1
|
Ahmed SM, Elkhenany HA, Ahmed TA, Ghoneim NI, Elkodous MA, Mohamed RH, Magdeldin S, Osama A, Anwar AM, Gabr MM, El-Badri N. Diabetic microenvironment deteriorates the regenerative capacities of adipose mesenchymal stromal cells. Diabetol Metab Syndr 2024; 16:131. [PMID: 38880916 PMCID: PMC11181634 DOI: 10.1186/s13098-024-01365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Type 2 diabetes is an endocrine disorder characterized by compromised insulin sensitivity that eventually leads to overt disease. Adipose stem cells (ASCs) showed promising potency in improving type 2 diabetes and its complications through their immunomodulatory and differentiation capabilities. However, the hyperglycaemia of the diabetic microenvironment may exert a detrimental effect on the functionality of ASCs. Herein, we investigate ASC homeostasis and regenerative potential in the diabetic milieu. METHODS We conducted data collection and functional enrichment analysis to investigate the differential gene expression profile of MSCs in the diabetic microenvironment. Next, ASCs were cultured in a medium containing diabetic serum (DS) or normal non-diabetic serum (NS) for six days and one-month periods. Proteomic analysis was carried out, and ASCs were then evaluated for apoptosis, changes in the expression of surface markers and DNA repair genes, intracellular oxidative stress, and differentiation capacity. The crosstalk between the ASCs and the diabetic microenvironment was determined by the expression of pro and anti-inflammatory cytokines and cytokine receptors. RESULTS The enrichment of MSCs differentially expressed genes in diabetes points to an alteration in oxidative stress regulating pathways in MSCs. Next, proteomic analysis of ASCs in DS revealed differentially expressed proteins that are related to enhanced cellular apoptosis, DNA damage and oxidative stress, altered immunomodulatory and differentiation potential. Our experiments confirmed these data and showed that ASCs cultured in DS suffered apoptosis, intracellular oxidative stress, and defective DNA repair. Under diabetic conditions, ASCs also showed compromised osteogenic, adipogenic, and angiogenic differentiation capacities. Both pro- and anti-inflammatory cytokine expression were significantly altered by culture of ASCs in DS denoting defective immunomodulatory potential. Interestingly, ASCs showed induction of antioxidative stress genes and proteins such as SIRT1, TERF1, Clusterin and PKM2. CONCLUSION We propose that this deterioration in the regenerative function of ASCs is partially mediated by the induced oxidative stress and the diabetic inflammatory milieu. The induction of antioxidative stress factors in ASCs may indicate an adaptation mechanism to the increased oxidative stress in the diabetic microenvironment.
Collapse
Affiliation(s)
- Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Hoda A Elkhenany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
- Department of surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Mohamed Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Rania Hassan Mohamed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomic and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Aya Osama
- Proteomic and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Ali Mostafa Anwar
- Proteomic and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt.
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, Giza 12588, 6th of October City, Egypt.
| |
Collapse
|
2
|
Kim DJ, Hahn HM, Youn YN, Lee JS, Lee IJ, Lim SH. Adipose Derived Stromal Vascular Fraction and Mesenchymal Stem Cells Improve Angiogenesis in a Rat Hindlimb Ischaemia Model. Eur J Vasc Endovasc Surg 2024; 67:828-837. [PMID: 37995961 DOI: 10.1016/j.ejvs.2023.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of human adipose tissue derived stromal vascular fraction (AD-SVF) and mesenchymal stem cells (AD-MSCs) on blood flow recovery and neovascularisation in a rat hindlimb ischaemia model. METHODS SVF was isolated using an automated centrifugal system, and AD-MSCs were obtained from adherent cultures of SVF cells. Rats were divided into four groups of six rats each: non-ischaemia (Group 1); saline treated ischaemia (Group 2); SVF treated ischaemia (Group 3); and AD-MSC treated ischaemia (Group 4). Unilateral hindlimb ischaemia was induced in Sprague-Dawley rats via femoral artery ligation. Saline, SVF, or AD-MSCs were injected intramuscularly into the adductor muscle intra-operatively. Cell viability was calculated as the percentage of live cells relative to total cell number. Blood flow improvement, muscle fibre injury, and angiogenic properties were validated using thermal imaging and histological assessment. RESULTS The viabilities of SVF and AD-MSCs were 83.3% and 96.7%, respectively. Group 1 exhibited no significant temperature difference between hindlimbs, indicating a lack of blood flow changes. The temperature gradient gradually decreased in SVF and AD-MSC treated rats compared with saline treated rats. In addition, only normal muscle fibres with peripherally located nuclei were observed in Group 1. Groups 3 and 4 exhibited significantly fewer centrally located nuclei, indicating less muscle damage compared with Group 2. Regarding angiogenic properties, CD31 staining of endothelial cells showed similar patterns among all groups, whereas expression of vascular endothelial growth factor, as a crucial angiogenesis factor, was enhanced in the SVF and AD-MSC treated groups. CONCLUSION SVF and AD-MSCs improved blood flow and neovascularisation in a rat hindlimb ischaemia model, suggesting their potential ability to promote angiogenesis. Further extensive research is warranted to explore their potential applications in the treatment of severe lower extremity arterial disease.
Collapse
Affiliation(s)
- Do Jung Kim
- Department of Thoracic and Cardiovascular Surgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, South Korea; Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung Min Hahn
- Department of Plastic and Reconstructive Surgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, South Korea
| | - Young-Nam Youn
- Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun Suk Lee
- Department of Plastic and Reconstructive Surgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, South Korea
| | - Il Jae Lee
- Department of Plastic and Reconstructive Surgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, South Korea
| | - Sang-Hyun Lim
- Department of Thoracic and Cardiovascular Surgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
3
|
Ahmed SM, Nasr MA, Elshenawy SE, Hussein AE, El-Betar AH, Mohamed RH, El-Badri N. BCG vaccination and the risk of COVID 19: A possible correlation. Virology 2022; 565:73-81. [PMID: 34742127 PMCID: PMC8552046 DOI: 10.1016/j.virol.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 01/04/2023]
Abstract
Bacillus Calmette-Guérin (BCG) vaccine is currently used to prevent tuberculosis infection. The vaccine was found to enhance resistance to certain types of infection including positive sense RNA viruses. The current COVID-19 pandemic is caused by positive sense RNA, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A higher mortality rate of COVID-19 patients was reported in countries where BCG vaccination is not routinely administered, when compared to the vaccinated ones. We hypothesized that BCG vaccine may control SARS-CoV2 infection via modulating the monocyte immune response. We analyzed GSE104149 dataset to investigate whether human monocytes of BCG-vaccinated individuals acquire resistance to SARS-CoV-2 infection. Differentially expressed genes obtained from the dataset were used to determine enriched pathways, biological processes, and molecular functions for monocytes post BCG vaccination. Our data show that BCG vaccine promotes a more effective immune response of monocytes against SARS-CoV2, but probably not sufficient to prevent the infection.
Collapse
Affiliation(s)
- Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 12582, 6th of October City, Giza, Egypt
| | - Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 12582, 6th of October City, Giza, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 12582, 6th of October City, Giza, Egypt
| | - Alaa E Hussein
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 12582, 6th of October City, Giza, Egypt
| | - Ahmed H El-Betar
- Department of Urology, Ahmed Maher Teaching Hospital, Cairo, Egypt
| | | | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 12582, 6th of October City, Giza, Egypt.
| |
Collapse
|
4
|
Uzun E, Güney A, Gönen ZB, Özkul Y, Kafadar İH, Günay M, Mutlu M. Intralesional allogeneic adipose-derived stem cells application in chronic diabetic foot ulcer: Phase I/2 safety study. Foot Ankle Surg 2021; 27:636-642. [PMID: 32826167 DOI: 10.1016/j.fas.2020.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Impaired wound healing is a major cause of morbidity in diabetic patients by causing chronic ulcers. This study aimed to investigate the safety and outcomes after intralesional allogeneic adipose-derived mesenchymal stem cells injection in chronic diabetic foot ulcers. METHODS Twenty patients (12 male and eight female) were involved in the study. We randomized the patients into two groups of 10 patients each. The study group was treated with allogeneic adipose-derived mesenchymal stem cells injection with standard diabetic wound care. The control group received only standard diabetic wound care. Patient demographics, wound characteristics, wound closure time, amputation rates and clinical scores were evaluated. RESULTS The mean age was 57.3 ± 6.6 years. The mean follow-up duration was 48.0 (range, 26-50) months. Wound closure was achieved in 17 of 20 lesions (study group, 9 lesions; control group, 8 lesions; respectively). The mean time to wound closure was 31.0 ± 10.7 (range, 22-55) days in the study group, 54.8 + 15.0 (range, 30-78) days in the control group (p = 0.002). In three patients, minor amputations were performed (one patient in study group; two patients in the control group, p = 0.531). There was a significant difference between groups in terms of postoperative Short Form 36- physical functioning (p = 0.017) and Short Form 36-general health (p = 0.010). CONCLUSION Allogeneic adipose-derived mesenchymal stem cells injection was found to be a safe and effective method with a positive contribution to wound-healing time in the treatment of chronic diabetic foot ulcers.
Collapse
Affiliation(s)
- Erdal Uzun
- Department of Orthopedics and Traumatology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Ahmet Güney
- Department of Orthopedics and Traumatology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Zeynep Burçin Gönen
- Oral and Maxillofacial Surgery, Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.
| | - Yusuf Özkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - İbrahim Halil Kafadar
- Department of Orthopedics and Traumatology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Mahmut Günay
- Department of Orthopedics and Traumatology, Kanuni Training and Research Hospital, Trabzon, Turkey.
| | - Mahmut Mutlu
- Department of Orthopedics and Traumatology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
5
|
Zarei F, Abbaszadeh A. Application of Cell Therapy for Anti-Aging Facial Skin. Curr Stem Cell Res Ther 2019; 14:244-248. [PMID: 30421684 DOI: 10.2174/1574888x13666181113113415] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
The human skin undergoes the complex process of aging which is prompted by the interplay of intrinsic mechanisms and extrinsic influences. Aging is unavoidable but can be somewhat delayed. Numerous approaches have been developed to slow down facial skin aging process as it is of interest to stake holders in the beauty and fashion world as well as to plastic surgeons. Adipose-derived stem cell [ADSC] and mesenchymal stem cell [MSC] as potential anti-aging agents to some extent have provided a promising and effective alternative in managing skin and facial skin aging. Furthermore, bone marrow-derived mesenchymal stem cells [BMMSC] have exhibited similar ability to rejuvenate aged skin. This review is aimed at giving a comprehensive account of the application of stem cells especially ADSCs and MSCs to reduce or slow down the rate of facial skin aging process.
Collapse
Affiliation(s)
- Farshad Zarei
- Faculty of Medicine, Department of Surgery, Lorestan University of Medical Science, Khoramabad, Iran
| | - Abolfazl Abbaszadeh
- Faculty of Medicine, Department of Surgery, Lorestan University of Medical Science, Khoramabad, Iran
| |
Collapse
|
6
|
Moon KC, Suh HS, Kim KB, Han SK, Young KW, Lee JW, Kim MH. Potential of Allogeneic Adipose-Derived Stem Cell-Hydrogel Complex for Treating Diabetic Foot Ulcers. Diabetes 2019; 68:837-846. [PMID: 30679183 DOI: 10.2337/db18-0699] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) may hold great promise for treating diabetic wounds. However, it is difficult for a clinician to use MSCs because they have not been commercialized. Meanwhile, a new commercial drug that contains adipose-derived stem cells (ASCs) has been developed. The purpose of this study was to examine the potential of allogeneic ASC sheets for treating diabetic foot ulcers. Fifty-nine patients with diabetic foot ulcers were randomized to either the ASC treatment group (n = 30) or a control group treated with polyurethane film (n = 29). Either an allogeneic ASC sheet or polyurethane film was applied on diabetic wounds weekly. These wounds were evaluated for a maximum of 12 weeks. Complete wound closure was achieved for 73% in the treatment group and 47% in the control group at week 8. Complete wound closure was achieved for 82% in the treatment group and 53% in the control group at week 12. The Kaplan-Meier median times to complete closure were 28.5 and 63.0 days for the treatment group and the control group, respectively. There were no serious adverse events related to allogeneic ASC treatment. Thus, allogeneic ASCs might be effective and safe to treat diabetic foot ulcers.
Collapse
Affiliation(s)
- Kyung-Chul Moon
- Department of Plastic and Reconstructive Surgery, Korea University Guro Hospital, Seoul, South Korea
| | - Hyun-Suk Suh
- Department of Plastic Surgery, Asan Medical Center, Seoul, South Korea
| | - Ki-Bum Kim
- Department of Plastic and Reconstructive Surgery, Korea University Guro Hospital, Seoul, South Korea
| | - Seung-Kyu Han
- Department of Plastic and Reconstructive Surgery, Korea University Guro Hospital, Seoul, South Korea
| | - Ki-Won Young
- Department of Foot and Ankle Surgery, Eulji Medical Center, Seoul, South Korea
| | - Jin-Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
7
|
Balikov DA, Crowder SW, Lee JB, Lee Y, Ko UH, Kang ML, Kim WS, Shin JH, Sung HJ. Aging Donor-Derived Human Mesenchymal Stem Cells Exhibit Reduced Reactive Oxygen Species Loads and Increased Differentiation Potential Following Serial Expansion on a PEG-PCL Copolymer Substrate. Int J Mol Sci 2018; 19:ijms19020359. [PMID: 29370101 PMCID: PMC5855581 DOI: 10.3390/ijms19020359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) have been widely studied for therapeutic development in tissue engineering and regenerative medicine. They can be harvested from human donors via tissue biopsies, such as bone marrow aspiration, and cultured to reach clinically relevant cell numbers. However, an unmet issue lies in the fact that the hMSC donors for regenerative therapies are more likely to be of advanced age. Their stem cells are not as potent compared to those of young donors, and continue to lose healthy, stemness-related activities when the hMSCs are serially passaged in tissue culture plates. Here, we have developed a cheap, scalable, and effective copolymer film to culture hMSCs obtained from aged human donors over several passages without loss of reactive oxygen species (ROS) handling or differentiation capacity. Assays of cell morphology, reactive oxygen species load, and differentiation potential demonstrate the effectiveness of copolymer culture on reduction in senescence-related activities of aging donor-derived hMSCs that could hinder the therapeutic potential of autologous stem cell therapies.
Collapse
Affiliation(s)
- Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Spencer W Crowder
- Department of Materials and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| | - Jung Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Yunki Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Ung Hyun Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Mi-Lan Kang
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Won Shik Kim
- Department of Otorhinolaryngology, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Hak-Joon Sung
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea.
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
8
|
Chen M, Fan H, Ledford BT, Farah Z, Barron C, Liu Z, He JQ. Impacts of femoral artery and vein excision versus femoral artery excision on the hindlimb ischemic model in CD-1 mice. Microvasc Res 2017; 110:48-55. [DOI: 10.1016/j.mvr.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/10/2023]
|
9
|
Crowder SW, Balikov DA, Boire TC, McCormack D, Lee JB, Gupta MK, Skala MC, Sung HJ. Copolymer-Mediated Cell Aggregation Promotes a Proangiogenic Stem Cell Phenotype In Vitro and In Vivo. Adv Healthc Mater 2016; 5:2866-2871. [PMID: 27717208 PMCID: PMC5152909 DOI: 10.1002/adhm.201600819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/19/2016] [Indexed: 12/31/2022]
Abstract
Material-induced cell aggregation drives a proangiogenic expression profile. Copolymer substrates containing cell-repellent and cell-adhesive domains force the aggregation of human mesenchymal stem cells, which results in enhanced tubulogenesis in vitro and stabilization of vasculature in vivo. These findings can be used to design instructive biomaterial scaffolds for clinical use.
Collapse
Affiliation(s)
- Spencer W. Crowder
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Daniel A. Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Timothy C. Boire
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Devin McCormack
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jung Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Melissa C. Skala
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
10
|
Wu Q, Chen B, Liang Z. Mesenchymal Stem Cells as a Prospective Therapy for the Diabetic Foot. Stem Cells Int 2016; 2016:4612167. [PMID: 27867398 PMCID: PMC5102750 DOI: 10.1155/2016/4612167] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022] Open
Abstract
The diabetic foot is a serious complication of diabetes. Mesenchymal stem cells are an abundant source of stem cells which occupy a special position in cell therapies, and recent studies have suggested that mesenchymal stem cells can play essential roles in treatments for the diabetic foot. Here, we discuss the advances that have been made in mesenchymal stem cell treatments for this condition. The roles and functional mechanisms of mesenchymal stem cells in the diabetic foot are also summarized, and insights into current and future studies are presented.
Collapse
Affiliation(s)
- Qinan Wu
- Department of Endocrinology, The First Affiliated Hospital of The Third Military Medical University, Chongqing 400038, China
| | - Bing Chen
- Department of Endocrinology, The First Affiliated Hospital of The Third Military Medical University, Chongqing 400038, China
| | - Ziwen Liang
- Department of Endocrinology, The First Affiliated Hospital of The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
11
|
Madonna R, Cadeddu C, Deidda M, Mele D, Monte I, Novo G, Pagliaro P, Pepe A, Spallarossa P, Tocchetti CG, Zito C, Mercuro G. Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a Position Paper of the Italian Working Group on Drug Cardiotoxicity and Cardioprotection. Heart Fail Rev 2016; 20:621-31. [PMID: 26168714 DOI: 10.1007/s10741-015-9497-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although treatment for heart failure induced by cancer therapy has improved in recent years, the prevalence of cardiomyopathy due to antineoplastic therapy remains significant worldwide. In addition to traditional mediators of myocardial damage, such as reactive oxygen species, new pathways and target cells should be considered responsible for the impairment of cardiac function during anticancer treatment. Accordingly, there is a need to develop novel therapeutic strategies to protect the heart from pharmacologic injury, and improve clinical outcomes in cancer patients. The development of novel protective therapies requires testing putative therapeutic strategies in appropriate animal models of chemotherapy-induced cardiomyopathy. This Position Paper of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology aims to: (1) define the distinctive etiopatogenetic features of cardiac toxicity induced by cancer therapy in humans, which include new aspects of mitochondrial function and oxidative stress, neuregulin-1 modulation through the ErbB receptor family, angiogenesis inhibition, and cardiac stem cell depletion and/or dysfunction; (2) review the new, more promising therapeutic strategies for cardioprotection, aimed to increase the survival of patients with severe antineoplastic-induced cardiotoxicity; (3) recommend the distinctive pathological features of cardiotoxicity induced by cancer therapy in humans that should be present in animal models used to identify or to test new cardioprotective therapies.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Excellence on Aging, Institute of Cardiology, "G. d'Annunzio" University - Chieti, Chieti, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kwon TR, Oh CT, Choi EJ, Kim SR, Jang YJ, Ko EJ, Yoo KH, Kim BJ. Conditioned medium from human bone marrow-derived mesenchymal stem cells promotes skin moisturization and effacement of wrinkles in UVB-irradiated SKH-1 hairless mice. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2015; 32:120-8. [PMID: 26577060 DOI: 10.1111/phpp.12224] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 10/27/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are promising therapeutic agents for various diseases. AIMS To investigate the effects of conditioned medium from human bone marrow-derived mesenchymal stem cells (MSC-CdM) on pro-collagen production and wrinkle formation, we performed in vitro and in vivo experiments. METHODS We assessed the effects of MSC-CdM on proliferation and photo-aging in human dermal fibroblasts after UVB exposure using enzyme activity assays for collagen type I secretion and MMP-1. To determine the effect of topically applied MSC-CdM on wrinkle formation, MSC-CdM (1% and 10%) and vehicle (propylene glycol: ethanol, 7 : 3) were applied to the dorsal skin of UVB-irradiated hairless mice for 8 weeks. We examined the effects on wrinkle formation by assessing visual skin grading, replica, tape stripping, transepidermal water loss (TEWL), and skin hydration measurement. We also examined histology of the lesions using hematoxylin-eosin, Masson's trichrome, and immunohistochemical staining. RESULTS MSC-CdM markedly reduced UV-induced matrix metalloproteinase-1 expression and increased pro-collagen synthesis in a dose-dependent manner. Our findings suggest that MSC-CdM induces repair of dermal damage and effacement of wrinkles on UVB-irradiated hairless mice through protective effect of hydration. CONCLUSION These results support an anti-wrinkle effect of MSC-CdM that involves increased collagen synthesis and suggest that MSC-CdM might be a potential candidate for preventing UV-induced skin damage.
Collapse
Affiliation(s)
- Tae-Rin Kwon
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea.,Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Chang Taek Oh
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea.,Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Eun Ja Choi
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Soon Re Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yu-Jin Jang
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Eun Jung Ko
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kwang Ho Yoo
- Department of Dermatology, College of Medicine, Catholic Kwandong University, International St. Mary's Hospital, Incheon, Korea
| | - Beom Joon Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea.,Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Zaccagnini G, Palmisano A, Canu T, Maimone B, Lo Russo FM, Ambrogi F, Gaetano C, De Cobelli F, Del Maschio A, Esposito A, Martelli F. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia. PLoS One 2015; 10:e0142111. [PMID: 26554362 PMCID: PMC4640853 DOI: 10.1371/journal.pone.0142111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Anna Palmisano
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Tamara Canu
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Biagina Maimone
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Francesco M. Lo Russo
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Internal Medicine Clinic III, Goethe University, Frankfurt am Main, Germany
| | - Francesco De Cobelli
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Del Maschio
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Esposito
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- * E-mail: (AE); (FM)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
- * E-mail: (AE); (FM)
| |
Collapse
|
14
|
Mamidi MK, Dutta S, Bhonde R, Das AK, Pal R. Allogeneic and autologous mode of stem cell transplantation in regenerative medicine: Which way to go? Med Hypotheses 2014; 83:787-91. [DOI: 10.1016/j.mehy.2014.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023]
|
15
|
PPARγ activation but not PPARγ haplodeficiency affects proangiogenic potential of endothelial cells and bone marrow-derived progenitors. Cardiovasc Diabetol 2014; 13:150. [PMID: 25361524 PMCID: PMC4233236 DOI: 10.1186/s12933-014-0150-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022] Open
Abstract
Background Peroxisome proliferator-activated receptor-γ (PPARγ) agonists, which have been used as insulin sensitizers in diabetic patients, may improve functions of endothelial cells (ECs). We investigated the effect of PPARγ on angiogenic activities of murine ECs and bone marrow-derived proangiogenic cells (PACs). Methods PACs were isolated from bone marrow of 10–12 weeks old, wild type, db/db and PPARγ heterozygous animals. Cells were cultured on fibronectin and gelatin coated dishes in EGM-2MV medium. For in vitro stimulations, rosiglitazone (10 μmol/L) or GW9662 (10 μmol/L) were added to 80% confluent cell cultures for 24 hours. Angiogenic potential of PACs and ECs was tested in vitro and in vivo in wound healing assay and hind limb ischemia model. Results ECs and PACs isolated from diabetic db/db mice displayed a reduced angiogenic potential in ex vivo and in vitro assays, the effect partially rescued by incubation of cells with rosiglitazone (PPARγ activator). Correction of diabetes by administration of rosiglitazone in vivo did not improve angiogenic potential of isolated PACs or ECs. In a hind limb ischemia model we demonstrated that local injection of conditioned media harvested from wild type PACs improved the blood flow restoration in db/db mice, confirming the importance of paracrine action of the bone marrow-derived cells. Transcriptome analysis showed an upregulation of prooxidative and proinflammatory pathways, and downregulation of several proangiogenic genes in db/db PACs. Interestingly, db/db PACs had also a decreased level of PPARγ and changed expression of PPARγ-regulated genes. Using normoglycemic PPARγ+/− mice we demonstrated that reduced expression of PPARγ does not influence neovascularization either in wound healing or in hind limb ischemia models. Conclusions In summary, activation of PPARγ by rosiglitazone improves angiogenic potential of diabetic ECs and PACs, but decreased expression of PPARγ in diabetes does not impair angiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12933-014-0150-7) contains supplementary material, which is available to authorized users.
Collapse
|