1
|
Appunu C, Surya Krishna S, Harish Chandar SR, Valarmathi R, Suresha GS, Sreenivasa V, Malarvizhi A, Manickavasagam M, Arun M, Arun Kumar R, Gomathi R, Hemaprabha G. Overexpression of EaALDH7, an aldehyde dehydrogenase gene from Erianthus arundinaceus enhances salinity tolerance in transgenic sugarcane (Saccharum spp. Hybrid). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112206. [PMID: 39096975 DOI: 10.1016/j.plantsci.2024.112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Aldehyde Dehydrogenases (ALDH), a group of enzymes, are associated with the detoxification of aldehydes, produced in plants during abiotic stress conditions. Salinity remains a pivotal abiotic challenge that poses a significant threat to cultivation and yield of sugarcane. In this study, an Aldehyde dehydrogenase gene (EaALDH7) from Erianthus arundinaceus was overexpressed in the commercial sugarcane hybrid cultivar Co 86032. The transgenic lines were evaluated at different NaCl concentrations ranging from 0 mM to 200 mM for various morpho-physiological and biochemical parameters. The control plants, subjected to salinity stress condition, exhibited morphological changes in protoxylem, metaxylem, pericycle and pith whereas the transgenic events were on par with plants under regular irrigation. The overexpressing (OE) lines showed less cell membrane injury and improved photosynthetic rate, transpiration rate, and stomatal conductance than the untransformed control plants under stress conditions. Elevated proline content, higher activity of enzymatic antioxidants such as sodium dismutase (SOD), catalase (CAT), glutathione reductase (GR) and ascorbate peroxidase (APX) and low level of malondialdehyde MDA and hydrogen peroxide (H2O2) in the transgenic lines. The analysis of EaALDH7 expression revealed a significant upregulation in the transgenic lines compared to that of the untransformed control during salt stress conditions. The current study highlights the potentials of EaALDH7 gene in producing salinity-tolerant sugarcane cultivars.
Collapse
Affiliation(s)
- Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India.
| | - Sakthivel Surya Krishna
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - S R Harish Chandar
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Ramanathan Valarmathi
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | | | - Venkatarayappa Sreenivasa
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Arthanari Malarvizhi
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | | | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Raja Arun Kumar
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Raju Gomathi
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| | - Govindakurup Hemaprabha
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007, India
| |
Collapse
|
2
|
Mohanan MV, Thelakat Sasikumar SP, Jayanarayanan AN, Selvarajan D, Ramanathan V, Shivalingamurthy SG, Raju G, Govind H, Chinnaswamy A. Transgenic sugarcane overexpressing Glyoxalase III improved germination and biomass production at formative stage under salinity and water-deficit stress conditions. 3 Biotech 2024; 14:52. [PMID: 38274846 PMCID: PMC10805895 DOI: 10.1007/s13205-023-03856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/15/2023] [Indexed: 01/27/2024] Open
Abstract
The glyoxalase system, involving Glyoxalase I (GlyI) and Glyoxalase II (Gly II), plays a vital role in abiotic stress tolerance in plants. A novel enzyme Glyoxalase III (Gly III) was found recently from bacteria, yeast, and plant species. This enzyme provides a new way to detoxify Methylglyoxal (MG), a cytotoxic α-oxoaldehyde, which, in excess, can cause complete cell destruction by forming Reactive Oxygen Species (ROS) and Advanced Glycation End products (AGEs) or DNA/RNA mutation. In this background, the current study examined sugarcane transgenic events that exhibit an increase in expression of EaGly III, to assess their performance in terms of germination and biomass production during formative stage under stress conditions. Southern blot analysis outcomes confirmed the integration of transgene in the transgenic plants. The results from quantitative RT-PCR analyses confirmed high expression levels of EaGly III in transgenic events compared to wild type (WT) under salinity (100 and 200 mM NaCl) and drought (withholding watering) conditions. Transgenic events exhibited enhanced biomass productivity ranged between 0.141 Kg/pot and 0.395 Kg/pot under 200 mM salinity and 0.262 Kg/pot and 0.666 Kg/pot under drought stress. Further, transgenic events observed significantly higher germination rates under salinity and drought conditions compared to that of WT. Subcellular localization prediction by EaGlyIII-GFP fusion expression in sugarcane callus showed that it is distributed across the cytoplasm, thus indicating its widespread activity within the cell. These results strongly suggest that enhancing EaGly III activity is a useful strategy to improve the salinity and drought-tolerance in sugarcane as well as other crops.
Collapse
Affiliation(s)
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Valarmathi Ramanathan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | | | - Gomathi Raju
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Hemaprabha Govind
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| |
Collapse
|
3
|
Sahoo RK, Chandan RK, Swain DM, Tuteja N, Jha G. Heterologous overexpression of PDH45 gene of pea provides tolerance against sheath blight disease and drought stress in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:242-251. [PMID: 35930936 DOI: 10.1016/j.plaphy.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Biotic and abiotic stress tolerant crops are required for sustainable agriculture as well as ensuring global food security. In a previous study, we have reported that heterologous overexpression of pea DNA helicase (PDH45), a DEAD-box family member protein, provides salinity stress tolerance in rice. The improved management of photosynthetic machinery and scavenging of reactive oxygen species (ROS) are associated with PDH45 mediated salinity stress tolerance. However, the role of PDH45 in biotic and other abiotic stress (drought) tolerance remains unexplored. In the present study, we have generated marker-free transgenic IR64 rice lines that overexpress PDH45 under the CaMV35S promoter. The transgenic rice lines exhibited a significant level of tolerance against sheath blight disease, caused by Rhizoctonia solani, a polyphagous necrotrophic fungal pathogen. The defense as well as antioxidant responsive marker genes were significantly upregulated in the PDH45 overexpressing (OE) rice lines, upon pathogen infection. Moreover, the OE lines exhibited tolerance to drought stress and various antioxidant as well as drought responsive marker genes were significantly upregulated in them, upon drought stress. Overall, the current study emphasizes that heterologous overexpression of PDH45 provides abiotic as well as biotic stress tolerance in rice. Tolerance against drought as well as sheath blight disease by overexpression of a single gene (PDH45) signifies the practical implication of the present study. Moreover, considering the conserved nature of the gene in different plant species, we anticipate that PDH45 can be gainfully deployed to impart tolerance against multiple stresses in agriculturally important crops.
Collapse
Affiliation(s)
- Ranjan Kumar Sahoo
- Centurion University of Technology and Management, Bhubaneswar, Odisha, India; International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ravindra Kumar Chandan
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Durga Madhab Swain
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
4
|
Verma K, Song XP, Yadav G, Degu HD, Parvaiz A, Singh M, Huang HR, Mustafa G, Xu L, Li YR. Impact of Agroclimatic Variables on Proteogenomics in Sugar Cane ( Saccharum spp.) Plant Productivity. ACS OMEGA 2022; 7:22997-23008. [PMID: 35847309 PMCID: PMC9280927 DOI: 10.1021/acsomega.2c01395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sugar cane (Saccharum spp. hybrids) is a major crop for sugar and renewable bioenergy worldwide, grown in arid and semiarid regions. China, the world's fourth-largest sugar producer after Brazil, India, and the European Union, all share ∼80% of the global production, and the remaining ∼20% of sugar comes from sugar beets, mostly grown in the temperate regions of the Northern Hemisphere, also used as a raw material in production of bioethanol for renewable energy. In view of carboxylation strategies, sugar cane qualifies as one of the best C4 crop. It has dual CO2 concentrating mechanisms located in its unique Krantz anatomy, having dimorphic chloroplasts located in mesophylls and bundle sheath cells for integrated operation of C4 and C3 carbon fixation cycles, regulated by enzymes to upgrade/sustain an ability for improved carbon assimilation to acquire an optimum carbon economy by producing enhanced plant biomass along with sugar yield under elevated temperature and strong irradiance with improved water-use efficiency. These superior intrinsic physiological carbon metabolisms encouraged us to reveal and recollect the facts for moving ahead with the molecular approaches to reveal the expression of proteogenomics linked with plant productivity under abiotic stress during its cultivation in specific agrizones globally.
Collapse
Affiliation(s)
- Krishan
K. Verma
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Xiu-Peng Song
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Garima Yadav
- Department
of Botany, University of Lucknow, Lucknow 226 007, India
| | - Hewan Demissie Degu
- College
of Agriculture, School of Plant and Horticulture Science Plant Biotechnology, Hawassa University, Sidama, Hawassa 05, Ethiopia
| | - Aqsa Parvaiz
- Centre
of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture FaisalabadFaisalabad 38000, Pakistan
| | - Munna Singh
- Department
of Botany, University of Lucknow, Lucknow 226 007, India
| | - Hai-Rong Huang
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Ghulam Mustafa
- Centre
of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture FaisalabadFaisalabad 38000, Pakistan
| | - Lin Xu
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Yang-Rui Li
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| |
Collapse
|
5
|
Mohan C, Easterling M, Yau YY. Gene Editing Technologies for Sugarcane Improvement: Opportunities and Limitations. SUGAR TECH : AN INTERNATIONAL JOURNAL OF SUGAR CROPS & RELATED INDUSTRIES 2022; 24:369-385. [PMID: 34667393 PMCID: PMC8517945 DOI: 10.1007/s12355-021-01045-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Plant-based biofuels present a promising alternative to depleting non-renewable fuel resources. One of the benefits of biofuel is reduced environmental impact, including reduction in greenhouse gas emission which causes climate change. Sugarcane is one of the most important bioenergy crops. Sugarcane juice is used to produce table sugar and first-generation biofuel (e.g., bioethanol). Sugarcane bagasse is also a potential material for second-generation cellulosic biofuel production. Researchers worldwide are striving to improve sugarcane biomass yield and quality by a variety of means including biotechnological tools. This paper reviews the use of sugarcane as a feedstock for biofuel production, and gene manipulation tools and approaches, including RNAi and genome-editing tools, such as TALENs and CRISPR-Cas9, for improving its quality. The specific focus here is on CRISPR system because it is low cost, simple in design and versatile compared to other genome-editing tools. The advance of CRISPR-Cas9 technology has transformed plant research with its ability to precisely delete, insert or replace genes in recent years. Lignin is the primary material responsible for biomass recalcitrance in biofuel production. The use of genome editing technology to modify lignin composition and distribution in sugarcane cell wall has been realized. The current and potential applications of genome editing technology for sugarcane improvement are discussed. The advantages and limitations of utilizing RNAi and TALEN techniques in sugarcane improvement are discussed as well.
Collapse
Affiliation(s)
- Chakravarthi Mohan
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Mona Easterling
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
- Northeast Campus, Tulsa Community College, 3727 East Apache St, Tulsa, OK 74115 USA
| | - Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
| |
Collapse
|
6
|
Shabbir R, Javed T, Afzal I, Sabagh AE, Ali A, Vicente O, Chen P. Modern Biotechnologies: Innovative and Sustainable Approaches for the Improvement of Sugarcane Tolerance to Environmental Stresses. AGRONOMY 2021; 11:1042. [DOI: 10.3390/agronomy11061042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Sugarcane (Saccharum spp.) is one of the most important industrial cash crops, contributing to the world sugar industry and biofuel production. It has been cultivated and improved from prehistoric times through natural selection and conventional breeding and, more recently, using the modern tools of genetic engineering and biotechnology. However, the heterogenicity, complex poly-aneuploid genome and susceptibility of sugarcane to different biotic and abiotic stresses represent impediments that require us to pay greater attention to the improvement of the sugarcane crop. Compared to traditional breeding, recent advances in breeding technologies (molecular marker-assisted breeding, sugarcane transformation, genome-editing and multiple omics technologies) can potentially improve sugarcane, especially against environmental stressors. This article will focus on efficient modern breeding technologies, which provide crucial clues for the engineering of sugarcane cultivars resistant to environmental stresses.
Collapse
|
7
|
Wang T, Ren L, Li C, Zhang D, Zhang X, Zhou G, Gao D, Chen R, Chen Y, Wang Z, Shi F, Farmer AD, Li Y, Zhou M, Young ND, Zhang WH. The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biol 2021; 19:96. [PMID: 33957908 PMCID: PMC8103640 DOI: 10.1186/s12915-021-01033-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Medicago ruthenica, a wild and perennial legume forage widely distributed in semi-arid grasslands, is distinguished by its outstanding tolerance to environmental stress. It is a close relative of commonly cultivated forage of alfalfa (Medicago sativa). The high tolerance of M. ruthenica to environmental stress makes this species a valuable genetic resource for understanding and improving traits associated with tolerance to harsh environments. RESULTS We sequenced and assembled genome of M. ruthenica using an integrated approach, including PacBio, Illumina, 10×Genomics, and Hi-C. The assembled genome was 904.13 Mb with scaffold N50 of 99.39 Mb, and 50,162 protein-coding genes were annotated. Comparative genomics and transcriptomic analyses were used to elucidate mechanisms underlying its tolerance to environmental stress. The expanded FHY3/FAR1 family was identified to be involved in tolerance of M. ruthenica to drought stress. Many genes involved in tolerance to abiotic stress were retained in M. ruthenica compared to other cultivated Medicago species. Hundreds of candidate genes associated with drought tolerance were identified by analyzing variations in single nucleotide polymorphism using accessions of M. ruthenica with varying tolerance to drought. Transcriptomic data demonstrated the involvements of genes related to transcriptional regulation, stress response, and metabolic regulation in tolerance of M. ruthenica. CONCLUSIONS We present a high-quality genome assembly and identification of drought-related genes in the wild species of M. ruthenica, providing a valuable resource for genomic studies on perennial legume forages.
Collapse
Affiliation(s)
- Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Lifei Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Di Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xiuxiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Gang Zhou
- Novogene Bioinformatics Institute, Beijing, China
| | - Dan Gao
- Novogene Bioinformatics Institute, Beijing, China
| | - Rujin Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuhui Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhaolan Wang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Huhehot, China
| | - Fengling Shi
- College of Ecology and Environmental Science, Inner Mongolia Agricultural University, Huhehot, China
| | - Andrew D Farmer
- National Centre for Genome Resources, Santa Fe, New Mexico, USA
| | - Yansu Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengyan Zhou
- Novogene Bioinformatics Institute, Beijing, China.
| | - Nevin D Young
- Departments of Plant Pathology and Plant Biology, University of Minnesota, Minnesota, USA
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China.
- Inner Mongolia Research Centre for Prataculture, The Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Mohanan MV, Pushpanathan A, Sasikumar SPT, Selvarajan D, Jayanarayanan AN, R AK, Ramalingam S, Karuppasamy SN, Subbiah R, Ram B, Chinnaswamy A. Ectopic expression of DJ-1/PfpI domain containing Erianthus arundinaceus Glyoxalase III (EaGly III) enhances drought tolerance in sugarcane. PLANT CELL REPORTS 2020; 39:1581-1594. [PMID: 32876807 DOI: 10.1007/s00299-020-02585-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Sugarcane transgenic overexpressing EaGly III from Erianthus arundinaceus showed enhanced water deficit stress tolerance. Methylglyoxal (MG), an α-ketoaldehyde formed from either glycolysis or TCA cycle, is capable of causing total cellular damage via the generation of reactive oxygen species (ROS), advanced glycation end products (AGEs) and nucleic acid degradation. Glyoxalase pathway is a ubiquitous pathway known for detoxification of MG, involving key enzymes glyoxalase I (Gly I) and glyoxalase II (Gly II). Recently, a novel and an additional enzyme in glyoxalase pathway, viz., glyoxalase III (Gly III), has been discovered which possesses DJ-1/PfpI domain recognized for detoxifying MG in a single step process without requirement of any coenzyme. In the present study, a Gly III gene isolated from Erianthus arundinaceus, a wild relative of sugarcane, overexpressed in commercially cultivated sugarcane hybrid Co 86032 was assessed for drought tolerance. Morphometric observations revealed that transgenic sugarcane overexpressing EaGly III acquired drought tolerance trait. Oxidative damage caused by triggering generation of ROS has been determined to be low in transgenic plants as compared to wild type (WT). Transgenics resulted in higher relative water content, chlorophyll content, gas exchange parameters, photosynthetic efficiency, proline content and soluble sugars upon water deficit stress. In addition, higher and stable level of superoxide dismutase and peroxidase activities were observed along with minimal lipid peroxidation during drought stress signifying the tolerance mechanism exhibited by transgenic events. There was no significant structural change observed in the root anatomy of transgenic plants. Altogether, EaGly III gene could be considered as a potential candidate for conferring water deficit stress tolerance for sugarcane and other agricultural crops.
Collapse
Affiliation(s)
| | - Anunanthini Pushpanathan
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641041, Tamil Nadu, India
| | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, Tamil Nadu, India
| | | | - Arun Kumar R
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, Tamil Nadu, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641041, Tamil Nadu, India
| | | | - Ramanathan Subbiah
- Agro Climate Research Center, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Bakshi Ram
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, Tamil Nadu, India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, Tamil Nadu, India.
| |
Collapse
|
9
|
Current breeding and genomic approaches to enhance the cane and sugar productivity under abiotic stress conditions. 3 Biotech 2020; 10:440. [PMID: 33014683 PMCID: PMC7501393 DOI: 10.1007/s13205-020-02416-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
Sugarcane (Saccharum spp.) crop is vulnerable to many abiotic stresses such as drought, salinity, waterlogging, cold and high temperature due to climate change. Over the past few decades new breeding and genomic approaches have been used to enhance the genotypic performance under abiotic stress conditions. In sugarcane, introgression of genes from wild species and allied genera for abiotic stress tolerance traits plays a significant role in the development of several stress-tolerant varieties. Moreover, the genomics and transcriptomics approaches have helped to elucidate the key genes/TFs and pathways involved in abiotic stress tolerance in sugarcane. Several novel miRNAs families /proteins or regulatory elements that are responsible for drought, salinity, and cold tolerance have been identified through high-throughput sequencing. The existing sugarcane monoploid genome sequence information opens new gateways and opportunities for researchers to improve the desired traits through efficient genome editing tools, such as the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas) system. TALEN mediated mutations in a highly conserved region of the caffeic acid O-methyltransferase (COMT) of sugarcane significantly reduces the lignin content in the cell wall which is amenable for biofuel production from lignocellulosic biomass. In this review, we focus on current breeding with genomic approaches and their substantial role in enhancing cane production under the abiotic stress conditions, which is expected to provide new insights to plant breeders and biotechnologists to modify their strategy in developing stress-tolerant sugarcane varieties, which can highlight the future demand of cane, bio-energy, and viability of sugar industries.
Collapse
|
10
|
Pandey S, Prasad A, Sharma N, Prasad M. Linking the plant stress responses with RNA helicases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110607. [PMID: 32900445 DOI: 10.1016/j.plantsci.2020.110607] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 05/21/2023]
Abstract
RNA helicases are omnipresent plant proteins across all kingdoms and have been demonstrated to play an essential role in all cellular processes involving nucleic acids. Currently, these proteins emerged as a new tool for plant molecular biologists to modulate plant stress responses. Here, we review the crucial role of RNA helicases triggered by biotic, abiotic, and multiple stress conditions. In this review, the emphasis has been given on the role of these proteins upon viral stress. Further, we have explored RNA helicase mediated regulation of RNA metabolism, starting from ribosome biogenesis to its decay upon stress induction. We also highlighted the cross-talk between RNA helicase, phytohormones, and ROS. Different overexpression and transgenic studies have been provided in the text to indicate the stress tolerance abilities of these proteins.
Collapse
Affiliation(s)
- Saurabh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
11
|
Nidumukkala S, Tayi L, Chittela RK, Vudem DR, Khareedu VR. DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Crit Rev Biotechnol 2019; 39:395-407. [DOI: 10.1080/07388551.2019.1566204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Lavanya Tayi
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, India
| | | | | | | |
Collapse
|
12
|
Singh P, Singh SN, Tiwari AK, Pathak SK, Singh AK, Srivastava S, Mohan N. Integration of sugarcane production technologies for enhanced cane and sugar productivity targeting to increase farmers' income: strategies and prospects. 3 Biotech 2019; 9:48. [PMID: 30729072 DOI: 10.1007/s13205-019-1568-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/03/2019] [Indexed: 10/27/2022] Open
Abstract
The idea of doubling the farmers' income in next 5 years has been slated by the Government of India. The specific target of increasing sugarcane farmers' income could be achieved by developing cost-effective technologies, transferring them from laboratory to land, educating the farmers and creating a linkage between all stakeholders. Consistent efforts shall be required to harness all possible sources for increasing farmer's income in and outside the agriculture sector with respect to improvement in sugarcane and sugar productivity, enhancement in resource use efficiency and adopting various other ways and means including intercropping, management of pests and diseases, use of biotechnological tools and minimizing post-harvest deterioration. The advances in sugarcane biotechnology could become remarkable in the coming years, both in terms of improving productivity as well as increasing the value and utility of this crop substantially. In future, genetically modified sugarcane varieties with increased resistance to different biotic and abiotic stresses would serve more towards sugarcane crop improvement. Any possibility of enhancement in the income of sugarcane farmers shall also be dependent upon the profitability and sustainability of the sugar industry. Integration of sugarcane production technologies for improvement in farm productivity, diversified sugarcane production system, reduced cost of cultivation along with increased processing plant efficiency and diversification to produce value added products shall ensure smooth and higher payment to the farmers. Development of low-cost technologies to convert "waste to resource" on a smaller scale shall also help the farmers to increase their income further. This paper focuses on possible measures to be taken up in each aspects of sugarcane cultivation including biotechnological approaches to achieve the goal of enhancing the income of sugarcane farmers substantially, particularly in the sub-tropical region of India.
Collapse
|
13
|
Biswas S, Amin USM, Sarker S, Rahman MS, Amin R, Karim R, Tuteja N, Seraj ZI. Introgression, Generational Expression and Salinity Tolerance Conferred by the Pea DNA Helicase 45 Transgene into Two Commercial Rice Genotypes, BR28 and BR47. Mol Biotechnol 2018; 60:111-123. [PMID: 29282651 DOI: 10.1007/s12033-017-0055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA helicase (PDH45) from the pea plant (Pisum sativum) is a member of the DEAD box protein family and plays a vital regulatory role in saline stress tolerance in plants. We previously reported that over-expression of PDH45 gene confers both seedling and reproductive stage salinity tolerance to a Bangladeshi rice landrace, Binnatoa (BA). In this study, transgenic BA-containing PDH45 (♂) was crossed with two different farmer-popular BRRI rice varieties (♀), BR28 and BR47, in a contained net house. F1 plants positive for the transgene and having recipient phenotype were advanced from F1 to F5. Expression of the PDH45 gene was detected in all generations. The expression level of PDH45 was 200-fold higher in the donor compared to the two recipient genotypes but without any effect on their salt stress tolerance ability in various assays. Under 120 mM NaCl stress at seedling stage, all rice genotypes showed vigorous growth, higher chlorophyll content, lower electrolyte leakage and lower LDS (Leaf Damage Score) compared to their corresponding wild types. At the reproductive stage under continuous salinity stress at 80 mM NaCl, the cross-bred lines BR28 and BR47 showed significantly better spikelet fertility and yield per plant, which were two- and 2.5-folds, respectively, than their corresponding wild types. The PDH45 transgene was observed to increase the expression of 6 salt stress-related downstream genes at 150 mM NaCl stress to similar differential degrees in the donor and recipient genotypes. However, the expression of OsLEA was significantly higher in transgenic BR28 compared to transgenic BR47, where the latter shows comparatively higher salt tolerance. The study shows stability of transgene expression across generations. It also demonstrates that there may be an effect of background genotype on transgene expression. Moreover, some downstream effects of the transgene may also be genotype-specific.
Collapse
Affiliation(s)
- Sudip Biswas
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - U S Mahzabin Amin
- Molecular Biotechnology Division, National Institution of Biotechnology, Savar, Bangladesh
| | - Sarah Sarker
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - M Sazzadur Rahman
- Plant Physiology Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Ruhul Amin
- Institute of Food Science and Technology, BCSIR, Dhaka, Bangladesh
| | - Rezaul Karim
- Institute of Food Science and Technology, BCSIR, Dhaka, Bangladesh
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Zeba I Seraj
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
14
|
Pereira-Santana A, Alvarado-Robledo EJ, Zamora-Briseño JA, Ayala-Sumuano JT, Gonzalez-Mendoza VM, Espadas-Gil F, Alcaraz LD, Castaño E, Keb-Llanes MA, Sanchez-Teyer F, Rodriguez-Zapata LC. Transcriptional profiling of sugarcane leaves and roots under progressive osmotic stress reveals a regulated coordination of gene expression in a spatiotemporal manner. PLoS One 2017; 12:e0189271. [PMID: 29228055 PMCID: PMC5724895 DOI: 10.1371/journal.pone.0189271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022] Open
Abstract
Sugarcane is one of the most important crops worldwide and is a key plant for the global production of sucrose. Sugarcane cultivation is severely affected by drought stress and it is considered as the major limiting factor for their productivity. In recent years, this plant has been subjected to intensive research focused on improving its resilience against water scarcity; particularly the molecular mechanisms in response to drought stress have become an underlying issue for its improvement. To better understand water stress and the molecular mechanisms we performed a de novo transcriptomic assembly of sugarcane (var. Mex 69-290). A total of 16 libraries were sequenced in a 2x100 bp configuration on a HiSeq-Illumina platform. A total of 536 and 750 genes were differentially up-regulated along with the stress treatments for leave and root tissues respectively, while 1093 and 531 genes were differentially down-regulated in leaves and roots respectively. Gene Ontology functional analysis showed that genes related to response of water deprivation, heat, abscisic acid, and flavonoid biosynthesis were enriched during stress treatment in our study. The reliability of the observed expression patterns was confirmed by RT-qPCR. Additionally, several physiological parameters of sugarcane were significantly affected due to stress imposition. The results of this study may help identify useful target genes and provide tissue-specific data set of genes that are differentially expressed in response to osmotic stress, as well as a complete analysis of the main groups is significantly enriched under this condition. This study provides a useful benchmark for improving drought tolerance in sugarcane and other economically important grass species.
Collapse
Affiliation(s)
| | | | - Jesus A. Zamora-Briseño
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Jorge T. Ayala-Sumuano
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Victor M. Gonzalez-Mendoza
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Francisco Espadas-Gil
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Luis D. Alcaraz
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. Mx, México
| | - Enrique Castaño
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Miguel A. Keb-Llanes
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Felipe Sanchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | | |
Collapse
|
15
|
Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. FRONTIERS IN PLANT SCIENCE 2017; 8:1077. [PMID: 28690620 PMCID: PMC5481406 DOI: 10.3389/fpls.2017.01077] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 05/20/2023]
Abstract
Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.
Collapse
Affiliation(s)
- Thais H. S. Ferreira
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Max S. Tsunada
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Denis Bassi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Pedro Araújo
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Lucia Mattiello
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Giovanna V. Guidelli
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Germanna L. Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Vanessa R. Gonçalves
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | | | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| |
Collapse
|
16
|
Shivakumara TN, Sreevathsa R, Dash PK, Sheshshayee MS, Papolu PK, Rao U, Tuteja N, UdayaKumar M. Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.). Sci Rep 2017; 7:2760. [PMID: 28584274 PMCID: PMC5459802 DOI: 10.1038/s41598-017-02589-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
Imparting tolerance to abiotic stresses is of global importance as they inflict significant yield losses in field as well as in vegetable crops. Transcriptional activators, including helicases are identified to play a pivotal role in stress mitigation. Helicases, also known as molecular motors, are involved in myriad cellular processes that impart intrinsic tolerance to abiotic stresses in plants. Our study demonstrates the potential of a Pea DNA Helicase 45 (PDH45), in combating multiple abiotic stresses in chili. We harnessed Agrobacterium-mediated in planta transformation strategy for the generation of stable, single copy transgenic events. Precise molecular detection of the transgenes by sqRT-PCR coupled with genomic Southern analysis revealed variation in the integration of PDH45 at distinct loci in independent transgenic events. Characterization of five promising transgenic events showed both improved response to an array of simulated abiotic stresses and enhanced expression of several stress-responsive genes. While survival and recovery of transgenic events were significantly higher under gradual moisture stress conditions, under imposition of moderate stress, the transgenic events exhibited invigorated growth and productivity with concomitant improvement in water use efficiency (WUE). Thus, our study, unequivocally demonstrated the cardinal role of PDH45 in alleviating multiple abiotic stresses in chili.
Collapse
Affiliation(s)
- Tagginahalli N Shivakumara
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Rohini Sreevathsa
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India.
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India.
| | - Prasanta K Dash
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - M S Sheshshayee
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Pradeep K Papolu
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Uma Rao
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - M UdayaKumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India.
| |
Collapse
|
17
|
Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. FRONTIERS IN PLANT SCIENCE 2017; 8:1077. [PMID: 28690620 PMCID: PMC5481406 DOI: 10.3389/fpls.2017.01077/full 10.3389/fpls.2017.01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.
Collapse
Affiliation(s)
- Thais H. S. Ferreira
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Max S. Tsunada
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Denis Bassi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Pedro Araújo
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Lucia Mattiello
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Giovanna V. Guidelli
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Germanna L. Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Vanessa R. Gonçalves
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | | | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
- *Correspondence: Marcelo Menossi
| |
Collapse
|
18
|
Nath M, Yadav S, Kumar Sahoo R, Passricha N, Tuteja R, Tuteja N. PDH45 transgenic rice maintain cell viability through lower accumulation of Na(+), ROS and calcium homeostasis in roots under salinity stress. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:1-11. [PMID: 26687010 DOI: 10.1016/j.jplph.2015.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 05/25/2023]
Abstract
Salinity severely affects the growth/productivity of rice, which is utilized as major staple food crop worldwide. PDH45 (pea DNA helicase 45), a member of the DEAD-box helicase family, actively provides salinity stress tolerance, but the mechanism behind this is not well known. Therefore, in order to understand the mechanism of stress tolerance, sodium ion (Na(+)), reactive oxygen species (ROS), cytosolic calcium [Ca(2+)]cyt and cell viability were analyzed in roots of PDH45 transgenic-IR64 rice lines along with wild-type (WT) IR64 rice under salinity stress (100mM and 200 mM NaCl). In addition, the roots of salinity-tolerant (FL478) and susceptible (Pusa-44) rice varieties were also analyzed under salinity stress for comparative analysis. The results reveal that, under salinity stress (100mM and 200 mM NaCl), roots of PDH45 transgenic lines accumulate lower levels of Na(+), ROS and maintain [Ca(2+)]cyt and exhibit higher cell viability as compared with roots of WT (IR64) plants. Similar results were also obtained in the salinity-tolerant FL478 rice. However, the roots of WT and salinity-susceptible Pusa-44 rice accumulated higher levels of Na(+), ROS and [Ca(2+)]cyt imbalance and lower cell viability during salinity stress, which is in contrast to the overexpressing PDH45 transgenic lines and salinity-tolerant FL478 rice. Further, to understand the mechanism of PDH45 at molecular level, comparative expression profiling of 12 cation transporters/genes was also conducted in roots of WT (IR64) and overexpressing PDH45 transgenic lines (L1 and L2) under salt stress (24h of 200 mM NaCl). The expression analysis results show altered and differential gene expression of cation transporters/genes in salt-stressed roots of WT (IR64) and overexpressing transgenic lines (L1 and L2). These observations collectively suggest that, under salinity stress conditions, PDH45 is involved in the regulation of Na(+) level, ROS production, [Ca(2+)]cyt homeostasis, cell viability and cation transporters in roots of PDH45 transgenic-IR64 rice and consequently provide salinity tolerance. Elucidating the detailed regulatory mechanism of PDH45 will provide a better understanding of salinity stress tolerance and further open new ways to manipulate genome to achieve higher agricultural production under stress.
Collapse
Affiliation(s)
- Manoj Nath
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Sandep Yadav
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Ranjan Kumar Sahoo
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Nishat Passricha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110 067 New Delhi, India; Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh 201313, India.
| |
Collapse
|
19
|
Chen J, Wan S, Liu H, Fan S, Zhang Y, Wang W, Xia M, Yuan R, Deng F, Shen F. Overexpression of an Apocynum venetum DEAD-Box Helicase Gene (AvDH1) in Cotton Confers Salinity Tolerance and Increases Yield in a Saline Field. FRONTIERS IN PLANT SCIENCE 2015; 6:1227. [PMID: 26779246 PMCID: PMC4705273 DOI: 10.3389/fpls.2015.01227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/18/2015] [Indexed: 05/04/2023]
Abstract
Soil salinity is a major environmental stress limiting plant growth and productivity. We have reported previously the isolation of an Apocynum venetum DEAD-box helicase 1 (AvDH1) that is expressed in response to salt exposure. Here, we report that the overexpression of AvDH1 driven by a constitutive cauliflower mosaic virus-35S promoter in cotton plants confers salinity tolerance. Southern and Northern blotting analyses showed that the AvDH1 gene was integrated into the cotton genome and expressed. In this study, the growth of transgenic cotton expressing AvDH1 was evaluated under saline conditions in a growth chamber and in a saline field trial. Transgenic cotton overexpressing AvDH1 was much more resistant to salt than the wild-type plants when grown in a growth chamber. The lower membrane ion leakage, along with increased activity of superoxide dismutase, in AvDH1 transgenic lines suggested that these characteristics may prevent membrane damage, which increases plant survival rates. In a saline field, the transgenic cotton lines expressing AvDH1 showed increased boll numbers, boll weights and seed cotton yields compared with wild-type plants, especially at high soil salinity levels. This study indicates that transgenic cotton expressing AvDH1 is a promising option for increasing crop productivity in saline fields.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Sibao Wan
- College of Life Science, Shanghai UniversityShanghai, China
| | - Huaihua Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Shuli Fan
- Cotton Research Institute – Chinese Academy of Agricultural SciencesAnyang, China
| | - Yujuan Zhang
- Cotton Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Minxuan Xia
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Rui Yuan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Fenni Deng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
- *Correspondence: Fafu Shen,
| |
Collapse
|