci Rep 2023; 13:14675. [PMID: 37673886 PMCID: PMC10482851 DOI: 10.1038/s41598-023-35218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 09/08/2023] Open
Abstract
Ovarian cancer (OC) is a disease with difficult early diagnosis and treatment and poor prognosis. OC data profiles were downloaded from The Cancer Genome Atlas. Eight key fatty acid metabolism-related long non-coding RNAs (lncRNAs) were finally screened for building a risk scoring model by univariate/ multifactor and least absolute shrinkage and selection operator (LASSO) Cox regression. To make this risk scoring model more applicable to clinical work, we established a nomogram containing the clinical characteristics of OC patients after confirming that the model has good reliability and validity and the ability to distinguish patient prognosis. To further explore how these key lncRNAs are involved in OC progression, we explored their relationship with LUAD immune signatures and tumor drug resistance. The structure shows that the risk scoring model established based on these 8 fatty acid metabolism-related lncRNAs has good reliability and validity and can better predict the prognosis of patients with different risks of OC, and LINC00861in these key RNAs may be a hub gene that affects the progression of OC and closely related to the sensitivity of current OC chemotherapy drugs. In addition, combined with immune signature analysis, we found that patients in the high-risk group are in a state of immunosuppression, and Tfh cells may play an important role in it. We innovatively established a prognostic prediction model with excellent reliability and validity from the perspective of OC fatty acid metabolism reprogramming and lncRNA regulation and found new molecular/cellular targets for future OC treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Jincheng People's Hospital, Jincheng, 048026, China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yanyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianzhen Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fei Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianqin Chen
- Department of Gynecology, Jincheng People's Hospital, Jincheng, 048026, China
| | - Lifang Nie
- Department of Gynecology, Jincheng People's Hospital, Jincheng, 048026, China
| | - Yong Zhang
- Department of Pathology, Jincheng People's Hospital, Jincheng, 048026, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
8
|
Davoodvandi A, Rafiyan M, Asemi Z, Matini SA. An epigenetic modulator with promising therapeutic impacts against gastrointestinal cancers: A mechanistic review on microRNA-195. Pathol Res Pract 2023; 248:154680. [PMID: 37467635 DOI: 10.1016/j.prp.2023.154680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Due to their high prevalence, gastrointestinal cancers are one of the key causes of cancer-related death globally. The development of drug-resistant cancer cell populations is a major factor in the high mortality rate, and it affects about half of all cancer patients. Because of advances in our understanding of cancer molecular biology, non-coding RNAs (ncRNAs) have emerged as critical factors in the initiation and development of gastrointestinal cancers. Gene expression can be controlled in several ways by ncRNAs, including through epigenetic changes, interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and proteins, and the function of lncRNAs as miRNA precursors or pseudogenes. As lncRNAs may be detected in the blood, circulating ncRNAs have emerged as a promising new class of non-invasive cancer biomarkers for use in the detection, staging, and prognosis of gastrointestinal cancers, as well as in the prediction of therapy efficacy. In this review, we assessed the role lncRNAs play in the progression, and maintenance of colorectal cancer, and how they might be used as therapeutic targets in the future.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Seyed Amirhassan Matini
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
9
|
Domínguez-Zorita S, Cuezva JM. The Mitochondrial ATP Synthase/IF1 Axis in Cancer Progression: Targets for Therapeutic Intervention. Cancers (Basel) 2023; 15:3775. [PMID: 37568591 PMCID: PMC10417293 DOI: 10.3390/cancers15153775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer poses a significant global health problem with profound personal and economic implications on National Health Care Systems. The reprograming of metabolism is a major trait of the cancer phenotype with a clear potential for developing effective therapeutic strategies to combat the disease. Herein, we summarize the relevant role that the mitochondrial ATP synthase and its physiological inhibitor, ATPase Inhibitory Factor 1 (IF1), play in metabolic reprogramming to an enhanced glycolytic phenotype. We stress that the interplay in the ATP synthase/IF1 axis has additional functional roles in signaling mitohormetic programs, pro-oncogenic or anti-metastatic phenotypes depending on the cell type. Moreover, the same axis also participates in cell death resistance of cancer cells by restrained mitochondrial permeability transition pore opening. We emphasize the relevance of the different post-transcriptional mechanisms that regulate the specific expression and activity of ATP synthase/IF1, to stimulate further investigations in the field because of their potential as future targets to treat cancer. In addition, we review recent findings stressing that mitochondria metabolism is the primary altered target in lung adenocarcinomas and that the ATP synthase/IF1 axis of OXPHOS is included in the most significant signature of metastatic disease. Finally, we stress that targeting mitochondrial OXPHOS in pre-clinical mouse models affords a most effective therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| |
Collapse
|
10
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
11
|
Xiong Q, Zhu J, Zhang Y, Deng H. CAR-NK cell therapy for glioblastoma: what to do next? Front Oncol 2023; 13:1192128. [PMID: 37404752 PMCID: PMC10315652 DOI: 10.3389/fonc.2023.1192128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Glioblastoma is a malignant tumor with the highest morbidity and mortality in the central nervous system. Conventional surgical resection combined with radiotherapy or chemotherapy has a high recurrence rate and poor prognosis. The 5-year survival rate of patients is less than 10%. In tumor immunotherapy, CAR-T cell therapy represented by chimeric antigen receptor-modified T cells has achieved great success in hematological tumors. However, the application of CAR-T cells in solid tumors such as glioblastoma still faces many challenges. CAR-NK cells are another potential adoptive cell therapy strategy after CAR-T cells. Compared with CAR-T cell therapy, CAR-NK cells have similar anti-tumor effects. CAR-NK cells can also avoid some deficiencies in CAR-T cell therapy, a research hotspot in tumor immunity. This article summarizes the preclinical research status of CAR-NK cells in glioblastoma and the problems and challenges faced by CAR-NK in glioblastoma.
Collapse
|
12
|
Bifarin O, Sah S, Gaul DA, Moore SG, Chen R, Palaniappan M, Kim J, Matzuk MM, Fernández FM. Machine Learning Reveals Lipidome Remodeling Dynamics in a Mouse Model of Ovarian Cancer. J Proteome Res 2023; 22:2092-2108. [PMID: 37220064 PMCID: PMC10243112 DOI: 10.1021/acs.jproteome.3c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 05/25/2023]
Abstract
Ovarian cancer (OC) is one of the deadliest cancers affecting the female reproductive system. It may present little or no symptoms at the early stages and typically unspecific symptoms at later stages. High-grade serous ovarian cancer (HGSC) is the subtype responsible for most ovarian cancer deaths. However, very little is known about the metabolic course of this disease, particularly in its early stages. In this longitudinal study, we examined the temporal course of serum lipidome changes using a robust HGSC mouse model and machine learning data analysis. Early progression of HGSC was marked by increased levels of phosphatidylcholines and phosphatidylethanolamines. In contrast, later stages featured more diverse lipid alterations, including fatty acids and their derivatives, triglycerides, ceramides, hexosylceramides, sphingomyelins, lysophosphatidylcholines, and phosphatidylinositols. These alterations underscored unique perturbations in cell membrane stability, proliferation, and survival during cancer development and progression, offering potential targets for early detection and prognosis of human ovarian cancer.
Collapse
Affiliation(s)
- Olatomiwa
O. Bifarin
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Samyukta Sah
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - David A. Gaul
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Petit
Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Samuel G. Moore
- Petit
Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruihong Chen
- Department
of Pathology & Immunology, Baylor College
of Medicine, Houston, Texas 77030, United States
| | - Murugesan Palaniappan
- Department
of Pathology & Immunology, Baylor College
of Medicine, Houston, Texas 77030, United States
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jaeyeon Kim
- Department
of Biochemistry and Molecular Biology, Indiana University School of
Medicine, Indiana University Melvin and
Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| | - Martin M. Matzuk
- Department
of Pathology & Immunology, Baylor College
of Medicine, Houston, Texas 77030, United States
- Center
for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Facundo M. Fernández
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Petit
Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Chen G, Zeng L, Bi B, Huang X, Qiu M, Chen P, Chen ZY, He Y, Pan Y, Chen Y, Zhao J. Engineering Bifunctional Calcium Alendronate Gene-Delivery Nanoneedle for Synergistic Chemo/Immuno-Therapy Against HER2 Positive Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204654. [PMID: 36932888 DOI: 10.1002/advs.202204654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy. Most patients are diagnosed at an advanced stage with widespread peritoneal dissemination and ascites. Bispecific T-cell engagers (BiTEs) have demonstrated impressive antitumor efficacy in hematological malignancies, but the clinical potency is limited by their short half-life, inconvenient continuous intravenous infusion, and severe toxicity at relevant therapeutic levels in solid tumors. To address these critical issues, the design and engineering of alendronate calcium (CaALN) based gene-delivery system is reported to express therapeutic level of BiTE (HER2×CD3) for efficient ovarian cancer immunotherapy. Controllable construction of CaALN nanosphere and nanoneedle is achieved by the simple and green coordination reactions that the distinct nanoneedle-like alendronate calcium (CaALN-N) with a high aspect ratio enabled efficient gene delivery to the peritoneum without system in vivo toxicity. Especially, CaALN-N induced apoptosis of SKOV3-luc cell via down-regulation of HER2 signaling pathway and synergized with HER2×CD3 to generate high antitumor response. In vivo administration of CaALN-N/minicircle DNA encoding HER2×CD3 (MC-HER2×CD3) produces sustained therapeutic levels of BiTE and suppresses tumor growth in a human ovarian cancer xenograft model. Collectively, the engineered alendronate calcium nanoneedle represents a bifunctional gene delivery platform for the efficient and synergistic treatment of ovarian cancer.
Collapse
Affiliation(s)
- Guochuang Chen
- Syno Minicircle Biotechnology, Shenzhen, 518055, P. R. China
| | - Leli Zeng
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Bo Bi
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Xiuyu Huang
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Miaojuan Qiu
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Ping Chen
- Syno Minicircle Biotechnology, Shenzhen, 518055, P. R. China
| | - Zhi-Ying Chen
- Syno Minicircle Biotechnology, Shenzhen, 518055, P. R. China
| | - Yulong He
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yihang Pan
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Zhao
- Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| |
Collapse
|
14
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
15
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
16
|
Vanauberg D, Schulz C, Lefebvre T. Involvement of the pro-oncogenic enzyme fatty acid synthase in the hallmarks of cancer: a promising target in anti-cancer therapies. Oncogenesis 2023; 12:16. [PMID: 36934087 PMCID: PMC10024702 DOI: 10.1038/s41389-023-00460-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023] Open
Abstract
An accelerated de novo lipogenesis (DNL) flux is a common characteristic of cancer cells required to sustain a high proliferation rate. The DNL enzyme fatty acid synthase (FASN) is overexpressed in many cancers and is pivotal for the increased production of fatty acids. There is increasing evidences of the involvement of FASN in several hallmarks of cancer linked to its ability to promote cell proliferation via membranes biosynthesis. In this review we discuss about the implication of FASN in the resistance to cell death and in the deregulation of cellular energetics by increasing nucleic acids, protein and lipid synthesis. FASN also promotes cell proliferation, cell invasion, metastasis and angiogenesis by enabling the building of lipid rafts and consequently to the localization of oncogenic receptors such as HER2 and c-Met in membrane microdomains. Finally, FASN is involved in immune escape by repressing the activation of pro-inflammatory cells and promoting the recruitment of M2 macrophages and T regulatory cells in the tumor microenvironment. Here, we provide an overview of the involvement of the pro-oncogenic enzyme in the hallmarks of cancer making FASN a promising target in anti-cancer therapy to circumvent resistance to chemotherapies.
Collapse
Affiliation(s)
- Dimitri Vanauberg
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
17
|
PTGIS May Be a Predictive Marker for Ovarian Cancer by Regulating Fatty Acid Metabolism. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:2397728. [PMID: 36785673 PMCID: PMC9918844 DOI: 10.1155/2023/2397728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Background Ovarian cancer tends to metastasize to the omentum, which is an organ mainly composed of adipose tissue. Many studies have found that fatty acid metabolism is related to the occurrence and metastasis of cancers. Therefore, it is possible that fatty acid metabolism-related genes (FAMRG) affect the prognosis of ovarian cancer patients. Methods First, profiles of ovarian cancer and normal ovarian tissue transcriptomes were acquired from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. A LASSO regression predictive model was developed via the "glmnet" R package. The nomogram was created via the "regplot." Gene Set Variation Analysis (GSVA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) analyses were conducted to determine the FAMRGs' roles. The percentage of immunocyte infiltration was calculated via CIBERSORT. Using "pRRophetic," the sensitivity of eight regularly used medications and immunotherapy was anticipated. Results 125 genes were determined as different expression genes (DEGs). Based on RXRA, ECI2, PTGIS, and ACACB, a prognostic model is created and the risk score is calculated. Analyses of univariate and multivariate regressions revealed that the risk score was a distinct prognostic factor (univariate: HR: 2.855, 95% CI: 1.756-4.739, P < 0.001; multivariate: HR: 2.943, 95% CI: 1.800-4.812, P < 0.001). The nomogram demonstrated that it properly predicted the 1-year survival rate. The expression of memory B molecular units, follicular helper T molecular units, regulatory T molecular units, and M1 macrophages differed remarkably between the groups at high and low risk (P < 0.05). Adipocytokine signaling pathways, cancer pathways, and degradation of valine, leucine, and isoleucine vary between high- and low-risk populations. The findings of the GO enrichment revealed that the extracellular matrix and cellular structure were the two most enriched pathways. PTGIS, which is an important gene in fatty acid metabolism, was identified as the hub gene. This result was verified in ovarian cancer and ovarian tissues. The connection between the gene and survival was statistically remarkable (P = 0.015). The pRRophetic algorithm revealed that the low-risk group was more adaptable to cisplatin, doxorubicin, 5-fluorouracil, and etoposide (P < 0.001). Conclusion PTGIS may be an indicator of prognosis and a possible therapeutic target for the therapy of ovarian cancer patients. The fatty acid metabolism of immune cells may be controlled, which has an indirect effect on cancer cell growth.
Collapse
|
18
|
Bifarin OO, Sah S, Gaul DA, Moore SG, Chen R, Palaniappan M, Kim J, Matzuk MM, Fernández FM. Machine Learning Reveals Lipidome Remodeling Dynamics in a Mouse Model of Ovarian Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.520434. [PMID: 36711577 PMCID: PMC9881992 DOI: 10.1101/2023.01.04.520434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovarian cancer (OC) is one of the deadliest cancers affecting the female reproductive system. It may present little or no symptoms at the early stages, and typically unspecific symptoms at later stages. High-grade serous ovarian cancer (HGSC) is the subtype responsible for most ovarian cancer deaths. However, very little is known about the metabolic course of this disease, particularly in its early stages. In this longitudinal study, we examined the temporal course of serum lipidome changes using a robust HGSC mouse model and machine learning data analysis. Early progression of HGSC was marked by increased levels of phosphatidylcholines and phosphatidylethanolamines. In contrast, later stages featured more diverse lipids alterations, including fatty acids and their derivatives, triglycerides, ceramides, hexosylceramides, sphingomyelins, lysophosphatidylcholines, and phosphatidylinositols. These alterations underscored unique perturbations in cell membrane stability, proliferation, and survival during cancer development and progression, offering potential targets for early detection and prognosis of human ovarian cancer. Teaser Time-resolved lipidome remodeling in an ovarian cancer model is studied through lipidomics and machine learning.
Collapse
Affiliation(s)
- Olatomiwa O. Bifarin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Samyukta Sah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Samuel G. Moore
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruihong Chen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Murugesan Palaniappan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, 46202, United States
| | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Qin X, Guo X, Liu T, Li L, Zhou N, Ma X, Meng X, Liu J, Zhu H, Jia B, Yang Z. High in-vivo stability in preclinical and first-in-human experiments with [ 18F]AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers. Eur J Nucl Med Mol Imaging 2023; 50:302-313. [PMID: 36129493 DOI: 10.1007/s00259-022-05967-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/11/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE [18F]AlF-RESCA was introduced as a core particularly useful for 18F-labeling of heat-sensitive biomolecules. However, no translational studies have been reported up to now. Herein, we reported the first-in-human evaluation of an 18F-labeled anti-HER2 nanobody MIRC213 as a PET radiotracer for imaging HER2-positive cancers. METHODS MIRC213 was produced by E. coli and conjugated with ( ±)-H3RESCA-Mal. [18F]AlF-RESCA-MIRC213 was prepared at room temperature. Its radiochemical purity and stability of were determined by radio-HPLC with the size-exclusion chromatographic column. Cell uptake was performed in NCI-N87 (HER2 +) and MCF-7 (HER2-) cells and the cell-binding affinity was verified in SK-OV-3 (HER2 +) cells. Small-animal PET/CT was performed using SK-OV-3, NCI-N87, and MCF-7 tumor-bearing mice at 30 min, 1 h, and 2 h post-injection. For blocking experiment, excess MIRC213 was co-injected with radiotracer. Biodistribution were performed on SKOV-3 and MCF-7 tumor-bearing mice at 2 h post-injection. For clinical study, PET/CT images were acquired at 2 h and 4 h after injection of [18F]AlF-RESCA-MIRC213 (1.85-3.7 MBq/kg) in six breast cancer patients (3 HER2-positive and 3 HER2-negative). All patients underwent [18F]-FDG PET/CT within a week for tissue selection purpose. Distribution and dosimetry were calculated. Standardized uptake values (SUV) were measured in tumors and normal organs. RESULTS MIRC213 was produced with > 95% purity and modified with RESCA to obtain RESCA-MIRC213. [18F]AlF-RESCA-MIRC213 was prepared within 20 min at room temperature with the radiochemical yield of 50.48 ± 7.6% and radiochemical purity of > 98% (n > 10), and remained stable in both PBS (88%) and 5% HSA (92%) after 6 h. The 2 h cellular uptake of [18F]AlF-RESCA-MIRC213 in NCI-N87 cells was 11.22 ± 0.60 AD%/105 cells. Its binding affinity Kd value was determined to be 1.23 ± 0.58 nM. Small-animal PET/CT with [18F]AlF-RESCA-MIRC213 can clearly differentiate SK-OV-3 and NCI-N87 tumors from MCF-7 tumors and background with a high uptake of 4.73 ± 1.18 ID%/g and substantially reduced to 1.70 ± 0.13 ID%/g for the blocking group (p < 0.05) in SK-OV-3 tumors at 2 h post-injection. No significant bone radioactivity was seen in the tumor-bearing animals. In all six breast cancer patients, there was no adverse reaction during study. The uptake of [18F]AlF-RESCA-MIRC213 was mainly in lacrimal gland, parotid gland, submandibular gland, thyroid gland, gallbladder, kidneys, liver, and intestines. There was no significant bone radioactivity accumulation in cancer patients. [18F]AlF-RESCA-MIRC213 had significantly higher tumor uptake in lesions from HER2-positive patients than that lesions from HER2-negative patients (SUVmax of 3.62 ± 1.56 vs. 1.41 ± 0.41, p = 0.0012) at 2 h post-injection. The kidneys received the highest radiation dose of 2.42 × 10-1 mGy/MBq, and the effective dose was 1.56 × 10-2 mSv/MBq. CONCLUSIONS [18F]AlF-RESCA-MIRC213 could be prepared with high radiolabeling yield under mild conditions. [18F]AlF-RESCA-MIRC213 has relatively high stability both in vitro and in vivo. The results from clinical transformation suggest that [18F]AlF-RESCA-MIRC213 PET/CT is a safe procedure with favorable pharmacokinetics and dosimetry profile, and it is a promising new PET radiotracer for noninvasive diagnosis of HER2-positive cancers.
Collapse
Affiliation(s)
- Xue Qin
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Tianyu Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Liqiang Li
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaopan Ma
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiayue Liu
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hua Zhu
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Zhi Yang
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
20
|
Song Y, Wang J, Xu J, Gao Y, Xu Z. Circ_0018909 knockdown inhibits the development of pancreatic cancer via the miR‐545‐3p/FASN axis and reduces macrophage polarization to M2. J Biochem Mol Toxicol 2022; 37:e23293. [PMID: 36541402 DOI: 10.1002/jbt.23293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Multiple circular RNAs (circRNAs) were proven to regulate the development of pancreatic cancer. However, the action of circ_0018909 in pancreatic cancer was still unclear. The expression of circ_0018909, microRNA-545-3p (miR-545-3p), and fatty acid synthase (FASN) was measured using quantitative reverse-transcriptase PCR (qRT-PCR). Cell growth, cell cycle arrest, apoptotic cells, metastasis, and epithelial to mesenchymal transition (EMT) were determined using EdU assay, flow cytometry, wound-healing assay, transwell invasion, and western blotting, respectively. The expression of the macrophage markers, including CD80, MCP-1, iNOS, and IL-6 (M1 markers), as well as CD206 and CD163 (M2 markers), was analyzed using qRT-PCR. Circ_0018909 knockdown dramatically depressed cell growth, migration, invasion, EMT, and elevated the number of apoptotic cells in pancreatic cancer cells, and repressed tumor growth in mice. Moreover, we proved that the absence of miR-545-3p rescued the action of circ_0018909 downregulation on cell growth, metastasis, apoptosis, and EMT in pancreatic cancer cells. MiR-545-3p bound to FASN and FASN overexpression hindered the impacts of miR-545-3p on the progression of pancreatic cancer. Besides this, our data demonstrated that circ_0018909 induced polarization from M0 macrophages to M2 macrophages. Circ_0018909 knockdown retarded the development of pancreatic cancer by modulating miR-545-3p to regulate FASN expression.
Collapse
Affiliation(s)
- Yinxue Song
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Jun Wang
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Jing Xu
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Ye Gao
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Zhichao Xu
- Emergency Department First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| |
Collapse
|
21
|
Li M, Hu M, Wang Y, Xia Z, Li Z, Li J, Zheng D, Zheng X, Xi M. Loss of RBPMS in ovarian cancer compromises the efficacy of EGFR inhibitor gefitinib through activating HER2/AKT/mTOR/P70S6K signaling. Biochem Biophys Res Commun 2022; 637:348-357. [DOI: 10.1016/j.bbrc.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
|
22
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
23
|
Tondo-Steele K, McLean K. The “Sweet Spot” of Targeting Tumor Metabolism in Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14194696. [PMID: 36230617 PMCID: PMC9562887 DOI: 10.3390/cancers14194696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this review is to explore the metabolomic environment of epithelial ovarian cancer that contributes to chemoresistance and to use this knowledge to identify possible targets for therapeutic intervention. The Warburg effect describes increased glucose uptake and lactate production in cancer cells. In ovarian cancer, we require a better understanding of how cancer cells reprogram their glycogen metabolism to overcome their nutrient deficient environment and become chemoresistant. Glucose metabolism in ovarian cancer cells has been proposed to be influenced by altered fatty acid metabolism, oxidative phosphorylation, and acidification of the tumor microenvironment. We investigate several markers of altered metabolism in ovarian cancer including hypoxia-induced factor 1, VEGF, leptin, insulin-like growth factors, and glucose transporters. We also discuss the signaling pathways involved with these biomarkers including PI3K/AKT/mTOR, JAK/STAT and OXPHOS. This review outlines potential metabolic targets to overcome chemoresistance in ovarian cancer. Continued research of the metabolic changes in ovarian cancer is needed to identify and target these alterations to improve treatment approaches.
Collapse
|
24
|
Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in cancer: The role of lipid signaling. Cell Biol Int 2022; 46:1717-1728. [DOI: 10.1002/cbin.11896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Parisa Fayyazpour
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Negar Aghaei
- Department of Psycology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Imam Sajjad Hospital Tabriz Azad University Tabriz Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
25
|
Targeting lipid metabolism in the treatment of ovarian cancer. Oncotarget 2022; 13:768-783. [PMID: 35634242 PMCID: PMC9132258 DOI: 10.18632/oncotarget.28241] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer cells undergo alterations in lipid metabolism to support their high energy needs, tumorigenesis and evade an anti-tumor immune response. Alterations in fatty acid production are controlled by multiple enzymes, chiefly Acetyl CoA Carboxylase, ATP-Citrate Lyase, Fatty Acid Synthase, and Stearoyl CoA Desaturase 1. Ovarian cancer (OC) is a common gynecological malignancy with a high rate of aggressive carcinoma progression and drug resistance. The accumulation of unsaturated fatty acids in ovarian cancer supports cell growth, increased cancer cell migration, and worse patient outcomes. Ovarian cancer cells also expand their lipid stores via increased uptake of lipids using fatty acid translocases, fatty acid-binding proteins, and low-density lipoprotein receptors. Furthermore, increased lipogenesis and lipid uptake promote chemotherapy resistance and dampen the adaptive immune response needed to eliminate tumors. In this review, we discuss the role of lipid synthesis and metabolism in driving tumorigenesis and drug resistance in ovarian cancer conferring poor prognosis and outcomes in patients. We also cover some aspects of how lipids fuel ovarian cancer stem cells, and how these metabolic alterations in intracellular lipid content could potentially serve as biomarkers of ovarian cancer.
Collapse
|
26
|
α-Linolenic acid induces apoptosis, inhibits the invasion and metastasis, and arrests cell cycle in human breast cancer cells by inhibiting fatty acid synthase. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
27
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
28
|
Fatty Acid Metabolism in Ovarian Cancer: Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23042170. [PMID: 35216285 PMCID: PMC8874779 DOI: 10.3390/ijms23042170] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most malignant gynecological tumor. Previous studies have reported that metabolic alterations resulting from deregulated lipid metabolism promote ovarian cancer aggressiveness. Lipid metabolism involves the oxidation of fatty acids, which leads to energy generation or new lipid metabolite synthesis. The upregulation of fatty acid synthesis and related signaling promote tumor cell proliferation and migration, and, consequently, lead to poor prognosis. Fatty acid-mediated lipid metabolism in the tumor microenvironment (TME) modulates tumor cell immunity by regulating immune cells, including T cells, B cells, macrophages, and natural killer cells, which play essential roles in ovarian cancer cell survival. Here, the types and sources of fatty acids and their interactions with the TME of ovarian cancer have been reviewed. Additionally, this review focuses on the role of fatty acid metabolism in tumor immunity and suggests that fatty acid and related lipid metabolic pathways are potential therapeutic targets for ovarian cancer.
Collapse
|
29
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
30
|
Adipose Tissue-Breast Cancer Crosstalk Leads to Increased Tumor Lipogenesis Associated with Enhanced Tumor Growth. Int J Mol Sci 2021; 22:ijms222111881. [PMID: 34769312 PMCID: PMC8585035 DOI: 10.3390/ijms222111881] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
We sought to identify therapeutic targets for breast cancer by investigating the metabolic symbiosis between breast cancer and adipose tissue. To this end, we compared orthotopic E0771 breast cancer tumors that were in direct contact with adipose tissue with ectopic E0771 tumors in mice. Orthotopic tumors grew faster and displayed increased de novo lipogenesis compared to ectopic tumors. Adipocytes release large amounts of lactate, and we found that both lactate pretreatment and adipose tissue co-culture augmented de novo lipogenesis in E0771 cells. Continuous treatment with the selective FASN inhibitor Fasnall dose-dependently decreased the E0771 viability in vitro. However, daily Fasnall injections were effective only in 50% of the tumors, while the other 50% displayed accelerated growth. These opposing effects of Fasnall in vivo was recapitulated in vitro; intermittent Fasnall treatment increased the E0771 viability at lower concentrations and suppressed the viability at higher concentrations. In conclusion, our data suggest that adipose tissue enhances tumor growth by stimulating lipogenesis. However, targeting lipogenesis alone can be deleterious. To circumvent the tumor's ability to adapt to treatment, we therefore believe that it is necessary to apply an aggressive treatment, preferably targeting several metabolic pathways simultaneously, together with conventional therapy.
Collapse
|
31
|
Liu X, Wu A, Wang X, Liu Y, Xu Y, Liu G, Liu L. Identification of metabolism-associated molecular subtype in ovarian cancer. J Cell Mol Med 2021; 25:9617-9626. [PMID: 34523782 PMCID: PMC8505839 DOI: 10.1111/jcmm.16907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynaecological cancer with genomic complexity and extensive heterogeneity. This study aimed to characterize the molecular features of OC based on the gene expression profile of 2752 previously characterized metabolism-relevant genes and provide new strategies to improve the clinical status of patients with OC. Finally, three molecular subtypes (C1, C2 and C3) were identified. The C2 subtype displayed the worst prognosis, upregulated immune-cell infiltration status and expression level of immune checkpoint genes, lower burden of copy number gains and losses and suboptimal response to targeted drug bevacizumab. The C1 subtype showed downregulated immune-cell infiltration status and expression level of immune checkpoint genes, the lowest incidence of BRCA mutation and optimal response to targeted drug bevacizumab. The C3 subtype had an intermediate immune status, the highest incidence of BRCA mutation and a secondary optimal response to bevacizumab. Gene signatures of C1 and C2 subtypes with an opposite expression level were mainly enriched in proteolysis and immune-related biological process. The C3 subtype was mainly enriched in the T cell-related biological process. The prognostic and immune status of subtypes were validated in the Gene Expression Omnibus (GEO) dataset, which was predicted with a 45-gene classifier. These findings might improve the understanding of the diversity and therapeutic strategies for OC.
Collapse
Affiliation(s)
- Xiaona Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aoshen Wu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xing Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunhe Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yiang Xu
- School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lei Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
32
|
A HER2 Tri-Specific NK Cell Engager Mediates Efficient Targeting of Human Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13163994. [PMID: 34439149 PMCID: PMC8394622 DOI: 10.3390/cancers13163994] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary HER2 is a marker known to be over-expressed on breast cancer, rendering it one of the most useful solid tumor targets for antibody-based therapies. Despite expression on ovarian cancer, results targeting HER2 in this setting have been disappointing, thus requiring more aggressive approaches. Natural killer (NK) cells are known as principal mediators of cancer cell killing, but cancer cells find ways to deter them. We devised a tri-specific biological drug containing antibody fragments that simultaneously binds NK cells and cancer cells and at the same time delivers a natural cytokine signal that triggers robust NK cell expansion. In vitro studies show the drug augments NK cell killing of a number of HER2-positive human cell lines, while enhancing NK cell activation and proliferation. Studies in mice engrafted with human ovarian cancer showed the drug has anti-tumor efficacy, clearly demonstrating its ability to bolster NK cells in their ability to contain tumor cell growth. Abstract Clinical studies validated antibodies directed against HER2, trastuzumab, and pertuzumab, as useful methodology to target breast cancer cases where HER2 is expressed. The hope was that HER2 targeting using these antibodies in ovarian cancer patients would prove useful as well, but clinical studies have shown lackluster results in this setting, indicating a need for a more comprehensive approach. Immunotherapy approaches stimulating the innate immune system show great promise, although enhancing natural killer (NK) function is not an established mainstream immunotherapy. This study focused on a new nanobody platform technology in which the bispecific antibody was altered to incorporate a cytokine. Herein we describe bioengineered CAM1615HER2 consisting of a camelid VHH antibody fragment recognizing CD16 and a single chain variable fragment (scFv) recognizing HER2 cross-linked by the human interleukin-15 (IL-15) cytokine. This tri-specific killer engager (TriKETM) showed in vitro prowess in its ability to kill ovarian cancer human cell lines. In addition, we demonstrated its efficacy in inducing potent anti-cancer effects in an in vivo xenograft model of human ovarian cancer engrafting both cancer cells and human NK cells. While previous approaches with trastuzumab and pertuzumab faltered in ovarian cancer, the hope is incorporating targeting and cytokine priming within the same molecule will enhance efficacy in this setting.
Collapse
|
33
|
Expression of HER2/neu Receptor in Epithelial Ovarian Cancers: An Immunohistochemical Pilot Study in Central India. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2021. [DOI: 10.1007/s40944-021-00569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Shaik B, Zafar T, Balasubramanian K, Gupta SP. An Overview of Ovarian Cancer: Molecular Processes Involved and Development of Target-based Chemotherapeutics. Curr Top Med Chem 2021; 21:329-346. [PMID: 33183204 DOI: 10.2174/1568026620999201111155426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is one of the leading gynecologic diseases with a high mortality rate worldwide. Current statistical studies on cancer reveal that over the past two decades, the fifth most common cause of death related to cancer in females of the western world is ovarian cancer. In spite of significant strides made in genomics, proteomics and radiomics, there has been little progress in transitioning these research advances into effective clinical administration of ovarian cancer. Consequently, researchers have diverted their attention to finding various molecular processes involved in the development of this cancer and how these processes can be exploited to develop potential chemotherapeutics to treat this cancer. The present review gives an overview of these studies which may update the researchers on where we stand and where to go further. The unfortunate situation with ovarian cancer that still exists is that most patients with it do not show any symptoms until the disease has moved to an advanced stage. Undoubtedly, several targets-based drugs have been developed to treat it, but drug-resistance and the recurrence of this disease are still a problem. For the development of potential chemotherapeutics for ovarian cancer, however, some theoretical approaches have also been applied. A description of such methods and their success in this direction is also covered in this review.
Collapse
Affiliation(s)
- Basheerulla Shaik
- Department of Applied Sciences, National Institute of Technical Teachers' Training & Research, Shamla Hills, Shanti Marg, Bhopal-462002, Madhya Pradesh, India
| | - Tabassum Zafar
- Department of Biosciences, Barkatullah University, Bhopal-462026, Madhya Pradesh, India
| | | | - Satya P Gupta
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250002, India
| |
Collapse
|
35
|
Wangpaichitr M, Theodoropoulos G, Nguyen DJM, Wu C, Spector SA, Feun LG, Savaraj N. Cisplatin Resistance and Redox-Metabolic Vulnerability: A Second Alteration. Int J Mol Sci 2021; 22:7379. [PMID: 34298999 PMCID: PMC8304747 DOI: 10.3390/ijms22147379] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
The development of drug resistance in tumors is a major obstacle to effective cancer chemotherapy and represents one of the most significant complications to improving long-term patient outcomes. Despite early positive responsiveness to platinum-based chemotherapy, the majority of lung cancer patients develop resistance. The development of a new combination therapy targeting cisplatin-resistant (CR) tumors may mark a major improvement as salvage therapy in these patients. The recent resurgence in research into cellular metabolism has again confirmed that cancer cells utilize aerobic glycolysis ("the Warburg effect") to produce energy. Hence, this observation still remains a characteristic hallmark of altered metabolism in certain cancer cells. However, recent evidence promotes another concept wherein some tumors that acquire resistance to cisplatin undergo further metabolic alterations that increase tumor reliance on oxidative metabolism (OXMET) instead of glycolysis. Our review focuses on molecular changes that occur in tumors due to the relationship between metabolic demands and the importance of NAD+ in redox (ROS) metabolism and the crosstalk between PARP-1 (Poly (ADP ribose) polymerase-1) and SIRTs (sirtuins) in CR tumors. Finally, we discuss a role for the tumor metabolites of the kynurenine pathway (tryptophan catabolism) as effectors of immune cells in the tumor microenvironment during acquisition of resistance in CR cells. Understanding these concepts will form the basis for future targeting of CR cells by exploiting redox-metabolic changes and their consequences on immune cells in the tumor microenvironment as a new approach to improve overall therapeutic outcomes and survival in patients who fail cisplatin.
Collapse
Affiliation(s)
- Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
- Department of Surgery, Cardiothoracic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - George Theodoropoulos
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Dan J. M. Nguyen
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Sydney A. Spector
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Lynn G. Feun
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.G.F.); (N.S.)
| | - Niramol Savaraj
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.G.F.); (N.S.)
- Department of Veterans Affairs, Miami VA Healthcare System, Hematology/Oncology, 1201 NW 16 Street, Room D1010, Miami, FL 33125, USA
| |
Collapse
|
36
|
Zhang W, Huang J, Tang Y, Yang Y, Hu H. Inhibition of fatty acid synthase (FASN) affects the proliferation and apoptosis of HepG2 hepatoma carcinoma cells via the β-catenin/C-myc signaling pathway. Ann Hepatol 2021; 19:411-416. [PMID: 32536483 DOI: 10.1016/j.aohep.2020.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Research in the last few years has proven that inhibition of fatty acid synthase (FASN) suppresses the migration and invasion of hepatoma carcinoma cells. This study aims to explore the effect of fatty acid synthase knockdown on the apoptosis and proliferation of HepG2 cells. MATERIALS AND METHODS The human liver cancer cell line HepG2 was cultured and then transfected with FASN-specific siRNA and negative control RNAi. After 48h, cells and protein lysates were used for western blotting, CCK-8 (cell counting kit-8) assays, flow cytometry and other tests. To assess cell apoptosis, Bax, Bcl-2 and caspase-3 were detected; to assess proliferation, CDK4 (cyclin-dependent kinases 4) and P21 were detected; and to determine the signaling pathway involved, β-catenin and C-myc were also detected. RESULTS Inhibition of FASN in HepG2 cells can decrease proliferation and promote apoptosis. Flow cytometry and CCK-8 assays demonstrated that the apoptosis rate of FASN-specific siRNA-transfected cells was significantly increased compared to that of the control cells (p<0.01). In addition, the cell cycle analysis revealed that FASN-specific siRNA-transfected cells induced G1 phase arrest (p<0.05), but an increasing trend in G2 (p<0.05). Compared with expression in negative RNAi-transfected cells, the expression of Bcl-2 and CDK-4 was reduced and the expression of Bax, caspase-3 and P21 was increased in FASN-specific siRNA-transfected cells (p<0.05). Regarding the signaling pathway, the expression of β-catenin and C-myc was significantly reduced when compared to that in negative control cells (p<0.05). CONCLUSIONS Inhibition of FASN suppressed the cell survival of HepG2 cells by inhibiting the β-catenin/C-myc pathway. This result suggests the potential treatment value of FASN for hepatoma carcinoma (HCC).
Collapse
Affiliation(s)
- Wenyue Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Juan Huang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yao Tang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yixuan Yang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Huaidong Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
37
|
André S, Pinto AE, Silva GL, Silva F, Serpa J, Félix A. Male Breast Cancer-Immunohistochemical Patterns and Clinical Relevance of FASN, ATF3, and Collagen IV. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2021; 15:11782234211002496. [PMID: 33888988 PMCID: PMC8040573 DOI: 10.1177/11782234211002496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
Background Male breast carcinoma (male BC) is an uncommon neoplasia without individualized strategies for diagnosis and therapeutics. Low overall survival (OS) rates have been reported, mostly associated with patients' advanced stage and older age. Intratumoral heterogeneity versus homogeneity of malignant epithelial cells seems to be an important factor to consider for the development of combination therapies with curative intention. Objective In this preliminary study, we aim to provide valuable insight into the distinct clinicopathologic features of male BC. Material and methods In a series of 40 male BC patients, we evaluated by immunohistochemistry androgen receptor; activating transcription factor 3 (ATF3); p16; cyclin D1; fatty acid synthase (FASN); fatty acid transport protein 1 (FATP1); β1, β3, β4, and β6 integrins; collagen I and collagen IV; and their interactions. Kaplan-Meier survival curves and log-rank tests were assessed for statistical analysis. Results Homogeneous epithelial staining of p16, ATF3, β6 integrin, FASN, and FATP1 was found to be significantly intercorrelated, and associated with high Ki67. These markers also stained tumor stromal fibroblasts. The prognostic analysis showed statistically significant associations of FASN with disease-free survival (DFS) and OS, as well as of ATF3 with OS and collagen IV with DFS. Conclusions This study highlights, as a novel finding, the relevance of FASN, ATF3, and collagen IV immunophenotypes, which may have innovative application in the clinical management of male BC.
Collapse
Affiliation(s)
- Saudade André
- Department of Pathology, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | - António E Pinto
- Department of Pathology, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | - Giovani L Silva
- Department of Mathematics of Higher Technical Institute (Instituto Superior Técnico), Faculty of Sciences (Faculdade de Ciências), University of Lisbon, Lisbon, Portugal.,Statistics and Applications Center of University of Lisbon (CEAUL), Lisbon, Portugal
| | - Fernanda Silva
- CEDOC, NOVA Medical School, NOVA University, Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, NOVA University, Lisbon, Portugal
| | - Ana Félix
- Department of Pathology, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal.,CEDOC, NOVA Medical School, NOVA University, Lisbon, Portugal
| |
Collapse
|
38
|
Mukha A, Dubrovska A. Metabolic Targeting of Cancer Stem Cells. Front Oncol 2020; 10:537930. [PMID: 33415069 PMCID: PMC7783393 DOI: 10.3389/fonc.2020.537930] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Most human tumors possess a high heterogeneity resulting from both clonal evolution and cell differentiation program. The process of cell differentiation is initiated from a population of cancer stem cells (CSCs), which are enriched in tumor-regenerating and tumor-propagating activities and responsible for tumor maintenance and regrowth after treatment. Intrinsic resistance to conventional therapies, as well as a high degree of phenotypic plasticity, makes CSCs hard-to-target tumor cell population. Reprogramming of CSC metabolic pathways plays an essential role in tumor progression and metastatic spread. Many of these pathways confer cell adaptation to the microenvironmental stresses, including a shortage of nutrients and anti-cancer therapies. A better understanding of CSC metabolic dependences as well as metabolic communication between CSCs and the tumor microenvironment are of utmost importance for efficient cancer treatment. In this mini-review, we discuss the general characteristics of CSC metabolism and potential metabolic targeting of CSC populations as a potent strategy to enhance the efficacy of conventional treatment approaches.
Collapse
Affiliation(s)
- Anna Mukha
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
39
|
Ye Y, Sun X, Lu Y. Obesity-Related Fatty Acid and Cholesterol Metabolism in Cancer-Associated Host Cells. Front Cell Dev Biol 2020; 8:600350. [PMID: 33330490 PMCID: PMC7729017 DOI: 10.3389/fcell.2020.600350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity-derived disturbances in fatty acid and cholesterol metabolism are linked to numerous diseases, including various types of malignancy. In tumor cells, metabolic alterations have been long recognized and intensively studied. However, metabolic changes in host cells in the tumor microenvironment and their contribution to tumor development have been largely overlooked. During the last decade, research advances show that fatty acid oxidation, cholesterol metabolism, and lipid accumulation play critical roles in cancer-associated host cells such as endothelial cells, lymph endothelial cells, cancer-associated fibroblasts, tumor-associated myeloid cells, and tumor-associated lymphocytes. In addition to anti-angiogenic therapies and immunotherapy that have been practiced in the clinic, metabolic regulation is considered another promising cancer therapy targeting non-tumor host cells. Understanding the obesity-associated metabolism changes in cancer-associated host cells may ultimately be translated into therapeutic options that benefit cancer patients. In this mini-review, we briefly summarize the lipid metabolism associated with obesity and its role in host cells in the tumor microenvironment. We also discuss the current understanding of the molecular pathways involved and future perspectives to benefit from this metabolic complexity.
Collapse
Affiliation(s)
- Ying Ye
- Department of Oral Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongtian Lu
- Department of Ear Nose Throat (ENT), Second People’s Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
40
|
Ji Z, Shen Y, Feng X, Kong Y, Shao Y, Meng J, Zhang X, Yang G. Deregulation of Lipid Metabolism: The Critical Factors in Ovarian Cancer. Front Oncol 2020; 10:593017. [PMID: 33194756 PMCID: PMC7604390 DOI: 10.3389/fonc.2020.593017] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is one of the most malignant gynecological cancers around the world. In spite of multiple treatment options, the five-year survival rate is still very low. Several metabolism alterations are described as a hallmark in cancers, but alterations of lipid metabolism in ovarian cancer have been paid less attention. To explore new markers/targets for accurate diagnosis, prognosis, and therapeutic treatments based on metabolic enzyme inhibitors, here, we reviewed available literature and summarized several key metabolic enzymes in lipid metabolism of ovarian cancer. In this review, the rate limiting enzymes associated with fatty acid synthesis (FASN, ACC, ACLY, SCD), the lipid degradation related enzymes (MAGL, CPT, 5-LO, COX2), and the receptors related to lipid uptake (FABP4, CD36, LDLR), which promote the development of ovarian cancer, were analyzed and evaluated. We also focused on the review of application of current metabolic enzyme inhibitors for the treatment of ovarian cancer through which the potential therapeutic agents may be developed for ovarian cancer therapy.
Collapse
Affiliation(s)
- Zhaodong Ji
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Shen
- Department of Pharmacy, Nantong Health College of Jiangsu Province, Nantong, China
| | - Xu Feng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Kong
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofei Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| |
Collapse
|
41
|
Zheng S, Matskova L, Zhou X, Xiao X, Huang G, Zhang Z, Ernberg I. Downregulation of adipose triglyceride lipase by EB viral-encoded LMP2A links lipid accumulation to increased migration in nasopharyngeal carcinoma. Mol Oncol 2020; 14:3234-3252. [PMID: 33064888 PMCID: PMC7718958 DOI: 10.1002/1878-0261.12824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Epstein–Barr virus (EBV)‐associated nasopharyngeal carcinoma (NPC) is one of the most common human cancers in South‐East Asia exhibiting typical features of lipid accumulation. EBV‐encoded latent membrane protein 2A (LMP2A) is expressed in most NPCs enhancing migration and invasion. We recently showed an increased accumulation of lipid droplets in NPC, compared with normal nasopharyngeal epithelium. It is important to uncover the mechanism behind this lipid metabolic shift to better understand the pathogenesis of NPC and provide potential therapeutic targets. We show that LMP2A increased lipid accumulation in NPC cells. LMP2A could block lipid degradation by downregulating the lipolytic gene adipose triglycerol lipase (ATGL). This is in contrast to lipid accumulation due to enhanced lipid biosynthesis seen in many cancers. Suppression of ATGL resulted in enhanced migration in vitro, and ATGL was found downregulated in NPC biopsies. The reduced expression level of ATGL correlated with poor overall survival in NPC patients. Our findings reveal a new role of LMP2A in lipid metabolism, correlating with NPC patient survival depending on ATGL downregulation.
Collapse
Affiliation(s)
- Shixing Zheng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,The School of Life Sciences, Baltic Federal University, Kaliningrad, Russia
| | - Xiaoying Zhou
- Scientific Research Center, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Winarno GNA, Hidayat Y, Soetopo S, Krisnadi SR, Tobing MDL, Rauf S. Higher Level of Fatty Acid Synthase Enzyme Predicts Lower Rate of Completing Debulking Surgery in Epithelial Ovarian Cancer. Asian Pac J Cancer Prev 2020; 21:2859-2863. [PMID: 33112541 PMCID: PMC7798157 DOI: 10.31557/apjcp.2020.21.10.2859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/25/2022] Open
Abstract
Background: The most dominant histopathologic type of ovarian cancer is epithelial ovarian cancer (EOC). Primary debulking surgery determines the treatment success and prognosis of advanced stage EOC. To maintain survival and progression, cancer cells need fatty acid synthase enzyme (FASN). The aim of this study was to evaluate preoperative serum FASN and CA 125 as predictors of primary debulking surgery results in patients with EOC. Methods: An observational cross-sectional study was performed on consecutive patients who underwent debulking surgery for suspected ovarian cancer at Dr. Hasan Sadikin Hospital Bandung from 2017 to 2019. Before debulking surgery, blood samples were examined for the serum levels of FASN and CA 125 using ELISA. Results: There were 53 patients enrolled in this study. Compared with the optimal debulking surgery group, the significant suboptimal debulking surgery group had significantly lower mean serum levels of FASN (0.46 ± 0.144 vs. 0.36 ± 0.128, p = 0.012) and CA 125 (964.22 ± 1722.5 vs. 264.98 ± 251.8, p = 0.002). The cutoff value was highest for the combination of FASN and CA 125 [410.06, area under the curve (AUC) = 77.5% (95% CI 65.5% to 81.9%, p = 0.001)] than for FASN alone [0.375, AUC = 71.3% (95% CI 56.8% to 85.8%, p = 0.009)] and CA 125 alone [222.5, AUC = 75.3% (95% CI 62.5% to 88.1%, p =0.002)]. Conclusion: The serum levelof FASN was correlated with suboptimal debulking surgery.
Collapse
Affiliation(s)
| | - Yudi Hidayat
- Department of Obstetrics and Gynecology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Setiawan Soetopo
- Department of Radiology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Sofie Rifayani Krisnadi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | | | - Syahrul Rauf
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hasanuddin University, Makasar, Indonesia
| |
Collapse
|
43
|
Khan A, Aljarbou AN, Aldebasi YH, Allemailem KS, Alsahli MA, Khan S, Alruwetei AM, Khan MA. Fatty Acid Synthase (FASN) siRNA-Encapsulated-Her-2 Targeted Fab'-Immunoliposomes for Gene Silencing in Breast Cancer Cells. Int J Nanomedicine 2020; 15:5575-5589. [PMID: 32801705 PMCID: PMC7415462 DOI: 10.2147/ijn.s256022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The overexpression of Her-2 in 25–30% breast cancer cases and the crosstalk between Her-2 and fatty acid synthase (FASN) establishes Her-2 as a promising target for site-directed delivery. The present study aimed to develop the novel lipid base formulations to target and inhibit the cellular proliferation of Her-2-expressing breast cancer cells through the silencing of FASN. In order to achieve this goal, we prepared DSPC/Chol and DOPE/CHEMS immunoliposomes, conjugated with the anti-Her-2 fab’ and encapsulated FASN siRNA against breast cancer cells. Methods We evaluated the size, stability, cellular uptake and internalization of various formulations of liposomes. The antiproliferative gene silencing potential was investigated by the cell cytotoxicity, crystal violet, wound healing and Western blot analyses in Her-2+ and Her-2¯ breast cancer cells. Results The data revealed that both nanosized FASN-siRNA-encapsulated liposomes showed significantly higher cellular uptake and internalization with enhanced stability. The cell viability of Her-2+ SK-BR3 cells treated with the targeted formulation of DSPC/Chol- and DOPE/CHEMS-encapsulating FASN-siRNA reduced to 30% and 20%, respectively, whereas it was found to be 45% and 36% in MCF-7 cells. The wounds were not only failed to close but they became broader in Her-2+ cells treated with targeted liposomes of siRNA. Consequently, the amount of FASN decreased by 80% in SK-BR3 cells treated with non-targeted liposomes and it was 30% and 60% in the MCF-7 cells treated with DSPC/Chol and DOPE/CHEMS liposomes, respectively. Conclusion In this study, we developed the formulation that targeted Her-2 for the suppression of FASN and, therefore, inhibited the proliferation of breast cancer cells.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Ahmed N Aljarbou
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Yousef H Aldebasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Shamshir Khan
- Dentistry and Pharmacy College, Buraydah Private Colleges, Al-Qassim, Buraydah, Saudi Arabia
| | - Abdulmohsen M Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Al-Qassim, Buraydah, Saudi Arabia
| |
Collapse
|
44
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
45
|
Winarno GNA, Hidayat YM, Soetopo S, Krisnadi SR, Tobing MDL, Rauf S. The role of CA-125, GLS and FASN in predicting cytoreduction for epithelial ovarian cancers. BMC Res Notes 2020; 13:346. [PMID: 32698888 PMCID: PMC7376706 DOI: 10.1186/s13104-020-05188-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Cytoreduction has an important role in improving the survival rate of epithelial ovarian cancer (EOC) patients. This study aimed to assess the ability of preoperative serum CA125, FASN and GLS as predictors of cytoreductive surgery for epithelial ovarian cancer (EOC). RESULTS The average values of serum CA-125, FASN, and GLS in the suboptimal cytoreduction group were higher than those in optimal cytoreduction group. The cut off point (COP) was 248.55 (p = 0.0001) with 73.2% sensitivity and 73.6% specificity for CA-125, 0.445 (p = 0.017) with 62.5% sensitivity and 60.4% specificity for FASN, and 22.895 (p = 0.0001) with 73.2% sensitivity and 75.5% specificity for GLS. The COP of CA-125 and GLS combined was 29.16 (p = 0.0001) with sensitivity 82.1% and specificity 73.6%, while the COP of CA-125, GLS, and FASN combined was 0.83 (p = 0.0001) with 87.5% sensitivity and 73.6% specificity.
Collapse
Affiliation(s)
- G N A Winarno
- Department of Obstetrics and Gynecology, Faculty of Medicine, Padjadjaran University, Jl Pasteur No.38, Bandung, Indonesia.
| | - Y M Hidayat
- Department of Obstetrics and Gynecology, Faculty of Medicine, Padjadjaran University, Jl Pasteur No.38, Bandung, Indonesia
| | - S Soetopo
- Department of Radiology, Faculty of Medicine, Padjadjaran University, Jl Pasteur No.38, Bandung, Indonesia
| | - S R Krisnadi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Padjadjaran University, Jl Pasteur No.38, Bandung, Indonesia
| | - M D L Tobing
- Department of Obstetrics and Gynecology, Faculty of Medicine, Padjadjaran University, Jl Pasteur No.38, Bandung, Indonesia
| | - S Rauf
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hasanuddin University, Jl. Perintis Kemerdekaan KM. 10, Makasar, Indonesia
| |
Collapse
|
46
|
Gonzalez-Salinas F, Rojo R, Martinez-Amador C, Herrera-Gamboa J, Trevino V. Transcriptomic and cellular analyses of CRISPR/Cas9-mediated edition of FASN show inhibition of aggressive characteristics in breast cancer cells. Biochem Biophys Res Commun 2020; 529:321-327. [PMID: 32703430 DOI: 10.1016/j.bbrc.2020.05.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/24/2020] [Indexed: 12/24/2022]
Abstract
Several genes are significantly mutated in breast cancer but only a small percentage of mutations are well-known to contribute to cancer development. FASN is involved in de novo lipogenesis and the regulation of ERα signaling. However, the effect of genetic mutations affecting FASN in breast cancer has not thoroughly studied. Therefore, we used the CRISPR/Cas9 system to edit the FASN locus in MCF-7 cells and evaluated its biological effect. We obtained four clones carrying mutations and frameshifts in the acyl-transferase domain of FASN. We found that clones had reduced proliferation, migration, viability, and showed alterations in cell cycle profiles. RNA-Seq analysis demonstrates that a lack of fully functional FASN may have a more significant role in proliferation-related genes than in lipid metabolism. We conclude that functional knockouts in FASN contributes to decrease the proliferation and migration of breast cancer cells contrary to point mutations in breast cancer patients.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, Nuevo León, 64710, Mexico
| | - Rocio Rojo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, Nuevo León, 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, Nuevo León, 64710, Mexico
| | - Jessica Herrera-Gamboa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, Nuevo León, 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, Nuevo León, 64710, Mexico.
| |
Collapse
|
47
|
Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics 2020; 10:7053-7069. [PMID: 32641978 PMCID: PMC7330842 DOI: 10.7150/thno.41388] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids, the basic components of the cell membrane, execute fundamental roles in almost all the cell activities including cell-cell recognition, signalling transduction and energy supplies. Lipid metabolism is elementary for life sustentation that balances activity between synthesis and degradation. An accumulating amount of data has indicated abnormal lipid metabolism in cancer stem cells (CSCs), and that the alteration of lipid metabolism exerts a great impact on CSCs' properties such as the capability of self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. CSCs' formation and maintenance cannot do without the regulation of fatty acids and cholesterol. In normal cells and embryonic development, fatty acids and cholesterol metabolism are regulated by some important signalling pathways (such as Hedgehog, Notch, Wnt signalling pathways); these signalling pathways also play crucial roles in initiating and/or maintaining CSCs' properties, and such signalling is shown to be commonly modulated by the abnormal lipid metabolism in CSCs; on the other hand, the altered lipid metabolism in turn modifies the cell signalling and generates additional impacts on CSCs. Metabolic rewiring is considered as an ideal hallmark of CSCs, and metabolic alterations would be promising therapeutic targets of CSCs for aggressive tumors. In this review, we summarize the most updated findings of lipid metabolic abnormalities in CSCs and prospect the potential applications of targeting lipid metabolism for anticancer treatment.
Collapse
|
48
|
Ghoneum A, Gonzalez D, Abdulfattah AY, Said N. Metabolic Plasticity in Ovarian Cancer Stem Cells. Cancers (Basel) 2020; 12:E1267. [PMID: 32429566 PMCID: PMC7281273 DOI: 10.3390/cancers12051267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian Cancer is the fifth most common cancer in females and remains the most lethal gynecological malignancy as most patients are diagnosed at late stages of the disease. Despite initial responses to therapy, recurrence of chemo-resistant disease is common. The presence of residual cancer stem cells (CSCs) with the unique ability to adapt to several metabolic and signaling pathways represents a major challenge in developing novel targeted therapies. The objective of this study is to investigate the transcripts of putative ovarian cancer stem cell (OCSC) markers in correlation with transcripts of receptors, transporters, and enzymes of the energy generating metabolic pathways involved in high grade serous ovarian cancer (HGSOC). We conducted correlative analysis in data downloaded from The Cancer Genome Atlas (TCGA), studies of experimental OCSCs and their parental lines from Gene Expression Omnibus (GEO), and Cancer Cell Line Encyclopedia (CCLE). We found positive correlations between the transcripts of OCSC markers, specifically CD44, and glycolytic markers. TCGA datasets revealed that NOTCH1, CD133, CD44, CD24, and ALDH1A1, positively and significantly correlated with tricarboxylic acid cycle (TCA) enzymes. OVCAR3-OCSCs (cancer stem cells derived from a well-established epithelial ovarian cancer cell line) exhibited enrichment of the electron transport chain (ETC) mainly in complexes I, III, IV, and V, further supporting reliance on the oxidative phosphorylation (OXPHOS) phenotype. OVCAR3-OCSCs also exhibited significant increase in CD36, ACACA, SCD, and CPT1A, with CD44, CD133, and ALDH1A1 exhibiting positive correlations with lipid metabolic enzymes. TCGA data show positive correlations between OCSC markers and glutamine metabolism enzymes, whereas in OCSC experimental models of GSE64999, GSE28799, and CCLE, the number of positive and negative correlations observed was significantly lower and was different between model systems. Appropriate integration and validation of data model systems with those in patients' specimens is needed not only to bridge our knowledge gap of metabolic programing of OCSCs, but also in designing novel strategies to target the metabolic plasticity of dormant, resistant, and CSCs.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
- Faculty of Medicine, University of Alexandria, Alexandria 21131, Egypt
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; (A.G.); (D.G.); (A.Y.A.)
- Departments of Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
| |
Collapse
|
49
|
Expression of HER2 and EGFR Proteins in Advanced Stage High-grade Serous Ovarian Tumors Show Mutual Exclusivity. Int J Gynecol Pathol 2020; 40:49-55. [DOI: 10.1097/pgp.0000000000000678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Feng WW, Kurokawa M. Lipid metabolic reprogramming as an emerging mechanism of resistance to kinase inhibitors in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3. [PMID: 32226926 PMCID: PMC7100881 DOI: 10.20517/cdr.2019.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is one of the leading causes of death in women in the United States. In general, patients with breast cancer undergo surgical resection of the tumor and/or receive drug treatment to kill or suppress the growth of cancer cells. In this regard, small molecule kinase inhibitors serve as an important class of drugs used in clinical and research settings. However, the development of resistance to these compounds, in particular HER2 and CDK4/6 inhibitors, often limits durable clinical responses to therapy. Emerging evidence indicates that PI3K/AKT/mTOR pathway hyperactivation is one of the most prominent mechanisms of resistance to many small molecule inhibitors as it bypasses upstream growth factor receptor inhibition. Importantly, the PI3K/AKT/mTOR pathway also plays a pertinent role in regulating various aspects of cancer metabolism. Recent studies from our lab and others have demonstrated that altered lipid metabolism mediates the development of acquired drug resistance to HER2-targeted therapies in breast cancer, raising an interesting link between reprogrammed kinase signaling and lipid metabolism. It appears that, upon development of resistance to HER2 inhibitors, breast cancer cells rewire lipid metabolism to somehow circumvent the inhibition of kinase signaling. Here, we review various mechanisms of resistance observed for kinase inhibitors and discuss lipid metabolism as a potential therapeutic target to overcome acquired drug resistance.
Collapse
Affiliation(s)
- William W Feng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Manabu Kurokawa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|