1
|
Zhao Y, Lei P, Zhao H, Luo R, Li G, Di J, Wen L, He Z, Tan D, Meng F, Huang F. Physiological, biochemical, and transcriptomic alterations in Castor (Ricinus communis L.) under polyethylene glycol-induced oxidative stress. BMC PLANT BIOLOGY 2024; 24:973. [PMID: 39415088 PMCID: PMC11484386 DOI: 10.1186/s12870-024-05691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Castor is an important industrial raw material. Drought-induced oxidative stress leads to slow growth and decreased yields in castor. However, the mechanisms of drought-induced oxidative stress in castor remain unclear. Therefore, in this study, physiological, biochemical, and RNA-seq analyses were conducted on the roots of castor plants under PEG-6000 stress for 3 d and 7 d followed by 4 d of hydration. RESULTS The photosynthetic rate of castor leaves was inhibited under PEG-6000 stress for 3 and 7 d. Biochemical analysis of castor roots stressed for 3 d and 7 d, and rehydrated for 4 d revealed that the activities of APX and CAT were highest after only 3 d of stress, whereas the activities of POD, GR, and SOD peaked after 7 d of stress. RNA-seq analysis revealed 2926, 1507, and 111 differentially expressed genes (DEGs) in the roots of castor plants under PEG-6000 stress for 3 d and 7 d and after 4 d of rehydration, respectively. GO analysis of the DEGs indicated significant enrichment in antioxidant activity. Furthermore, KEGG enrichment analysis of the DEGs revealed significantly enriched metabolic pathways, including glutathione metabolism, fatty acid metabolism, and plant hormone signal transduction. WGCNA identified the core genes PP2C39 and GA2ox4 in the navajowhite1 module, which was upregulated under PEG-6000 stress. On the basis of these results, we propose a model for the response to drought-induced oxidative stress in castor. CONCLUSIONS This study provides valuable antioxidant gene resources, deepening our understanding of antioxidant regulation and paving the way for further molecular breeding of castor plants.
Collapse
Affiliation(s)
- Yong Zhao
- College of Life Science, Baicheng Normal University, Baicheng, 137000, China
| | - Pei Lei
- College of Forestry and Grassland Science, Jilin Agricultural University, Jilin, 130118, China
| | - Huibo Zhao
- College of Life Science and Food, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Rui Luo
- College of Life Science and Food, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Guorui Li
- College of Life Science and Food, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Jianjun Di
- College of Life Science and Food, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Li Wen
- College of Life Science, Baicheng Normal University, Baicheng, 137000, China
| | - Zhibiao He
- Tongliao Agricultural Science Research Institute, Tongliao, 028043, China
| | - Deyun Tan
- Zibo Agricultural Science Research Institute, Zibo, 255000, China
| | - Fanjuan Meng
- College of Forestry and Grassland Science, Jilin Agricultural University, Jilin, 130118, China.
| | - Fenglan Huang
- College of Life Science and Food, Inner Mongolia Minzu University, Tongliao, 028000, China.
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Inner Mongolia Minzu University, Tongliao, 028043, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Inner Mongolia Minzu University, Tongliao, 028043, China.
- Inner Mongolia Key Laboratory of Castor Breeding and Comprehensive Utilization, Inner Mongolia Minzu University, Tongliao, 028000, China.
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, 028000, China.
| |
Collapse
|
2
|
Li Y, Bai J, Tseng K, Zhang X, Zhang L, Zhang J, Sun W, Guo Y. Intramolecular Ring-Chain Equilibrium Elimination Strategy for Pinpointing C═C Positional and Geometric Isomers of N-Alkylpyridinium Unsaturated Fatty Acid Derivatives via Ion Mobility-Mass Spectrometry. Anal Chem 2024; 96:1977-1984. [PMID: 38258619 DOI: 10.1021/acs.analchem.3c04320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Free unsaturated fatty acids (UFA) are key intermediates of lipid metabolism and participate in many metabolic pathways with specific biological functions. Although various fragmentation-based methods for pinpointing C═C locations in UFA were developed, the current mass spectrometry methods are difficult to simultaneously differentiate geometric isomers and positional isomers in trace samples due to low ionization efficiency, low conversion, and low resolution. Herein, an intramolecular ring-chain equilibrium elimination strategy via 4-plex stable isotope labeling dual derivatization-assisted ion mobility-mass spectrometry was developed, thereby one-pot specifically labeling C═C and carboxyl groups among the trace and unstable UFA with high sensitivity, high efficiency, and good substrate generality. It achieved fast separation of both C═C positional and geometric isomers with high resolution, which benefited from eliminating the intramolecular ring-chain equilibrium by suppressing the formation of salt bridges between free carboxyl groups and pyridine cations. 4-plex stable isotope labeling reagents showed similar reactivity, enabling high-throughput quantitative analysis of omics. This method was successfully applied for accurate and rapid identification of the UFA composition in olive oil extract. These results suggest that the developed method provides new insight for rapid characterization of UFA C═C positional and geometric isomers in complex samples to explore disease biomarkers and food quality control indicators.
Collapse
Affiliation(s)
- Yuling Li
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kuofeng Tseng
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Li Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co. Ltd., Shanghai 201206, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Qi X, Zhang Y, Zhang L, Yue D. Bioinspired Sustainable Polymer with Stereochemistry-Controllable Thermomechanical Properties. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xin Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029, PR China
| | - Yingdong Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029, PR China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029, PR China
| | - Dongmei Yue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029, PR China
| |
Collapse
|
4
|
Waehler R. Fatty acids: facts vs. fiction. INT J VITAM NUTR RES 2021:1-21. [PMID: 34041926 DOI: 10.1024/0300-9831/a000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the last 100 years official dietary guidelines have recommended an increased consumption of fats derived from seeds while decreasing the consumption of traditional fats, especially saturated fats. These recommendations are being challenged by recent studies. Furthermore, the increased use of refining processes in fat production had deleterious health effects. Today, the number of high-quality studies on fatty acids is large enough to make useful recommendations on clinical application and everyday practice. Saturated fats have many beneficial functions and palmitic acid appears to be problematic only when it is synthesized due to excess fructose consumption. Trans fatty acids were shown to be harmful when they are manmade but beneficial when of natural origin. Conjugated linoleic acid has many benefits but the isomer mix that is available in supplement form differs from its natural origin and may better be avoided. The ω3 fatty acid linolenic acid has rather limited use as an anti-inflammatory agent - a fact that is frequently overlooked. On the other hand, the targeted use of long chain ω3 fatty acids based on blood analysis has great potential to supplement or even be an alternative to various pharmacological therapies. At the same time ω6 fatty acids like linoleic acid and arachidonic acid have important physiological functions and should not be avoided but their consumption needs to be balanced with long chain ω3 fatty acids. The quality and quantity of these fats together with appropriate antioxidative protection are critical for their positive health effects.
Collapse
|
5
|
The Combination of Whole Cell Lipidomics Analysis and Single Cell Confocal Imaging of Fluidity and Micropolarity Provides Insight into Stress-Induced Lipid Turnover in Subcellular Organelles of Pancreatic Beta Cells. Molecules 2019; 24:molecules24203742. [PMID: 31627330 PMCID: PMC6833103 DOI: 10.3390/molecules24203742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Modern omics techniques reveal molecular structures and cellular networks of tissues and cells in unprecedented detail. Recent advances in single cell analysis have further revolutionized all disciplines in cellular and molecular biology. These methods have also been employed in current investigations on the structure and function of insulin secreting beta cells under normal and pathological conditions that lead to an impaired glucose tolerance and type 2 diabetes. Proteomic and transcriptomic analyses have pointed to significant alterations in protein expression and function in beta cells exposed to diabetes like conditions (e.g., high glucose and/or saturated fatty acids levels). These nutritional overload stressful conditions are often defined as glucolipotoxic due to the progressive damage they cause to the cells. Our recent studies on the rat insulinoma-derived INS-1E beta cell line point to differential effects of such conditions in the phospholipid bilayers in beta cells. This review focuses on confocal microscopy-based detection of these profound alterations in the plasma membrane and membranes of insulin granules and lipid droplets in single beta cells under such nutritional load conditions.
Collapse
|
6
|
Baba T, Campbell JL, Le Blanc JCY, Baker PRS. Distinguishing Cis and Trans Isomers in Intact Complex Lipids Using Electron Impact Excitation of Ions from Organics Mass Spectrometry. Anal Chem 2017; 89:7307-7315. [PMID: 28613874 DOI: 10.1021/acs.analchem.6b04734] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present a mass spectrometry-based method for the identification of cis and trans double-bond isomers within intact complex lipid mixtures using electron impact excitation of ions from organics (EIEIO) mass spectrometry. EIEIO involves irradiating singly charged lipid ions with electrons having kinetic energies of 5-16 eV. The resulting EIEIO spectra can be used to discern cis and trans double-bond isomers by virtue of the differences in the fragmentation patterns at the carbon-carbon single bonds neighboring the double bonds. For trans double bonds, these characteristic fragments include unique closed-shell and open-shell (radical) products. To explain this fragmentation pattern in trans double bonds, we have proposed a reaction mechanism involving excitation of the double bond's π electrons followed by hydrogen atom rearrangement. Several lipid standards were analyzed using the EIEIO method, including mixtures of these standards. Prior to EIEIO, some of the lipid species in these mixtures were separated from their isomeric forms by using differential mobility spectrometry (DMS). For example, mixed cis and trans forms of triacylglycerols and phosphatidylcholines were identified by this DMS-EIEIO workflow. With this combined gas-phase separation and subsequent fragmentation, we could eliminate the need for authentic standards for identification. When DMS could not separate cis and trans isomers completely, as was the case with sphingomyelins, we relied upon the aforementioned diagnostic EIEIO fragment peaks to determine the relative contribution of the trans double-bond isomer in the mixed samples. We also applied the DMS-EIEIO methodology to natural samples extracted from a ruminant (bovine), which serve as common origins of trans fatty acids in a typical Western diet that includes dairy products.
Collapse
Affiliation(s)
- Takashi Baba
- SCIEX , 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada
| | | | | | - Paul R S Baker
- SCIEX , 1201 Radio Road, Redwood Shores, California 64065, United States
| |
Collapse
|
7
|
Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016; 49:49-77. [PMID: 27012748 DOI: 10.1016/j.mam.2016.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.
Collapse
|
8
|
Hsu BY, Hung WL, Ho CT, Cheng IH, Hwang LS. Protective effects of sesamol and ferulic acid on the formation of endogenous trans-arachidonic acid in hAPP J20 mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Schmidt A, Hilt G. Unprecedented Cobalt-Catalyzed Isomerization Reactions to Single Skipped 2,4,7-Trienes Applied in the Synthesis of Urushiol. Chem Asian J 2014; 9:2407-10. [DOI: 10.1002/asia.201402323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Indexed: 01/03/2023]
|
10
|
Affiliation(s)
- Fabrice Dénès
- Laboratoire CEISAM UMR CNRS 6230 - UFR des Sciences et Techniques, Université de Nantes , 2 rue de la Houssinière, BP 92208 - 44322 Nantes Cedex 3, France
| | | | | | | |
Collapse
|
11
|
Chatgilialoglu C, Ferreri C, Melchiorre M, Sansone A, Torreggiani A. Lipid geometrical isomerism: from chemistry to biology and diagnostics. Chem Rev 2013; 114:255-84. [PMID: 24050531 DOI: 10.1021/cr4002287] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Bird SS, Marur VR, Stavrovskaya IG, Kristal BS. Separation of cis-trans phospholipid isomers using reversed phase LC with high resolution MS detection. Anal Chem 2012; 84:5509-17. [PMID: 22656324 PMCID: PMC3397781 DOI: 10.1021/ac300953j] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increased presence of synthetic trans fatty acids into western diets has been shown to have deleterious effects on physiology and raising an individual's risk of developing metabolic disease, cardiovascular disease, and stroke. The importance of these fatty acids for health and the diversity of their (patho) physiological effects suggest that not only should the free trans fatty acids be studied but also monitoring the presence of these fats into the side chains of biological lipids, such as glycerophospholipids, is also essential. We developed a high resolution LC-MS method that quantitatively monitors the major lipid classes found in biospecimens in an efficient, sensitive, and robust manner while also characterizing individual lipid side chains through the use of high energy collisional dissociation (HCD) fragmentation and chromatographic alignment. We herein show how this previously described reversed phase method can baseline separate the cis-trans isomers of phosphatidylglycerol and phosphatidylcholine (PC) with two 18:1 side chains, in both positive and negative mode, as neat solutions and when spiked into a biological matrix. Endogenous PC (18:1/18:1)-cis and PC (18:1/18:1)-trans isomers were examined in mitochondrial and serum profiling studies, where rats were fed diets enriched in either trans 18:1 fatty acids or cis 18:1 fatty acids. In this study, we determined the cis:trans isomer ratios of PC (18:1/18:1) and related this ratio to dietary composition. This generalized LC-MS method enables the monitoring of trans fats in biological lipids in the context of a nontargeted method, allowing for relative quantitation and enhanced identification of unknown lipids in complex matrixes.
Collapse
Affiliation(s)
- Susan S. Bird
- Department of Neurosurgery, Brigham and Women’s Hospital and, Department of Surgery, Harvard Medical School, 221 Longwood Avenue, LMRC-322, Boston, Massachusetts 02115
| | - Vasant R. Marur
- Department of Neurosurgery, Brigham and Women’s Hospital and, Department of Surgery, Harvard Medical School, 221 Longwood Avenue, LMRC-322, Boston, Massachusetts 02115
| | - Irina G. Stavrovskaya
- Department of Neurosurgery, Brigham and Women’s Hospital and, Department of Surgery, Harvard Medical School, 221 Longwood Avenue, LMRC-322, Boston, Massachusetts 02115
| | - Bruce S. Kristal
- Department of Neurosurgery, Brigham and Women’s Hospital and, Department of Surgery, Harvard Medical School, 221 Longwood Avenue, LMRC-322, Boston, Massachusetts 02115
| |
Collapse
|
13
|
Tuo Y, Feng DD, Wang DF, Sun J, Li SB, Chen C. Long-term in vitro treatment of INS-1 rat pancreatic β-cells by unsaturated free fatty acids protects cells against gluco- and lipotoxicities via activation of GPR40 receptors. Clin Exp Pharmacol Physiol 2012; 39:423-8. [DOI: 10.1111/j.1440-1681.2012.05691.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Dan Dan Feng
- Department of Physiology; Xiang Ya Medical School; Central South University; Changsha; China
| | | | - Jian Sun
- School of Biomedical Sciences; The University of Queensland; Brisbane; Queensland; Australia
| | - Sheng-Bin Li
- Department of Forensic Science; School of Medicine; Xi'an Jiaotong University; Xi'an; China
| | - Chen Chen
- School of Biomedical Sciences; The University of Queensland; Brisbane; Queensland; Australia
| |
Collapse
|
14
|
Pünner F, Schmidt A, Hilt G. Up the Hill: Selective Double-Bond Isomerization of Terminal 1,3-Dienes towards Z-1,3-Dienes or 2Z,4E-Dienes. Angew Chem Int Ed Engl 2011; 51:1270-3. [DOI: 10.1002/anie.201107512] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Indexed: 11/11/2022]
|
15
|
Pünner F, Schmidt A, Hilt G. Up the Hill: Selektive Doppelbindungsisomerisierung von terminalen 1,3-Dienen zu Z-1,3-Dienen oder 2Z,4E-Dienen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201107512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
El-Agamey A, Fukuzumi S, Naqvi KR, McGarvey DJ. Kinetic studies of retinol addition radicals. Org Biomol Chem 2011; 9:1459-65. [DOI: 10.1039/c0ob00799d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Enhancement of antibody synthesis in rats by feeding cis-9,trans-11 conjugated linoleic acid during early life. J Nutr Biochem 2010; 22:495-501. [PMID: 20688497 DOI: 10.1016/j.jnutbio.2010.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/30/2010] [Accepted: 04/07/2010] [Indexed: 11/20/2022]
Abstract
Previous studies have demonstrated that the intake of a 1% conjugated linoleic acid (CLA) diet in an 80:20 mixture of cis-9,trans-11 and trans-10,cis-12 exerts age-specific effects on the immune system: immunoglobulin enhancement and proliferative down-modulation in neonatal and adult rats, respectively. The present study evaluates the influence of the same diet on antibody synthesis of early infant Wistar rats during suckling and/or after weaning. Dietary supplementation was performed during suckling and early infancy (4 weeks), only during suckling (3 weeks), or only in early infancy (1 week). CLA content in plasma and serum immunoglobulin (Ig) G, IgM and IgA concentration were determined. Proliferation, cytokines and Ig production were evaluated on isolated splenocytes. Cis-9,trans-11- and trans-10,cis-12-CLA isomers were detected in the plasma of all CLA-supplemented animals, and the highest content was quantified in those rats supplemented over the longest period. These rats also exhibited higher concentrations of serum IgG, IgM and IgA. Moreover, splenocytes from CLA-supplemented rats showed the highest IgM and IgG synthesis and interleukin (IL)-6 production, whereas their proliferative ability was lower. In summary, in infant rats, we observed both the enhance antibody synthesis previously reported in neonates, and the reduced lymphoproliferation previously reported in adults.
Collapse
|
18
|
Abstract
The association between trans-fatty acids (TFA) and cancer risk is poorly understood and remains controversial. It is recognised that unique biological effects are associated with specific isoforms within families of fatty acids such as those belonging to the n-3 fatty acids. Furthermore, the interactions between diet and genetic polymorphisms are increasingly recognised for their potential risk-modifying effects on human health and disease. Therefore, the aim of the present review is to evaluate whether specific TFA isomers and genetic polymorphisms differentially modify cancer risk in prostate, colon and breast cancers in animal and human models. Potential mechanisms of action by which TFA may affect cancer development are also reviewed. Overall, across a number of experimental models and human studies, there is insufficient and inconsistent evidence linking specific TFA isomers to cancers of the prostate, colon and breast. A number of methodological limitations and experimental considerations were identified which may explain the inconsistencies observed across these studies. Therefore, further research is warranted to accurately assess the relationship between TFA and cancer risk.
Collapse
|
19
|
Webster GT, de Villiers KA, Egan TJ, Deed S, Tilley L, Tobin MJ, Bambery KR, McNaughton D, Wood BR. Discriminating the intraerythrocytic lifecycle stages of the malaria parasite using synchrotron FT-IR microspectroscopy and an artificial neural network. Anal Chem 2009; 81:2516-24. [PMID: 19278236 DOI: 10.1021/ac802291a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synchrotron Fourier transform infrared (FT-IR) spectra of fixed single erythrocytes infected with Plasmodium falciparum at different stages of the intraerythrocytic cycle are presented for the first time. Bands assigned to the hemozoin moiety at 1712, 1664, and 1209 cm(-1) are observed in FT-IR difference spectra between uninfected erythrocytes and infected trophozoites. These bands are also found to be important contributors in separating the trophozoite spectra from the uninfected cell spectra in principal components analysis. All stages of the intraerythrocytic lifecycle of the malarial parasite, including the ring and schizont stage, can be differentiated by visual inspection of the C-H stretching region (3100-2800 cm(-1)) and by using principal components analysis. Bands at 2922, 2852, and 1738 cm(-1) assigned to the nu(asym)(CH(2) acyl chain lipids), nu(sym)(CH(2) acyl chain lipids), and the ester carbonyl band, respectively, increase as the parasite matures from its early ring stage to the trophozoite and finally to the schizont stage. Training of an artificial neural network showed that excellent automated spectroscopic discrimination between P. falciparum-infected cells and the control cells is possible. FT-IR difference spectra indicate a change in the production of unsaturated fatty acids as the parasite matures. The ring stage spectrum shows bands associated with cis unsaturated fatty acids. The schizont stage spectrum displays no evidence of cis bands and suggests an increase in saturated fatty acids. These results demonstrate that different phases of the P. falciparum intraerthyrocytic life cycle are characterized by different lipid compositions giving rise to distinct spectral profiles in the C-H stretching region. This insight paves the way for an automated infrared-based technology capable of diagnosing malaria at all intraerythrocytic stages of the parasite's life cycle.
Collapse
Affiliation(s)
- Grant T Webster
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Houée-Levin C, Bergès J. Single electron localisation on the cystine/cysteine couple: sulphur or carbon? RESEARCH ON CHEMICAL INTERMEDIATES 2009. [DOI: 10.1007/s11164-009-0041-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Ferreri C, Chatgilialoglu C. Membrane lipidomics and the geometry of unsaturated fatty acids from biomimetic models to biological consequences. Methods Mol Biol 2009; 579:391-411. [PMID: 19763487 DOI: 10.1007/978-1-60761-322-0_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the last decades, free radical processes delineated an interdisciplinary field linking chemistry to biology and medicine. Free radical mechanisms became of importance as molecular basis of physiological and pathological conditions. Lipids, in particular, unsaturated fatty acids, are susceptible of free radical attack. The reactivity of the double bond toward free radicals is well known, in particular the reversible addition of radical species to this functionality determines the cis-trans double bond isomerization. Since the prevalent geometry displayed by unsaturated fatty acids in eukaryotes is cis, the occurrence of the cis-trans isomerization by free radicals corresponds to the loss of an important structural information linked to biological activity. The formation of trans isomers can have important meaning and consequences connected to radical stress. Free radical isomerization of membrane fatty acids has been the subject of research coupling the top-down approach by model studies, such as biomimetic chemistry in liposomes, with the bottom-up approach dealing with the examination of cell membrane lipidome in living systems under several physiopathological conditions. Methodologies and molecular libraries have been settled, for both liposome experiments and the examination of the radical stress in biological membranes. This chapter will give an overview of the current procedures used for liposome models and the cis-trans isomerization experiments, in order to build-up a library of trans geometrical fatty acid isomers.
Collapse
Affiliation(s)
- Carla Ferreri
- ISOF-BioFree Radicals, Consiglio Nazionale delle Riceriche, Bologna, Italy
| | | |
Collapse
|