1
|
Huang CC, Tsai SF, Liu SC, Yeh MC, Hung HC, Lee CW, Cheng CL, Hsu PL, Kuo YM. Insulin Mediates Lipopolysaccharide-Induced Inflammatory Responses and Oxidative Stress in BV2 Microglia. J Inflamm Res 2024; 17:7993-8008. [PMID: 39507265 PMCID: PMC11539848 DOI: 10.2147/jir.s481101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Insulin, the key hormone for glucose regulation, has garnered attention for its role as an immune modulator. Impaired insulin signaling in the central nervous system is linked to neuroinflammation and neurodegenerative diseases. Microglia, the resident macrophage-like immune cells in the brain, are key regulators of neuroinflammation. However, the mechanisms by which insulin influences microglial immune responses remain relatively unknown. Methods This study aimed to assess the effects of post-treatment with insulin [30 minutes after lipopolysaccharide (LPS) exposure] on LPS-induced inflammatory responses in BV2 microglial cells. Results Post-treatment with insulin potentiated LPS-induced production of nitric oxide and pro-inflammatory cytokines, such as TNF and IL-6, through activation of the Akt/NF-κB pathway. Insulin also enhanced the ability of BV2 cells to phagocytose bacteria particles and β-amyloid fibrils. Conversely, insulin inhibited activation of NADPH oxidase and reduced intracellular levels of reactive oxygen species in LPS-treated BV2 cells. Conclusion Insulin enhances microglial immune competence when challenged by endotoxins but mitigates oxidative stress in these cells.
Collapse
Affiliation(s)
- Chi-Chen Huang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Sheng-Feng Tsai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Cheng Liu
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70403, Taiwan
| | - Mei-Chen Yeh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, 700007, Taiwan
| | - Ching-Li Cheng
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, 700007, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
2
|
Fazio S, Bellavite P, Affuso F. Chronically Increased Levels of Circulating Insulin Secondary to Insulin Resistance: A Silent Killer. Biomedicines 2024; 12:2416. [PMID: 39457728 PMCID: PMC11505545 DOI: 10.3390/biomedicines12102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Despite all the progress made by science in the prevention and treatment of cardiovascular diseases and cancers, these are still the main reasons for hospitalizations and death in the Western world. Among the possible causes of this situation, disorders related to hyperinsulinemia and insulin resistance (Hyperin/IR) are still little-known topics. An analysis of the literature shows that this condition is a multiple risk factor for type 2 diabetes, cardiovascular diseases, cellular senescence and cancer, and neurodegenerative diseases. Hyperin/IR is progressively increasing worldwide, and its prevalence has now exceeded 50% of the general population and in overweight children. Asymptomatic or poorly symptomatic, it can last for many years before manifesting itself as diabetes, cardiovascular disease, neoplasm, cognitive deficit, or dementia, therefore leading to enormous social and healthcare costs. For these reasons, a screening plan for this pathology should be implemented for the purpose of identifying people with Hyperin/IR and promptly starting them on preventive treatment.
Collapse
Affiliation(s)
- Serafino Fazio
- School of Medicine, Federico II University, 80100 Naples, Italy
| | | | | |
Collapse
|
3
|
Brossaud J, Barat P, Moisan MP. Cognitive Disorders in Type 1 Diabetes: Role of Brain Glucose Variation, Insulin Activity, and Glucocorticoid Exposure. Neuroendocrinology 2024:1-15. [PMID: 39401497 DOI: 10.1159/000541989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND The number of patients with type 2 diabetes (T2D) and type 1 diabetes (T1D) is on the rise, partly due to a global increase in new T1D cases among children. Beyond the well-documented microvascular and macrovascular complications, there is now substantial evidence indicating that diabetes also impacts the brain, leading to neuropsychological impairments. The risk of developing neuropsychiatric symptoms is notably higher in childhood due to the ongoing maturation of the brain, which makes it more susceptible to damage. Despite this awareness, the specific effects of diabetes on cognitive function remain poorly understood. SUMMARY This review synthesizes literature on the impact of diabetes on cognition and its relationship with brain structural changes. It presents data and hypotheses to explain how T1D contributes to cognitive dysfunction, with a particular focus on children and adolescents. The emphasis on the pediatric population is intentional, as young diabetic patients typically have fewer comorbidities, reducing confounding factors and simplifying the investigation of cognitive alterations. KEY MESSAGE We examine the roles of hypo- and hyperglycemia, as well as the emerging role of glucocorticoids in the development of neuropsychological disorders. When specific mechanisms related to T1D are available, they are highlighted; otherwise, data and hypotheses applicable to both T1D and T2D are discussed.
Collapse
Affiliation(s)
- Julie Brossaud
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
- CHU Bordeaux, Nuclear Medicine, Pessac, France
| | - Pascal Barat
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
- CHU Bordeaux, Pediatric Endocrinology and DiaBEA Unit, Hôpital des Enfants, Bordeaux, France
| | - Marie-Pierre Moisan
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
| |
Collapse
|
4
|
Yagita K, Honda H, Ohara T, Koyama S, Noguchi H, Oda Y, Yamasaki R, Isobe N, Ninomiya T. Association between hypothalamic Alzheimer's disease pathology and body mass index: The Hisayama study. Neuropathology 2024; 44:388-400. [PMID: 38566440 DOI: 10.1111/neup.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The hypothalamus is the region of the brain that integrates the neuroendocrine system and whole-body metabolism. Patients with Alzheimer's disease (AD) have been reported to exhibit pathological changes in the hypothalamus, such as neurofibrillary tangles (NFTs) and amyloid plaques (APs). However, few studies have investigated whether hypothalamic AD pathology is associated with clinical factors. We investigated the association between AD-related pathological changes in the hypothalamus and clinical pictures using autopsied brain samples obtained from deceased residents of a Japanese community. A total of 85 autopsied brain samples were semi-quantitatively analyzed for AD pathology, including NFTs and APs. Our histopathological studies showed that several hypothalamic nuclei, such as the tuberomammillary nucleus (TBM) and lateral hypothalamic area (LHA), are vulnerable to AD pathologies. NFTs are observed in various neuropathological states, including normal cognitive cases, whereas APs are predominantly observed in AD. Regarding the association between hypothalamic AD pathologies and clinical factors, the degree of APs in the TBM and LHA was associated with a lower body mass index while alive, after adjusting for sex and age at death. However, we found no significant association between hypothalamic AD pathology and the prevalence of hypertension, diabetes, or dyslipidemia. Our study showed that a lower BMI, which is a poor prognostic factor of AD, might be associated with hypothalamic AP pathology and highlighted new insights regarding the disruption of the brain-whole body axis in AD.
Collapse
Affiliation(s)
- Kaoru Yagita
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Neuropathology Center, National Hospital Organization, Omuta National Hospital, Fukuoka, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Koyama
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Becegato M, Silva RH. Female rodents in behavioral neuroscience: Narrative review on the methodological pitfalls. Physiol Behav 2024; 284:114645. [PMID: 39047942 DOI: 10.1016/j.physbeh.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Since the NIH 'Sex as biological variable' policy, the percentage of studies including female subjects have increased largely. Nonetheless, many researchers fail to adequate their protocols to include females. In this narrative review, we aim to discuss the methodological pitfalls of the inclusion of female rodents in behavioral neuroscience. We address three points to consider in studies: the manipulations conducted only in female animals (such as estrous cycle monitoring, ovariectomy, and hormone replacement), the consideration of males as the standard, and biases related to interpretation and publication of the results. In addition, we suggest guidelines and perspectives for the inclusion of females in preclinical research.
Collapse
Affiliation(s)
- Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Regina H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; MaternaCiência, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Sotozono A, Namekata K, Guo X, Shinozaki Y, Harada C, Noro T, Nakano T, Harada T. Membrane-anchored intracellular insulin receptor or insulin-like growth factor-1 receptor elicits ligand-independent downstream signaling. Biochem Biophys Rep 2024; 39:101799. [PMID: 39161576 PMCID: PMC11332076 DOI: 10.1016/j.bbrep.2024.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Neurodegenerative diseases including glaucoma affect insulin signaling, and insulin treatment has been shown to reverse the neurodegenerative loss of dendritic complexity in retinal ganglion cells. Therefore, strategies for enhancing or maintaining insulin signaling are worth pursuing to establish new therapies for these diseases. In the present study, we generated constitutively active insulin receptor (F-iIR) and insulin-like growth factor-1 receptor (F-iIGF1R) using a system that forces membrane localization of the intracellular domains of these receptors by farnesylation. Immunohistochemistry and Western blot analysis revealed that F-iIR and F-iIGF1R caused the activation of ERK and AKT in the absence of ligands in vitro. Our results suggest that in vivo effects of F-iIR and F-iIGF1R on the progression of neurodegenerative diseases should be investigated in the future.
Collapse
Affiliation(s)
- Akiko Sotozono
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiko Noro
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
7
|
Dong J, Zhang J, Cheng S, Qin B, Jin K, Chen B, Zhang Y, Lu J. A high-fat diet induced depression-like phenotype via hypocretin-HCRTR1 mediated inflammation activation. Food Funct 2024; 15:8661-8673. [PMID: 39056112 DOI: 10.1039/d4fo00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Background: A high-fat diet (HFD) is generally associated with an increased risk of mental disorders that constitute a sizeable worldwide health. A HFD results in the gut microbiota-brain axis being altered and linked to mental disorders. Hypocretin-1, which can promote appetite, has been previously confirmed to be associated with depression. However, no exact relationship has been found for hypocretin between depression and HFDs. Methods: Adult male SD rats were randomly assigned to either a HFD or a normal diet for eight weeks, followed by behavioral tests and plasma biochemical analyses. Then, we investigated the protein and mRNA levels of inflammation-related factors in the hippocampus. We also observed morphological changes in brain microglia and lipid accumulation. Additionally, metagenomic and metabolomic analyses of gut microbiomes were performed. 3T3-L1 cells were utilized in vitro to investigate the impact of hypocretin receptor 1 antagonists (SB334867) on lipid accumulation. To consider the connection between the brain and adipose tissue, we used a conditioned medium (CM) treated with 3T3-L1 cells to observe the activation and phagocytosis of BV2 cells. Following a 12-week period of feeding a HFD to C57BL/6 mice, a three-week intervention period was initiated during which the administration of SB334867 was observed. This was followed by a series of assessments, including monitoring of body weight changes and emotional problems, as well as attention to plasma biochemical levels and microglial cell phenotypes in the brain. Results: The HFD rats displayed anxiety and depressive-like behaviors. HFD rats exhibited increased plasma HDL, LDL, and TC levels. A HFD also causes an increase in hypocretin-1 and hypocretin-2 in the hypothalamus. Metagenomics and metabolomics revealed that the HFD caused an increase in the relative abundance of associated inflammatory bacteria and decreased the abundance of anti-inflammatory and bile acid metabolites. Compared with the CTR group, hippocampal microglia in the HFD group were significantly activated and accompanied by lipid deposition. At the same time, protein and mRNA expression levels of inflammation-related factors were increased. We found that SB334867 could significantly reduce lipid accumulation in 3T3-L1 cells after differentiation. The expression of inflammatory factors decreased in the SB334867 group. The administration of SB334867 was found to reverse the adverse effects of the HFD on body weight, depressive-like behaviour and anxiety-like mood. Furthermore, this treatment was associated with improvements in plasma biochemical levels and a reduction in the number of microglia in the brain. Conclusions: In summary, our results demonstrated that a HFD induced anxiety and depressive-like behaviors, which may be linked to the increased hypocretin-1 level and lipid accumulation. Supplementation with SB334867 improved the above. These observations highlight the possibility of hypocretin-1 inducing the risk of HFD-associated emotional dysfunctions.
Collapse
Affiliation(s)
- Jingyi Dong
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jinghui Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shangping Cheng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Bin Qin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jing Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou 310003, China
| |
Collapse
|
8
|
Affuso F, Micillo F, Fazio S. Insulin Resistance, a Risk Factor for Alzheimer's Disease: Pathological Mechanisms and a New Proposal for a Preventive Therapeutic Approach. Biomedicines 2024; 12:1888. [PMID: 39200352 PMCID: PMC11351221 DOI: 10.3390/biomedicines12081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Peripheral insulin resistance (IR) is a well-documented, independent risk factor for the development of type 2 diabetes, cardiovascular disease, cancer and cellular senescence. Recently, the brain has also been identified as an insulin-responsive region, where insulin acts as regulator of the brain metabolism. Despite the clear link between IR and the brain, the exact mechanisms underlying this relationship remain unclear. Therapeutic intervention in patients showing symptoms of neurodegenerative diseases has produced little or no results. It has been demonstrated that insulin resistance plays a significant role in the pathogenesis of neurodegenerative diseases, particularly cognitive decline. Peripheral and brain IR may represent a modifiable state that could be used to prevent major brain disorders. In this review, we will analyse the scientific literature supporting IR as a risk factor for Alzheimer's disease and suggest some therapeutic strategies to provide a new proposal for the prevention of brain IR and its consequences.
Collapse
Affiliation(s)
- Flora Affuso
- Independent Researcher, Viale Raffaello, 74, 80129 Napoli, Italy
| | - Filomena Micillo
- UOC of Geriatric Medicine AORN S.G. Moscati, 83100 Avellino, Italy
| | - Serafino Fazio
- Department of Internal Medicine, School of Medicine, Federico II University of Naples, 80138 Naples, Italy;
| |
Collapse
|
9
|
Abdulhameed N, Babin A, Hansen K, Weaver R, Banks WA, Talbot K, Rhea EM. Comparing regional brain uptake of incretin receptor agonists after intranasal delivery in CD-1 mice and the APP/PS1 mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:173. [PMID: 39085976 PMCID: PMC11293113 DOI: 10.1186/s13195-024-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Targeting brain insulin resistance (BIR) has become an attractive alternative to traditional therapeutic treatments for Alzheimer's disease (AD). Incretin receptor agonists (IRAs), targeting either or both of the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors, have proven to reverse BIR and improve cognition in mouse models of AD. We previously showed that many, but not all, IRAs can cross the blood-brain barrier (BBB) after intravenous (IV) delivery. Here we determined if widespread brain uptake of IRAs could be achieved by circumventing the BBB using intranasal (IN) delivery, which has the added advantage of minimizing adverse gastrointestinal effects of systemically delivered IRAs. Of the 5 radiolabeled IRAs tested (exenatide, dulaglutide, semaglutide, DA4-JC, and DA5-CH) in CD-1 mice, exenatide, dulaglutide, and DA4-JC were successfully distributed throughout the brain following IN delivery. We observed significant sex differences in uptake for DA4-JC. Dulaglutide and DA4-JC exhibited high uptake by the hippocampus and multiple neocortical areas. We further tested and found the presence of AD-associated Aβ pathology minimally affected uptake of dulaglutide and DA4-JC. Of the 5 tested IRAs, dulaglutide and DA4-JC are best capable of accessing brain regions most vulnerable in AD (neocortex and hippocampus) after IN administration. Future studies will need to be performed to determine if IN IRA delivery can reduce BIR in AD or animal models of that disorder.
Collapse
Affiliation(s)
- Noor Abdulhameed
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA.
| |
Collapse
|
10
|
Hauck A, Michael T, Issler TC, Klein S, Lass-Hennemann J, Ferreira de Sá DS. Can glucose facilitate fear exposure? Randomized, placebo-controlled trials on the effects of glucose administration on fear extinction processes. Behav Res Ther 2024; 178:104553. [PMID: 38728832 DOI: 10.1016/j.brat.2024.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Previous studies showed that glucose has beneficial effects on memory function and can enhance contextual fear learning. To derive potential therapeutic interventions, further research is needed regarding the effects of glucose on fear extinction. In two experimental studies with healthy participants (Study 1: N = 68, 39 females; Study 2: N = 89, 67 females), we investigated the effects of glucose on fear extinction learning and its consolidation. Participants completed a differential fear conditioning paradigm consisting of acquisition, extinction, and return of fear tests: reinstatement, and extinction recall. US-expectancy ratings, skin conductance response (SCR), and fear potentiated startle (FPS) were collected. Participants were pseudorandomized and double-blinded to one of two groups: They received either a drink containing glucose or saccharine 20 min before (Study 1) or immediately after extinction (Study 2). The glucose group showed a significantly stronger decrease in differential FPS during extinction (Study 1) and extinction recall (Study 2). Additionally, the glucose group showed a significantly lower contextual anxiety at test of reinstatement (Study 2). Our findings provide first evidence that glucose supports the process of fear extinction, and in particular the consolidation of fear extinction memory, and thus has potential as a beneficial adjuvant to extinction-based treatments. Registered through the German Clinical Trials Registry (https://www.bfarm.de/EN/BfArM/Tasks/German-Clinical-Trials-Register/_node.html; Study 1: DRKS00010550; Study 2: DRKS00018933).
Collapse
Affiliation(s)
- Alexander Hauck
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Tanja Michael
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Tobias C Issler
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Steven Klein
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Johanna Lass-Hennemann
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Diana S Ferreira de Sá
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
11
|
Gladding JM, Rafiei N, Mitchell CS, Begg DP. Excision of the endothelial blood-brain barrier insulin receptor does not alter spatial cognition in mice fed either a chow or high-fat diet. Neurobiol Learn Mem 2024; 212:107938. [PMID: 38772444 DOI: 10.1016/j.nlm.2024.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Insulin is transported across the blood-brain barrier (BBB) endothelium to regulate aspects of metabolism and cognition. Brain insulin resistance often results from high-fat diet (HFD) consumption and is thought to contribute to spatial cognition deficits. To target BBB insulin function, we used Cre-LoxP genetic excision of the insulin receptor (InsR) from endothelial cells in adult male mice. We hypothesized that this excision would impair spatial cognition, and that high-fat diet consumption would exacerbate these effects. Excision of the endothelial InsR did not impair performance in two spatial cognition tasks, the Y-Maze and Morris Water Maze, in tests held both before and after 14 weeks of access to high-fat (or chow control) diet. The HFD increased body weight gain and induced glucose intolerance but did not impair spatial cognition. Endothelial InsR excision tended to increase body weight and reduce sensitivity to peripheral insulin, but these metabolic effects were not associated with impairments to spatial cognition and did not interact with HFD exposure. Instead, all mice showed intact spatial cognitive performance regardless of whether they had been fed chow or a HFD, and whether the InsR had been excised or not. Overall, the results indicate that loss of the endothelial InsR does not impact spatial cognition, which is in line with pharmacological evidence that other mechanisms at the BBB facilitate insulin transport and allow it to exert its pro-cognitive effects.
Collapse
Affiliation(s)
- Joanne M Gladding
- School of Psychology, Faculty of Science, University of New South Wales, Australia.
| | - Neda Rafiei
- School of Psychology, Faculty of Science, University of New South Wales, Australia
| | - Caitlin S Mitchell
- School of Psychology, Faculty of Science, University of New South Wales, Australia
| | - Denovan P Begg
- School of Psychology, Faculty of Science, University of New South Wales, Australia
| |
Collapse
|
12
|
Cai M, Wan J, Cai K, Li S, Du X, Song H, Sun W, Hu J. The mitochondrial quality control system: a new target for exercise therapeutic intervention in the treatment of brain insulin resistance-induced neurodegeneration in obesity. Int J Obes (Lond) 2024; 48:749-763. [PMID: 38379083 DOI: 10.1038/s41366-024-01490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Obesity is a major global health concern because of its strong association with metabolic and neurodegenerative diseases such as diabetes, dementia, and Alzheimer's disease. Unfortunately, brain insulin resistance in obesity is likely to lead to neuroplasticity deficits. Since the evidence shows that insulin resistance in brain regions abundant in insulin receptors significantly alters mitochondrial efficiency and function, strategies targeting the mitochondrial quality control system may be of therapeutic and practical value in obesity-induced cognitive decline. Exercise is considered as a powerful stimulant of mitochondria that improves insulin sensitivity and enhances neuroplasticity. It has great potential as a non-pharmacological intervention against the onset and progression of obesity associated neurodegeneration. Here, we integrate the current knowledge of the mechanisms of neurodegenration in obesity and focus on brain insulin resistance to explain the relationship between the impairment of neuronal plasticity and mitochondrial dysfunction. This knowledge was synthesised to explore the exercise paradigm as a feasible intervention for obese neurodegenration in terms of improving brain insulin signals and regulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Ming Cai
- Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201599, China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Wanju Sun
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
13
|
Kula B, Antal B, Weistuch C, Gackière F, Barre A, Velado V, Hubbard JM, Kukley M, Mujica-Parodi LR, Smith NA. D-β-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554428. [PMID: 37662316 PMCID: PMC10473684 DOI: 10.1101/2023.08.23.554428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-β-hydroxybutyrate (D-βHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-βHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential (AP) properties, while D-βHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.
Collapse
Affiliation(s)
- Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
| | - Botond Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florian Gackière
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Alexander Barre
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Victor Velado
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
| | - Jeffrey M Hubbard
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, USA
| | - Nathan A Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
- George Washington University School of Medicine and Health Sciences, Washington D.C., USA
| |
Collapse
|
14
|
Moțățăianu A, Mănescu IB, Șerban G, Bărcuțean L, Ion V, Bălașa R, Andone S. Exploring the Role of Metabolic Hormones in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2024; 25:5059. [PMID: 38791099 PMCID: PMC11121721 DOI: 10.3390/ijms25105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive loss of motor neurons. Emerging evidence suggests a potential link between metabolic dysregulation and ALS pathogenesis. This study aimed to investigate the relationship between metabolic hormones and disease progression in ALS patients. A cross-sectional study was conducted involving 44 ALS patients recruited from a tertiary care center. Serum levels of insulin, total amylin, C-peptide, active ghrelin, GIP (gastric inhibitory peptide), GLP-1 active (glucagon-like peptide-1), glucagon, PYY (peptide YY), PP (pancreatic polypeptide), leptin, interleukin-6, MCP-1 (monocyte chemoattractant protein-1), and TNFα (tumor necrosis factor alpha) were measured, and correlations with ALSFRS-R, evolution scores, and biomarkers were analyzed using Spearman correlation coefficients. Subgroup analyses based on ALS subtypes, progression pattern of disease, and disease progression rate patterns were performed. Significant correlations were observed between metabolic hormones and ALS evolution scores. Insulin and amylin exhibited strong correlations with disease progression and clinical functional outcomes, with insulin showing particularly robust associations. Other hormones such as C-peptide, leptin, and GLP-1 also showed correlations with ALS progression and functional status. Subgroup analyses revealed differences in hormone levels based on sex and disease evolution patterns, with male patients showing higher amylin and glucagon levels. ALS patients with slower disease progression exhibited elevated levels of amylin and insulin. Our findings suggest a potential role for metabolic hormones in modulating ALS progression and functional outcomes. Further research is needed to elucidate the underlying mechanisms and explore the therapeutic implications of targeting metabolic pathways in ALS management.
Collapse
Affiliation(s)
- Anca Moțățăianu
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Ion Bogdan Mănescu
- Department of Laboratory Medicine, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Georgiana Șerban
- Doctoral School, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Laura Bărcuțean
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Valentin Ion
- Faculty of Pharmacy, Department of Analytical Chemistry and Drug Analysis, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- Drug Testing Laboratory, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
| | - Rodica Bălașa
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| | - Sebastian Andone
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mureș ‘George Emil Palade’, 540142 Târgu Mureș, Romania
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mureș, Romania
| |
Collapse
|
15
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
16
|
Kula B, Antal B, Weistuch C, Gackière F, Barre A, Velado V, Hubbard JM, Kukley M, Mujica-Parodi LR, Smith NA. D-ꞵ-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance. PNAS NEXUS 2024; 3:pgae196. [PMID: 38818236 PMCID: PMC11138115 DOI: 10.1093/pnasnexus/pgae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-ꞵ-hydroxybutyrate (D-ꞵHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-ꞵHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential properties, while D-ꞵHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.
Collapse
Affiliation(s)
- Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Botond Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Florian Gackière
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Alexander Barre
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Victor Velado
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
| | - Jeffrey M Hubbard
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Bizkaia, Spain
- Ikerbasque—Basque Foundation for Science, 48009 Bilbao, Spain
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nathan A Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
17
|
Todorovic S, Simeunovic V, Prvulovic M, Dakic T, Jevdjovic T, Sokanovic S, Kanazir S, Mladenovic A. Dietary restriction alters insulin signaling pathway in the brain. Biofactors 2024; 50:450-466. [PMID: 37975613 DOI: 10.1002/biof.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023]
Abstract
Insulin is known to be a key hormone in the regulation of peripheral glucose homeostasis, but beyond that, its effects on the brain are now undisputed. Impairments in insulin signaling in the brain, including changes in insulin levels, are thought to contribute significantly to declines in cognitive performance, especially during aging. As one of the most widely studied experimental interventions, dietary restriction (DR) is considered to delay the neurodegenerative processes associated with aging. Recently, however, data began to suggest that the onset and duration of a restrictive diet play a critical role in the putative beneficial outcome. Because the effects of DR on insulin signaling in the brain have been poorly studied, we decided to examine the effects of DR that differed in onset and duration: long-term DR (LTDR), medium-term DR (MTDR), and short-term DR (STDR) on the expression of proteins involved in insulin signaling in the hippocampus of 18- and 24-month-old male Wistar rats. We found that DR-induced changes in insulin levels in the brain may be independent of what happens in the periphery after restricted feeding. Significantly changed insulin content in the hippocampus, together with altered insulin signaling were found under the influence of DR, but the outcome was highly dependent on the onset and duration of DR.
Collapse
Affiliation(s)
- Smilja Todorovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Valentina Simeunovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Prvulovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Srdjan Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Selma Kanazir
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Mladenovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Albar NY, Hassaballa H, Shikh H, Albar Y, Ibrahim AS, Mousa AH, Alshanberi AM, Elgebaly A, Bahbah EI. The interaction between insulin resistance and Alzheimer's disease: a review article. Postgrad Med 2024; 136:377-395. [PMID: 38804907 DOI: 10.1080/00325481.2024.2360887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Insulin serves multiple functions as a growth-promoting hormone in peripheral tissues. It manages glucose metabolism by promoting glucose uptake into cells and curbing the production of glucose in the liver. Beyond this, insulin fosters cell growth, drives differentiation, aids protein synthesis, and deters degradative processes like glycolysis, lipolysis, and proteolysis. Receptors for insulin and insulin-like growth factor-1 are widely expressed in the central nervous system. Their widespread presence in the brain underscores the varied and critical functions of insulin signaling there. Insulin aids in bolstering cognition, promoting neuron extension, adjusting the release and absorption of catecholamines, and controlling the expression and positioning of gamma-aminobutyric acid (GABA). Importantly, insulin can effortlessly traverse the blood-brain barrier. Furthermore, insulin resistance (IR)-induced alterations in insulin signaling might hasten brain aging, impacting its plasticity and potentially leading to neurodegeneration. Two primary pathways are responsible for insulin signal transmission: the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, which oversees metabolic responses, and the mitogen-activated protein kinase (MAPK) pathway, which guides cell growth, survival, and gene transcription. This review aimed to explore the potential shared metabolic traits between Alzheimer's disease (AD) and IR disorders. It delves into the relationship between AD and IR disorders, their overlapping genetic markers, and shared metabolic indicators. Additionally, it addresses existing therapeutic interventions targeting these intersecting pathways.
Collapse
Affiliation(s)
- Nezar Y Albar
- Internal Medicine Department, Dr. Samir Abbas Hospital, Jeddah, Saudi Arabia
| | | | - Hamza Shikh
- Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Yassin Albar
- Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia
| | | | - Ahmed Hafez Mousa
- Department of Neurosurgery, Postgraduate Medical Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Neurosurgery, Rashid Hospital, Dubai Academic Health Cooperation, Dubai, United Arab Emirates
| | - Asim Muhammed Alshanberi
- Department of Community Medicine and Pilgrims Health Care, Umm Alqura University, Makkah, Saudi Arabia
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed Elgebaly
- Smart Health Academic Unit, University of East London, London, UK
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
19
|
Lewitt MS, Boyd GW. Role of the Insulin-like Growth Factor System in Neurodegenerative Disease. Int J Mol Sci 2024; 25:4512. [PMID: 38674097 PMCID: PMC11049992 DOI: 10.3390/ijms25084512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The insulin-like growth factor (IGF) system has paracrine and endocrine roles in the central nervous system. There is evidence that IGF signalling pathways have roles in the pathophysiology of neurodegenerative disease. This review focusses on Alzheimer's disease and Parkinson's disease, the two most common neurodegenerative disorders that are increasing in prevalence globally in relation to the aging population and the increasing prevalence of obesity and type 2 diabetes. Rodent models used in the study of the molecular pathways involved in neurodegeneration are described. However, currently, no animal model fully replicates these diseases. Mice with triple mutations in APP, PSEN and MAPT show promise as models for the testing of novel Alzheimer's therapies. While a causal relationship is not proven, the fact that age, obesity and T2D are risk factors in both strengthens the case for the involvement of the IGF system in these disorders. The IGF system is an attractive target for new approaches to management; however, there are gaps in our understanding that first need to be addressed. These include a focus beyond IGF-I on other members of the IGF system, including IGF-II, IGF-binding proteins and the type 2 IGF receptor.
Collapse
Affiliation(s)
- Moira S. Lewitt
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Gary W. Boyd
- School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK;
| |
Collapse
|
20
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Elangovan A, Dahiya B, Kirola L, Iyer M, Jeeth P, Maharaj S, Kumari N, Lakhanpal V, Michel TM, Rao KRSS, Cho SG, Yadav MK, Gopalakrishnan AV, Kadhirvel S, Kumar NS, Vellingiri B. Does gut brain axis has an impact on Parkinson's disease (PD)? Ageing Res Rev 2024; 94:102171. [PMID: 38141735 DOI: 10.1016/j.arr.2023.102171] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Parkinson's Disease (PD) is becoming a growing global concern by being the second most prevalent disease next to Alzheimer's Disease (AD). Henceforth new exploration is needed in search of new aspects towards the disease mechanism and origin. Evidence from recent studies has clearly stated the role of Gut Microbiota (GM) in the maintenance of the brain and as a root cause of various diseases and disorders including other neurological conditions. In the case of PD, with an unknown etiology, the GM is said to have a larger impact on the disease pathophysiology. Although GM and its metabolites are crucial for maintaining the normal physiology of the host, it is an undeniable fact that there is an influence of GM in the pathophysiology of PD. As such the Enteroendocrine Cells (EECs) in the epithelium of the intestine are one of the significant regulators of the gut-brain axis and act as a communication mediator between the gut and the brain. The communication is established via the molecules of neuroendocrine which are said to have a crucial part in neurological diseases such as AD, PD, and other psychiatry-related disorders. This review is focused on understanding the proper role of GM and EECs in PD. Here, we also focus on some of the metabolites and compounds that can interact with the PD genes causing various dysfunctions in the cell and facilitating the disease conditions using bioinformatical tools. Various mechanisms concerning EECs and PD, their identification, the latest studies, and available current therapies have also been discussed.
Collapse
Affiliation(s)
- Ajay Elangovan
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Bhawna Dahiya
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Laxmi Kirola
- Department of Biotechnology, School of Health Sciences and Technology (SoHST), UPES University, Dehradun, Uttarakhand 248007, India
| | - Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda 151401, Punjab, India; Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, Tamil Nadu, India
| | - Priyanka Jeeth
- Department of Computational Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sakshi Maharaj
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Nikki Kumari
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda 151005, Punjab, India
| | - Tanja Maria Michel
- Research Unit of Psychiatry, Dept. of Psychiatry Odense, Clinical Institute, University of Southern Denmark, J.B. Winslowsvej 20, Indg. 220B, Odense, Denmark
| | - K R S Sambasiva Rao
- Mangalayatan University - Jabalpur, Jabalpur - 481662, Madhya Pradesh, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Saraboji Kadhirvel
- Department of Computational Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796 004 Mizoram, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
22
|
Hemmati F, Valian N, Ahmadiani A, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Hosseini Shirazi SF. Insulin and TLR4 Inhibitor Improve Motor Impairments in a Rat Model of Parkinson's Disease. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e144200. [PMID: 39830652 PMCID: PMC11742580 DOI: 10.5812/ijpr-144200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 01/22/2025]
Abstract
Background Insulin resistance is an important pathological hallmark of Parkinson's disease (PD). Proinflammatory cytokines during neuroinflammation decrease insulin sensitivity by suppressing insulin signaling elements. Toll-like receptor 4 (TLR4), the main receptor involved in neuroinflammation, is also associated with the pathogenesis of PD. Objectives The present study evaluated the effect of insulin, an insulin receptor antagonist, and a TLR4 inhibitor on behavioral deficits and insulin resistance induced by 6-hydroxydopamine (6-OHDA). Methods Male Wistar rats were divided into nine groups: (1) sham (normal saline [NS] in the medial forebrain bundle [MFB]); (2) 6-OHDA (20 µg in the MFB); (3) 6-OHDA + NS; (4) 6-OHDA + dimethyl sulfoxide (DMSO); (5) 6-OHDA + insulin (2.5 IU/day, intracerebroventricular ([ICV]); (6) 6-OHDA + insulin (5 IU/day, intranasal [IN]); (7) 6-OHDA + insulin receptor antagonist (S961; 6.5 nM/kg, ICV); (8) 6-OHDA + TLR4 inhibitor (TAK242; 0.01 µg/rat, ICV); (9) 6-OHDA + insulin + TLR4 inhibitor. All treatments were administered for seven consecutive days. Motor performance was evaluated using apomorphine-induced rotation and cylinder tests. Gene expression and protein levels of α-synuclein, TLR4, insulin receptor substrate (IRS) 1, IRS2, and glycogen synthase kinase 3β (GSK3β) were measured by real-time PCR and western blotting, respectively, in the striatum. Results Insulin, alone and with TAK242, improved motor deficits induced by 6-OHDA. Administration of the insulin receptor antagonist had no effect on motor deficits. The increased expression of α-synuclein and TLR4 following 6-OHDA was attenuated by insulin and TAK242. GSK3β levels, both mRNA and protein, were significantly increased by 6-OHDA and attenuated with insulin and TAK242. Conclusions The findings suggest that 6-OHDA induces neurodegeneration via activation of TLR4 and GSK3β, indicating insulin resistance, and that insulin can improve these impairments. Moreover, TLR4 inhibition prevents insulin signaling dysfunction and improves behavioral and molecular impairments, highlighting the critical role of TLR4 in the development of insulin resistance in PD pathology.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Raymond Azman Ali
- Department of Medicine, University Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, University Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Seyed Farshad Hosseini Shirazi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Abubakar M, Nama L, Ansari MA, Ansari MM, Bhardwaj S, Daksh R, Syamala KLV, Jamadade MS, Chhabra V, Kumar D, Kumar N. GLP-1/GIP Agonist as an Intriguing and Ultimate Remedy for Combating Alzheimer's Disease through its Supporting DPP4 Inhibitors: A Review. Curr Top Med Chem 2024; 24:1635-1664. [PMID: 38803170 DOI: 10.2174/0115680266293416240515075450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease. AIM This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD. METHODS This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD. RESULTS The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions. CONCLUSION With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.
Collapse
Affiliation(s)
- Mohammad Abubakar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Arif Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Mazharuddin Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Shivani Bhardwaj
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Katta Leela Venkata Syamala
- Department of Regulatory and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| |
Collapse
|
24
|
Liang J, Liu B, Dong X, Wang Y, Cai W, Zhang N, Zhang H. Decoding the role of gut microbiota in Alzheimer's pathogenesis and envisioning future therapeutic avenues. Front Neurosci 2023; 17:1242254. [PMID: 37790586 PMCID: PMC10544353 DOI: 10.3389/fnins.2023.1242254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Alzheimer's disease (AD) emerges as a perturbing neurodegenerative malady, with a profound comprehension of its underlying pathogenic mechanisms continuing to evade our intellectual grasp. Within the intricate tapestry of human health and affliction, the enteric microbial consortium, ensconced within the milieu of the human gastrointestinal tract, assumes a role of cardinal significance. Recent epochs have borne witness to investigations that posit marked divergences in the composition of the gut microbiota between individuals grappling with AD and those favored by robust health. The composite vicissitudes in the configuration of the enteric microbial assembly are posited to choreograph a participatory role in the inception and progression of AD, facilitated by the intricate conduit acknowledged as the gut-brain axis. Notwithstanding, the precise nature of this interlaced relationship remains enshrouded within the recesses of obscurity, poised for an exhaustive revelation. This review embarks upon the endeavor to focalize meticulously upon the mechanistic sway exerted by the enteric microbiota upon AD, plunging profoundly into the execution of interventions that govern the milieu of enteric microorganisms. In doing so, it bestows relevance upon the therapeutic stratagems that form the bedrock of AD's management, all whilst casting a prospective gaze into the horizon of medical advancements.
Collapse
Affiliation(s)
- Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaohong Dong
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Yueyang Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Wenhui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Zhang
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang, China
| |
Collapse
|
25
|
Luthra NS, Christou DD, Clow A, Corcos DM. Targeting neuroendocrine abnormalities in Parkinson's disease with exercise. Front Neurosci 2023; 17:1228444. [PMID: 37746149 PMCID: PMC10514367 DOI: 10.3389/fnins.2023.1228444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent and complex age-related neurodegenerative condition for which there are no disease-modifying treatments currently available. The pathophysiological process underlying PD remains incompletely understood but increasing evidence points to multiple system dysfunction. Interestingly, the past decade has produced evidence that exercise not only reduces signs and symptoms of PD but is also potentially neuroprotective. Characterizing the mechanistic pathways that are triggered by exercise and lead to positive outcomes will improve understanding of how to counter disease progression and symptomatology. In this review, we highlight how exercise regulates the neuroendocrine system, whose primary role is to respond to stress, maintain homeostasis and improve resilience to aging. We focus on a group of hormones - cortisol, melatonin, insulin, klotho, and vitamin D - that have been shown to associate with various non-motor symptoms of PD, such as mood, cognition, and sleep/circadian rhythm disorder. These hormones may represent important biomarkers to track in clinical trials evaluating effects of exercise in PD with the aim of providing evidence that patients can exert some behavioral-induced control over their disease.
Collapse
Affiliation(s)
- Nijee S. Luthra
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Demetra D. Christou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Angela Clow
- Department of Psychology, School of Social Sciences, University of Westminster, London, United Kingdom
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, McCormick School of Engineering, Northwestern University, Chicago, IL, United States
| |
Collapse
|
26
|
Alves SS, Servilha-Menezes G, Rossi L, da Silva Junior RMP, Garcia-Cairasco N. Evidence of disturbed insulin signaling in animal models of Alzheimer's disease. Neurosci Biobehav Rev 2023; 152:105326. [PMID: 37479008 DOI: 10.1016/j.neubiorev.2023.105326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Since glucose reuptake by neurons is mostly independent of insulin, it has been an intriguing question whether insulin has or not any roles in the brain. Consequently, the identification of insulin receptors in the central nervous system has fueled investigations of insulin functions in the brain. It is also already known that insulin can influence glucose reuptake by neurons, mostly during activities that have the highest energy demand. The identification of high density of insulin receptors in the hippocampus also suggests that insulin may present important roles related to memory. In this context, studies have reported worse performance in cognitive tests among diabetic patients. In addition, alterations in the regulation of central insulin pathways have been observed in the brains of Alzheimer's disease (AD) patients. In fact, some authors have proposed AD as a third type of diabetes and recently, our group proposed insulin resistance as a common link between different AD hypotheses. Therefore, in the present narrative review, we intend to revise and gather the evidence of disturbed insulin signaling in experimental animal models of AD.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil
| | - Leticia Rossi
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil
| | - Rui Milton Patrício da Silva Junior
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil; Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Brazil; Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Brazil.
| |
Collapse
|
27
|
Raut S, Bhalerao A, Powers M, Gonzalez M, Mancuso S, Cucullo L. Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview. Cells 2023; 12:2019. [PMID: 37626828 PMCID: PMC10453773 DOI: 10.3390/cells12162019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The brain is a highly dynamic organ that requires a constant energy source to function normally. This energy is mostly supplied by glucose, a simple sugar that serves as the brain's principal fuel source. Glucose transport across the blood-brain barrier (BBB) is primarily controlled via sodium-independent facilitated glucose transport, such as by glucose transporter 1 (GLUT1) and 3 (GLUT3). However, other glucose transporters, including GLUT4 and the sodium-dependent transporters SGLT1 and SGLT6, have been reported in vitro and in vivo. When the BBB endothelial layer is crossed, neurons and astrocytes can absorb the glucose using their GLUT1 and GLUT3 transporters. Glucose then enters the glycolytic pathway and is metabolized into adenosine triphosphate (ATP), which supplies the energy to support cellular functions. The transport and metabolism of glucose in the brain are impacted by several medical conditions, which can cause neurological and neuropsychiatric symptoms. Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, traumatic brain injury (TBI), schizophrenia, etc., are a few of the most prevalent disorders, characterized by a decline in brain metabolism or hypometabolism early in the course of the disease. Indeed, AD is considered a metabolic disorder related to decreased brain glucose metabolism, involving brain insulin resistance and age-dependent mitochondrial dysfunction. Although the conventional view is that reduced cerebral metabolism is an effect of neuronal loss and consequent brain atrophy, a growing body of evidence points to the opposite, where hypometabolism is prodromal or at least precedes the onset of brain atrophy and the manifestation of clinical symptoms. The underlying processes responsible for these glucose transport and metabolic abnormalities are complicated and remain poorly understood. This review article provides a comprehensive overview of the current understanding of hypometabolism in AD and potential therapeutic targets.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Michael Powers
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA;
| | - Minelly Gonzalez
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Salvatore Mancuso
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| |
Collapse
|
28
|
Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med 2023; 92:101193. [PMID: 37331129 DOI: 10.1016/j.mam.2023.101193] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Glaucoma is a common, complex, multifactorial neurodegenerative disease characterized by progressive dysfunction and then loss of retinal ganglion cells, the output neurons of the retina. Glaucoma is the most common cause of irreversible blindness and affects ∼80 million people worldwide with many more undiagnosed. The major risk factors for glaucoma are genetics, age, and elevated intraocular pressure. Current strategies only target intraocular pressure management and do not directly target the neurodegenerative processes occurring at the level of the retinal ganglion cell. Despite strategies to manage intraocular pressure, as many as 40% of glaucoma patients progress to blindness in at least one eye during their lifetime. As such, neuroprotective strategies that target the retinal ganglion cell and these neurodegenerative processes directly are of great therapeutic need. This review will cover the recent advances from basic biology to on-going clinical trials for neuroprotection in glaucoma covering degenerative mechanisms, metabolism, insulin signaling, mTOR, axon transport, apoptosis, autophagy, and neuroinflammation. With an increased understanding of both the basic and clinical mechanisms of the disease, we are closer than ever to a neuroprotective strategy for glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Katharina Bell
- NHMRC Clinical Trials Centre, University of Sydney, Australia; Eye ACP Duke-NUS, Singapore
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
29
|
Nakaya Y, Kosukegawa S, Kobayashi S, Hirose K, Kitano K, Mayahara K, Takei H, Motoyoshi M, Kobayashi M. Insulin potentiates inhibitory synaptic currents between fast-spiking and pyramidal neurons in the rat insular cortex. Neuropharmacology 2023:109649. [PMID: 37393988 DOI: 10.1016/j.neuropharm.2023.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Insulin plays roles in brain functions such as neural development and plasticity and is reported to be involved in dementia and depression. However, little information is available on the insulin-mediated modulation of electrophysiological activities, especially in the cerebral cortex. This study examined how insulin modulates the neural activities of inhibitory neurons and inhibitory postsynaptic currents (IPSCs) in rat insular cortex (IC; either sex) by multiple whole-cell patch-clamp recordings. We demonstrated that insulin increased the repetitive spike firing rate with a decrease in the threshold potential without changing the resting membrane potentials and input resistance of fast-spiking GABAergic neurons (FSNs). Next, we found a dose-dependent enhancement of unitary IPSCs (uIPSCs) by insulin in the connections from FSNs to pyramidal neurons (PNs). The insulin-induced enhancement of uIPSCs accompanied decreases in the paired-pulse ratio, suggesting that insulin increases GABA release from presynaptic terminals. The finding of miniature IPSC recordings of the increased frequency without changing the amplitude supports this hypothesis. Insulin had little effect on uIPSCs under the coapplication of S961, an insulin receptor antagonist, or lavendustin A, an inhibitor of tyrosine kinase. The PI3-K inhibitor wortmannin or the PKB/Akt inhibitors, deguelin and Akt inhibitor VIII, blocked the insulin-induced enhancement of uIPSCs. Intracellular application of Akt inhibitor VIII to presynaptic FSNs also blocked insulin-induced enhancement of uIPSCs. In contrast, uIPSCs were enhanced by insulin in combination with the MAPK inhibitor PD98059. These results suggest that insulin facilitates the inhibition of PNs by increases in FSN firing frequency and IPSCs from FSNs to PNs. (250 words).
Collapse
Affiliation(s)
- Yuka Nakaya
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Satoshi Kosukegawa
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Satomi Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Biology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kensuke Hirose
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Pedodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kouhei Kitano
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kotoe Mayahara
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiroki Takei
- Department of Dentistry, Saitama Prefectural Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama-shi, 3330-8777, Japan
| | - Mitsuru Motoyoshi
- Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| |
Collapse
|
30
|
Wu S, Stogios N, Hahn M, Navagnanavel J, Emami Z, Chintoh A, Gerretsen P, Graff-Guerrero A, Rajji TK, Remington G, Agarwal SM. Outcomes and clinical implications of intranasal insulin on cognition in humans: A systematic review and meta-analysis. PLoS One 2023; 18:e0286887. [PMID: 37379265 DOI: 10.1371/journal.pone.0286887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Aberrant brain insulin signaling has been posited to lie at the crossroads of several metabolic and cognitive disorders. Intranasal insulin (INI) is a non-invasive approach that allows investigation and modulation of insulin signaling in the brain while limiting peripheral side effects. OBJECTIVES The objective of this systematic review and meta-analysis is to evaluate the effects of INI on cognition in diverse patient populations and healthy individuals. METHODS MEDLINE, EMBASE, PsycINFO, and Cochrane CENTRAL were systematically searched from 2000 to July 2021. Eligible studies were randomized controlled trials that studied the effects of INI on cognition. Two independent reviewers determined study eligibility and extracted relevant descriptive and outcome data. RESULTS Twenty-nine studies (pooled N = 1,726) in healthy individuals as well as those with Alzheimer's disease (AD)/mild cognitive impairment (MCI), mental health disorders, metabolic disorders, among others, were included in the quantitative meta-analysis. Patients with AD/MCI treated with INI were more likely to show an improvement in global cognition (SMD = 0.22, 95% CI: 0.05-0.38 p = <0.00001, N = 12 studies). Among studies with healthy individuals and other patient populations, no significant effects of INI were found for global cognition. CONCLUSIONS This review demonstrates that INI may be associated with pro-cognitive benefits for global cognition, specifically for individuals with AD/MCI. Further studies are required to better understand the neurobiological mechanisms and differences in etiology to dissect the intrinsic and extrinsic factors contributing to the treatment response of INI.
Collapse
Affiliation(s)
- Sally Wu
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | | | - Zahra Emami
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Araba Chintoh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Philip Gerretsen
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Tarek K Rajji
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Chandrashekar DV, Steinberg RA, Han D, Sumbria RK. Alcohol as a Modifiable Risk Factor for Alzheimer's Disease-Evidence from Experimental Studies. Int J Mol Sci 2023; 24:9492. [PMID: 37298443 PMCID: PMC10253673 DOI: 10.3390/ijms24119492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment and memory loss. Epidemiological evidence suggests that heavy alcohol consumption aggravates AD pathology, whereas low alcohol intake may be protective. However, these observations have been inconsistent, and because of methodological discrepancies, the findings remain controversial. Alcohol-feeding studies in AD mice support the notion that high alcohol intake promotes AD, while also hinting that low alcohol doses may be protective against AD. Chronic alcohol feeding to AD mice that delivers alcohol doses sufficient to cause liver injury largely promotes and accelerates AD pathology. The mechanisms by which alcohol can modulate cerebral AD pathology include Toll-like receptors, protein kinase-B (Akt)/mammalian target of rapamycin (mTOR) pathway, cyclic adenosine monophosphate (cAMP) response element-binding protein phosphorylation pathway, glycogen synthase kinase 3-β, cyclin-dependent kinase-5, insulin-like growth factor type-1 receptor, modulation of β-amyloid (Aβ) synthesis and clearance, microglial mediated, and brain endothelial alterations. Besides these brain-centric pathways, alcohol-mediated liver injury may significantly affect brain Aβ levels through alterations in the peripheral-to-central Aβ homeostasis. This article reviews published experimental studies (cell culture and AD rodent models) to summarize the scientific evidence and probable mechanisms (both cerebral and hepatic) by which alcohol promotes or protects against AD progression.
Collapse
Affiliation(s)
- Devaraj V. Chandrashekar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
| | - Ross A. Steinberg
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (R.A.S.); (D.H.)
| | - Derick Han
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (R.A.S.); (D.H.)
| | - Rachita K. Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
- Department of Neurology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
32
|
Zorina II, Avrova NF, Zakharova IO, Shpakov AO. Prospects for the Use of Intranasally Administered Insulin and Insulin-Like Growth Factor-1 in Cerebral Ischemia. BIOCHEMISTRY (MOSCOW) 2023; 88:374-391. [PMID: 37076284 DOI: 10.1134/s0006297923030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Current approaches to the treatment of stroke have significant limitations, and neuroprotective therapy is ineffective. In view of this, searching for effective neuroprotectors and developing new neuroprotective strategies remain a pressing topic in research of cerebral ischemia. Insulin and insulin-like growth factor-1 (IGF-1) play a key role in the brain functioning by regulating the growth, differentiation, and survival of neurons, neuronal plasticity, food intake, peripheral metabolism, and endocrine functions. Insulin and IGF-1 produce multiple effects in the brain, including neuroprotective action in cerebral ischemia and stroke. Experiments in animals and cell cultures have shown that under hypoxic conditions, insulin and IGF-1 improve energy metabolism in neurons and glial cells, promote blood microcirculation in the brain, restore nerve cell functions and neurotransmission, and produce the anti-inflammatory and antiapoptotic effects on brain cells. The intranasal route of insulin and IGF-1 administration is of particular interest in the clinical practice, since it allows controlled delivery of these hormones directly to the brain, bypassing the blood-brain barrier. Intranasally administered insulin alleviated cognitive impairments in elderly people with neurodegenerative and metabolic disorders; intranasally administered insulin and IGF-1 promoted survival of animals with ischemic stroke. The review discusses the published data and results of our own studies on the mechanisms of neuroprotective action of intranasally administered insulin and IGF-1 in cerebral ischemia, as well as the prospects of using these hormones for normalization of CNS functions and reduction of neurodegenerative changes in this pathology.
Collapse
Affiliation(s)
- Inna I Zorina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia.
| | - Natalia F Avrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| | - Irina O Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| | - Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| |
Collapse
|
33
|
Ezkurdia A, Ramírez MJ, Solas M. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: A Focus on Insulin Resistance. Int J Mol Sci 2023; 24:ijms24054354. [PMID: 36901787 PMCID: PMC10001958 DOI: 10.3390/ijms24054354] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the main type of dementia and is a disease with a profound socioeconomic burden due to the lack of effective treatment. In addition to genetics and environmental factors, AD is highly associated with metabolic syndrome, defined as the combination of hypertension, hyperlipidemia, obesity and type 2 diabetes mellitus (T2DM). Among these risk factors, the connection between AD and T2DM has been deeply studied. It has been suggested that the mechanism linking both conditions is insulin resistance. Insulin is an important hormone that regulates not only peripheral energy homeostasis but also brain functions, such as cognition. Insulin desensitization, therefore, could impact normal brain function increasing the risk of developing neurodegenerative disorders in later life. Paradoxically, it has been demonstrated that decreased neuronal insulin signalling can also have a protective role in aging and protein-aggregation-associated diseases, as is the case in AD. This controversy is fed by studies focused on neuronal insulin signalling. However, the role of insulin action on other brain cell types, such as astrocytes, is still unexplored. Therefore, it is worthwhile exploring the involvement of the astrocytic insulin receptor in cognition, as well as in the onset and/or development of AD.
Collapse
Affiliation(s)
- Amaia Ezkurdia
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María J. Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence:
| |
Collapse
|
34
|
Shpakov AO, Zorina II, Derkach KV. Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 2023; 24:3278. [PMID: 36834685 PMCID: PMC9962062 DOI: 10.3390/ijms24043278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
A decrease in the activity of the insulin signaling system of the brain, due to both central insulin resistance and insulin deficiency, leads to neurodegeneration and impaired regulation of appetite, metabolism, endocrine functions. This is due to the neuroprotective properties of brain insulin and its leading role in maintaining glucose homeostasis in the brain, as well as in the regulation of the brain signaling network responsible for the functioning of the nervous, endocrine, and other systems. One of the approaches to restore the activity of the insulin system of the brain is the use of intranasally administered insulin (INI). Currently, INI is being considered as a promising drug to treat Alzheimer's disease and mild cognitive impairment. The clinical application of INI is being developed for the treatment of other neurodegenerative diseases and improve cognitive abilities in stress, overwork, and depression. At the same time, much attention has recently been paid to the prospects of using INI for the treatment of cerebral ischemia, traumatic brain injuries, and postoperative delirium (after anesthesia), as well as diabetes mellitus and its complications, including dysfunctions in the gonadal and thyroid axes. This review is devoted to the prospects and current trends in the use of INI for the treatment of these diseases, which, although differing in etiology and pathogenesis, are characterized by impaired insulin signaling in the brain.
Collapse
Affiliation(s)
- Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
35
|
Cullinane PW, de Pablo Fernandez E, König A, Outeiro TF, Jaunmuktane Z, Warner TT. Type 2 Diabetes and Parkinson's Disease: A Focused Review of Current Concepts. Mov Disord 2023; 38:162-177. [PMID: 36567671 DOI: 10.1002/mds.29298] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
Highly reproducible epidemiological evidence shows that type 2 diabetes (T2D) increases the risk and rate of progression of Parkinson's disease (PD), and crucially, the repurposing of certain antidiabetic medications for the treatment of PD has shown early promise in clinical trials, suggesting that the effects of T2D on PD pathogenesis may be modifiable. The high prevalence of T2D means that a significant proportion of patients with PD may benefit from personalized antidiabetic treatment approaches that also confer neuroprotective benefits. Therefore, there is an immediate need to better understand the mechanistic relation between these conditions and the specific molecular pathways affected by T2D in the brain. Although there is considerable evidence that processes such as insulin signaling, mitochondrial function, autophagy, and inflammation are involved in the pathogenesis of both PD and T2D, the primary aim of this review is to highlight the evidence showing that T2D-associated dysregulation of these pathways occurs not only in the periphery but also in the brain and how this may facilitate neurodegeneration in PD. We also discuss the challenges involved in disentangling the complex relationship between T2D, insulin resistance, and PD, as well as important questions for further research. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patrick W Cullinane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eduardo de Pablo Fernandez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.,Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Queen Square Movement Disorders Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
36
|
Shypshyna M, Kolesnyk O, Fedulova S, Veselovsky N. Insulin modulates the paired-pulse plasticity at glutamatergic synapses of hippocampal neurons under hypoinsulinemia. Front Cell Neurosci 2023; 17:1132325. [PMID: 37025701 PMCID: PMC10072261 DOI: 10.3389/fncel.2023.1132325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Hypoinsulinemia is a pathological consequence of diabetes mellitus that can cause a number of complications of the central and peripheral nervous system. Dysfunction of signaling cascades of insulin receptors under insulin deficiency can contribute to the development of cognitive disorders associated with impaired synaptic plasticity properties. Earlier we have shown that hypoinsulinemia causes a shift of short-term plasticity in glutamatergic hippocampal synapses from facilitation to depression and apparently involves mechanisms of glutamate release probability reduction. Here we used the whole cell patch-clamp recording of evoked glutamatergic excitatory postsynaptic currents (eEPSCs) and the method of local extracellular electrical stimulation of a single presynaptic axon to investigate the effect of insulin (100 nM) on the paired-pulse plasticity at glutamatergic synapses of cultured hippocampal neurons under hypoinsulinemia. Our data indicate that under normoinsulinemia additional insulin enhances the paired-pulse facilitation (PPF) of eEPSCs in hippocampal neurons by stimulating the glutamate release in their synapses. Under hypoinsulinemia, insulin did not have a significant effect on the parameters of paired-pulse plasticity on neurons of PPF subgroup, which may indicate the development of insulin resistance, while the effect of insulin on PPD neurons indicates its ability to recover the form normoinsulinemia, including the increasing probability of plasticity to the control level in of glutamate release in their synapses.
Collapse
|
37
|
Dakic TB, Markelic MB, Ruzicic AA, Jevdjovic TV, Lakic IV, Djordjevic JD, Vujovic PZ. Hypothalamic insulin expression remains unaltered after short-term fasting in female rats. Endocrine 2022; 78:476-483. [PMID: 36301508 DOI: 10.1007/s12020-022-03235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/15/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Our previous study showed that 6-h fasting increased insulin expression in the hypothalamus of male rats. We, therefore, wanted to examine if this phenomenon occurs in female rats and whether it depended on the estrus cycle phase. METHODS Female rats in proestrus or diestrus were either exposed to 6-h fasting or had ad libitum access to food. The serum, cerebrospinal fluid, and hypothalamic insulin levels were determined using radioimmunoassay. The hypothalamic insulin mRNA expression was measured by RT-qPCR, while the hypothalamic insulin distribution was assessed immunohistochemically. RESULTS Albeit the short-term fasting lowered circulating insulin, both hypothalamic insulin mRNA expression and hypothalamic insulin content remained unaltered. As for the hypothalamic insulin distribution, strong insulin immunopositivity was noted primarily in ependymal cells lining the upper part of the third ventricle and some neurons mainly located within the periventricular nucleus. The pattern of insulin distribution was similar between the controls and the females exposed to fasting regardless of the estrous cycle phase. CONCLUSION The findings of this study indicate that the control of insulin expression in the hypothalamus differs from that in the pancreatic beta cells during short-term fasting. Furthermore, they also imply that the regulation of insulin expression in the female hypothalamus is different from males but independent of the estrus cycle phase.
Collapse
Affiliation(s)
- Tamara B Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia.
| | - Milica B Markelic
- Department of Cell and Tissue Biology, Institute for Zoology, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
| | - Aleksandra A Ruzicic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
| | - Tanja V Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
| | - Iva V Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
| | - Jelena D Djordjevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
| | - Predrag Z Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Djaja, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000, Belgrade, Serbia
| |
Collapse
|
38
|
Muneeb M, Mansou SM, Saleh S, Mohammed RA. Vitamin D and rosuvastatin alleviate type-II diabetes-induced cognitive dysfunction by modulating neuroinflammation and canonical/noncanonical Wnt/β-catenin signaling. PLoS One 2022; 17:e0277457. [PMID: 36374861 PMCID: PMC9662739 DOI: 10.1371/journal.pone.0277457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background Type-II diabetes mellitus (T2DM) is a major risk factor for cognitive impairment. Protecting the brain environment against inflammation, and neurodegeneration, as well as preservation of the BBB veracity through modulating the crosstalk between insulin/AKT/GSK-3β and Wnt/β-catenin signaling, might introduce novel therapeutic targets. Purpose This study aimed at exploring the possible neuroprotective potential of vitamin D3 (VitD) and/or rosuvastatin (RSV) in T2DM-induced cognitive deficits. Methods T2DM was induced by a high-fat sucrose diet and a single streptozotocin (STZ) dose. Diabetic rats were allocated into a diabetic control and three groups treated with RSV (15 mg/kg/day, PO), VitD (500 IU/kg/day, PO), or their combination. Results Administration of VitD and/or RSV mitigated T2DM-induced metabolic abnormalities and restored the balance between the anti-inflammatory, IL 27 and the proinflammatory, IL 23 levels in the hippocampus. In addition, they markedly activated both the canonical and noncanonical Wnt/β-catenin cassettes with stimulation of their downstream molecular targets. VitD and/or RSV upregulated insulin and α7 nicotinic acetylcholine (α7nACh) receptors gene expression, as well as blood-brain barrier integrity markers including Annexin A1, claudin 3, and VE-cadherin. Also, they obliterated hippocampal ApoE-4 content, Tau hyperphosphorylation, and Aβ deposition. These biochemical changes were reflected as improved behavioral performance in Morris water maze and novel object recognition tests and restored hippocampal histological profile. Conclusion The current findings have accentuated the neuroprotective potential of VitD and RSV and provide new incentives to expand their use in T2DM-induced cognitive and memory decline. This study also suggests a superior benefit of combining both treatments over either drug alone.
Collapse
Affiliation(s)
- Muhammad Muneeb
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Suzan M. Mansou
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- * E-mail: ,
| | - Samira Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Reham A. Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
39
|
Ferrari F, Moretti A, Villa RF. Incretin-based drugs as potential therapy for neurodegenerative diseases: current status and perspectives. Pharmacol Ther 2022; 239:108277. [DOI: 10.1016/j.pharmthera.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
40
|
Askari S, Javadpour P, Rashidi FS, Dargahi L, Kashfi K, Ghasemi R. Behavioral and Molecular Effects of Thapsigargin-Induced Brain ER- Stress: Encompassing Inflammation, MAPK, and Insulin Signaling Pathway. Life (Basel) 2022; 12:life12091374. [PMID: 36143409 PMCID: PMC9500646 DOI: 10.3390/life12091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulation of misfolded proteins, known as endoplasmic reticulum (ER) stress, is known to participate in Alzheimer’s disease (AD). AD is also correlated with impaired central insulin signaling. However, few studies have probed the relationship between memory, central ER stress, inflammation, hippocampal mitogen-activated protein kinase (MAPK) activity and insulin resistance. The present study aimed to investigate the causative role and underlying mechanisms of brain ER stress in memory impairment and develop a reliable animal model for ER-mediated memory loss. Thapsigargin (TG), a known ER stress activator, was centrally administered. The cognitive function of animals was evaluated by the Morris Water Maze (MWM). To verify the induction of central ER stress, we investigated the mRNA expression of UPR markers in the hippocampus. In addition, the activation of ER stress markers, including Bip, CHOP, and some related apoptosis and pro-inflammatory proteins, such as caspase-3, Bax, Bcl-2, TNF-α, MAPK, and insulin signaling markers, were assessed by Western-blots. The results demonstrated that TG impairs spatial cognition and hippocampal insulin signaling. Meanwhile, molecular results showed a concurrent increment of hippocampal UPR markers, apoptosis, P38 activity, and TNF-α. This study introduced TG-induced ER stress as a pharmacological model for memory impairment in rats and revealed some underlying mechanisms.
Collapse
Affiliation(s)
- Sahar Askari
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Correspondence: ; Tel.: +98-21-22439971
| |
Collapse
|
41
|
Chen HC, Wang CY, Chen HH, Liou HH. Cost-effectiveness of the add-on exenatide to conventional treatment in patients with Parkinson’s disease when considering the coexisting effects of diabetes mellitus. PLoS One 2022; 17:e0269006. [PMID: 35951654 PMCID: PMC9371359 DOI: 10.1371/journal.pone.0269006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Objective This study aims to investigate the cost-effectiveness of the add-on exenatide to conventional pharmacotherapy in patients with Parkinson’s disease (PD) when considering the coexistence of diabetes mellitus (DM). Methods We used the Keelung and Community-based Integrated Screening databases to understand the medical utilisation in the Hoehn and Yahr stages of patients with PD. A Markov model with 1-year cycle length and 50-year time horizon was used to assess the cost-effectiveness of add-on exenatide to conventional pharmacotherapy compared to conventional pharmacotherapy alone. All costs were adjusted to the value of the new Taiwanese dollar (NT$) as of the year 2020. One-way sensitivity and probability analyses were performed to test the robustness of the results. Results From a societal perspective, the add-on exenatide brought an average of 0.39 quality-adjusted life years (QALYs) gained, and a cost increment of NT$104,744 per person in a 50-year horizon compared to conventional pharmacotherapy. The incremental cost-effectiveness ratio (ICER) was NT$268,333 per QALY gained. As the ICER was less than the gross domestic product per capita (NT$839,558), the add-on exenatide was considered to be very cost-effective in the two models, according to the World Health Organization recommendation. Add-on exenatide had a 96.9% probability of being cost-effective in patients with PD, and a 100% probability of being cost-effective in patients with PD and DM. Conclusion Add-on exenatide is cost-effective in PD combined with DM. Considering that DM may be a risk factor for neurodegenerative diseases, exenatide provides both clinical benefits and cost-effectiveness when considering both PD and DM.
Collapse
Affiliation(s)
- Hsuan-Chih Chen
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Wang
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pharmacy, National Taiwan University Hospital Yun-Lin Branch, Douliu, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan
| | - Hsiu-Hsi Chen
- Institute of Epidemiology and Prevention Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Horng- Huei Liou
- Department of Neurology, National Taiwan University Hospital, Yunlin Branch, Yunlin, Taiwan
- Department of Neurology and Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
42
|
Zhou J, Zhang Z, Yang Y, Liao F, Zhou P, Wang Y, Zhang H, Jiang H, Alinejad T, Shan G, Wu S. Deletion of serine racemase reverses neuronal insulin signaling inhibition by amyloid-β oligomers. J Neurochem 2022; 163:8-25. [PMID: 35839294 DOI: 10.1111/jnc.15664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
Dysregulation of insulin signaling in the Alzheimer's (AD) brain has been extensively reported. Serine racemase(SR) modulates insulin secretion in pancreatic islets. Similarly, we wonder whether or not SR regulates insulin synthesis and secretion in neurons, thereby modulating insulin signaling in the AD brain. Srr-knockout (Srr-/- ) mice generated with the CRISPR/Cas9 technique were used. Using immunofluorescence and fluorescence in situ hybridization, the levels of insulin protein and insulin(ins2) mRNA significantly increased in the hippocampal but not in the hypothalamic sections of Srr-/- mice compared with WT mice. Using real-time quantitative PCR, ins2 mRNA from primary hippocampal neuronal cultures of Srr-/- mice significantly increased compared with the cultured neurons from WT mice. Notably, the secretion of proinsulin C-peptide increased in Srr-/- neurons relative to WT neurons. By examining the membrane fractional proteins with immunoblotting, Srr-/- neurons retained ATP-dependent potassium channel on plasmalemma and correspondingly contained higher levels of p-AMPK. Under treatment by Aβ42, the phosphorylation levels of insulin receptor substrate at serine 616,636 (p-IRS1ser616,636 ) were significantly lower whereas p-AKT308 and p-AKT473 were higher in Srr-/- neurons, compared with WT neurons, respectively. The phosphorylated form of c-Jun N-terminal kinase decreased in the cultured Srr-/- neurons relative to the WT neurons upon Aβ42 treatment. In contrast, the phosphorylated protein kinase R remained at the same levels. Further, reactive oxygen species reduced in the cultured Srr-/- neurons under Aβ42 treatment relative to the WT neurons. Altogether, our study indicated that Srr deletion promoted insulin synthesis and secretion of proinsulin C-peptide, thereby reversing insulin resistance by Aβ42. This study suggests that targeting the neuronal SR may be utilized to enhance insulin signaling which is inhibited at the early stage of the AD brain.
Collapse
Affiliation(s)
- Jing Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Zhiwen Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Yuanhong Yang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Fei Liao
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Piansi Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Yan Wang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China.,College of Life and Environmental Sciences, Wenzhou University, Zhejiang, People's Republic of China
| | - Haiyan Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Zhejiang, China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| |
Collapse
|
43
|
Insulin and Its Key Role for Mitochondrial Function/Dysfunction and Quality Control: A Shared Link between Dysmetabolism and Neurodegeneration. BIOLOGY 2022; 11:biology11060943. [PMID: 35741464 PMCID: PMC9220302 DOI: 10.3390/biology11060943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
Insulin was discovered and isolated from the beta cells of pancreatic islets of dogs and is associated with the regulation of peripheral glucose homeostasis. Insulin produced in the brain is related to synaptic plasticity and memory. Defective insulin signaling plays a role in brain dysfunction, such as neurodegenerative disease. Growing evidence suggests a link between metabolic disorders, such as diabetes and obesity, and neurodegenerative diseases, especially Alzheimer's disease (AD). This association is due to a common state of insulin resistance (IR) and mitochondrial dysfunction. This review takes a journey into the past to summarize what was known about the physiological and pathological role of insulin in peripheral tissues and the brain. Then, it will land in the present to analyze the insulin role on mitochondrial health and the effects on insulin resistance and neurodegenerative diseases that are IR-dependent. Specifically, we will focus our attention on the quality control of mitochondria (MQC), such as mitochondrial dynamics, mitochondrial biogenesis, and selective autophagy (mitophagy), in healthy and altered cases. Finally, this review will be projected toward the future by examining the most promising treatments that target the mitochondria to cure neurodegenerative diseases associated with metabolic disorders.
Collapse
|
44
|
Luo A, Xie Z, Wang Y, Wang X, Li S, Yan J, Zhan G, Zhou Z, Zhao Y, Li S. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies. Neurosci Biobehav Rev 2022; 137:104642. [PMID: 35367221 DOI: 10.1016/j.neubiorev.2022.104642] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes (T2D) and its target organ injuries cause distressing impacts on personal health and put an enormous burden on the healthcare system, and increasing attention has been paid to T2D-associated cognitive dysfunction (TDACD). TDACD is characterized by cognitive dysfunction, delayed executive ability, and impeded information-processing speed. Brain imaging data suggest that extensive brain regions are affected in patients with T2D. Based on current findings, a wide spectrum of non-specific neurodegenerative mechanisms that partially overlap with the mechanisms of neurodegenerative diseases is hypothesized to be associated with TDACD. However, it remains unclear whether TDACD is a consequence of T2D or a complication that co-occurs with T2D. Theoretically, anti-diabetes methods are promising neuromodulatory approaches to reduce brain injury in patients with T2D. In this review, we summarize potential mechanisms underlying TDACD and promising neurotropic effects of anti-diabetes methods and some neuroprotective natural compounds. Constructing screening or diagnostic tools and developing targeted treatment and preventive strategies would be expected to reduce the burden of TDACD.
Collapse
Affiliation(s)
- Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
45
|
Tadevosyan NE, Khachunts AS, Gohargani M, Sahakyan AA, Tumanyan AA. Voluntary Attention and Quality of Life in Patients With Type 1 and Type 2 Diabetes Mellitus: Differences in Changes Depending on Disease Type and Duration. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Yang JJ. Brain insulin resistance and the therapeutic value of insulin and insulin-sensitizing drugs in Alzheimer's disease neuropathology. Acta Neurol Belg 2022; 122:1135-1142. [PMID: 35482277 DOI: 10.1007/s13760-022-01907-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
The incidence of Alzheimer's disease (AD) is significantly higher in people with diabetes. Insulin and insulin receptor (IR) signaling intermediates are expressed in the brain. Insulin exerts multiple function in the brain. The role of compromised IR signaling in AD pathogenesis and the therapeutic value of insulin attract broad attention. This review summarizes the collective insulin action in the brain related to key factors of AD pathogenesis, updates the key features of insulin resistance in the AD brain and assesses the therapeutic potential of insulin and insulin-sensitizing drugs. Insulin stimulates neural growth and survival, suppresses amyloidogenic processing of the amyloid precursor protein (AβPP) and inhibits the Tau phosphorylation kinase, glycogen synthase kinase 3β. Central nervous IR signaling regulates systemic metabolism and increases glucose availability to neurons. The expression of IR and its downstream effectors is reduced in AD brain tissues. Insulin and insulin-sensitizing drugs can improve cognitive function in AD patients and AD animal models. Systemic insulin delivery is less effective than intranasal insulin treatment. The penetrance of insulin-sensitizing drugs to the blood brain barrier is problematic and new brain-prone drugs need be developed. Insulin resistance manifested by the degradation and the altered phosphorylation of IR intermediates precedes overt AD syndrome. Type 3 diabetes as a pure form of brain insulin resistance without systemic insulin resistance is proposed as a causal factor in AD. Further research is needed for the identification of critical factors leading to impaired IR signaling and the development of new molecules to stimulate brain IR signaling.
Collapse
Affiliation(s)
- James J Yang
- Marriotts Ridge High School, 12100 Woodford Dr, Marriottsville, MD, 21104, USA.
- , 3060 Seneca Chief Trail, Ellicott City, MD, 21042, USA.
| |
Collapse
|
47
|
Mietelska-Porowska A, Domańska J, Want A, Więckowska-Gacek A, Chutorański D, Koperski M, Wojda U. Induction of Brain Insulin Resistance and Alzheimer's Molecular Changes by Western Diet. Int J Mol Sci 2022; 23:ijms23094744. [PMID: 35563135 PMCID: PMC9102094 DOI: 10.3390/ijms23094744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The term Western diet (WD) describes the consumption of large amounts of highly processed foods, rich in simple sugars and saturated fats. Long-term WD feeding leads to insulin resistance, postulated as a risk factor for Alzheimer’s disease (AD). AD is the main cause of progressive dementia characterized by the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles consisting of the hyperphosphorylated tau (p-Tau) protein in the brain, starting from the entorhinal cortex and the hippocampus. In this study, we report that WD-derived impairment in insulin signaling induces tau and Aβ brain pathology in wild-type C57BL/6 mice, and that the entorhinal cortex is more sensitive than the hippocampus to the impairment of brain insulin signaling. In the brain areas developing WD-induced insulin resistance, we observed changes in p-Tau(Thr231) localization in neuronal subcellular compartments, indicating progressive tauopathy, and a decrease in amyloid precursor protein levels correlating with the appearance of Aβ peptides. These results suggest that WD promotes the development of AD and may be considered not only a risk factor, but also a modifiable trigger of AD.
Collapse
|
48
|
Bazrgar M, Khodabakhsh P, Dargahi L, Mohagheghi F, Ahmadiani A. MicroRNA modulation is a potential molecular mechanism for neuroprotective effects of intranasal insulin administration in amyloid βeta oligomer induced Alzheimer's like rat model. Exp Gerontol 2022; 164:111812. [PMID: 35476966 DOI: 10.1016/j.exger.2022.111812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Substantial evidence indicates that imbalance in the expression of miR-132-3p, miR-181b-5p, miR-125b-5p, miR-26a-5p, miR-124-3p, miR-146a-5p, miR-29a-3p, and miR-30a-5p in the AD brain are associated with amyloid-beta (Aβ) aggregation, tau pathology, neuroinflammation, and synaptic dysfunction, the major pathological hallmarks of Alzheimer's disease)AD(. Several studies have reported that intranasal insulin administration ameliorates memory in AD patients and animal models. However, the underlying molecular mechanisms are not yet completely elucidated. Therefore, the aim of this study was to determine whether insulin is involved in regulating the expression of AD-related microRNAs. Pursuing this objective, we first investigated the therapeutic effect of intranasal insulin on Aβ oligomer (AβO)-induced memory impairment in male rats using the Morris water maze task. Then, molecular and histological changes in response to AβO and/or insulin time course were assessed in the extracted hippocampi on days 1, 14, and 21 of the study using congo red staining, western blot and quantitative real-time PCR analyses. We observed memory impairment, Aβ aggregation, tau hyper-phosphorylation, neuroinflammation, insulin signaling dys-regulation, and down-regulation of miR-26a, miR-124, miR-29a, miR-181b, miR-125b, miR-132, and miR-146a in the hippocampus of AβO-exposed rats 21 days after AβO injection. Intranasal insulin treatment ameliorated memory impairment and concomitantly increased miR-132, miR-181b, and miR-125b expression, attenuated tau phosphorylation levels, Aβ aggregation, and neuroinflammation, and regulated the insulin signaling as well. In conclusion, our study suggest that the neuroprotective effects of insulin on memory observed in AD-like rats could be partially due to the restoration of miR-132, miR-181b, and miR-125b expression in the brain.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Fatemeh Mohagheghi
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
49
|
Diabetic patients treated with metformin during early stages of Alzheimer's disease show a better integral performance: data from ADNI study. GeroScience 2022; 44:1791-1805. [PMID: 35445359 DOI: 10.1007/s11357-022-00568-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/10/2022] [Indexed: 11/04/2022] Open
Abstract
We evaluated the effect of the antidiabetic drug metformin on patients enrolled in the ADNI study considering patients with mild cognitive impairment (MCI) due to Alzheimer's disease (AD). Employing data from this observational study, we performed a principal component analysis focusing on the cognitive sphere by evaluating data from neuropsychological tests included in a modified version of the Alzheimer's Disease Cooperative Study-Preclinical Alzheimer Cognitive Composite (ADCS-PACC). Second, we included the levels of amyloid-β, tau, and phosphorylated tau in CSF. We found that MCI metformin-treated patients were globally characterized as subjects with a better cognitive performance and CSF biomarkers profile than the mean population of MCI patients. On the other hand, control subjects and type 2 diabetes patients (T2D) were paired by age, gender, ApoE allele, and years of education, defining three groups: MCI, MCI + T2D, and MCI + T2D + metformin. We evaluated the effect of T2D and metformin treatment employing the PACC score and composites defined from standardized ADNI variables to evaluate the memory and learning function. We found that MCI + T2D patients had a worse cognitive performance than MCI patients, but this deleterious effect was not observed in MCI + T2D + metformin patients. These cognitive variations were associated with changes in cortical thickness and hippocampal volume. Finally, no differences were found in metabolic plasmatic parameters (glycemia, cholesterol, triglycerides). Our study-employing different strategies for data analysis from the global study ADNI-shows a beneficial effect of metformin treatment on cognitive performance, CSF biomarkers profile, and neuroanatomical measures in MCI due to AD patients.
Collapse
|
50
|
Sagehashi N, Obara Y, Maruyama O, Nakagawa T, Hosoi T, Ishii K. Insulin enhances gene expression of Midnolin, a novel genetic risk factor for Parkinson's disease, via ERK, PI3-kinase and multiple transcription factors in SH-SY5Y cells. J Pharmacol Exp Ther 2022; 381:68-78. [PMID: 35241633 DOI: 10.1124/jpet.121.001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Although many monogenic variants have been identified that cause familial PD, most cases are sporadic and the mechanisms of sporadic PD onset remain unclear. We previously identified Midnolin (MIDN) as a novel genetic risk factor for PD in Japanese population. MIDN copy number loss was strongly associated with sporadic PD, which was replicated in British population. Furthermore, suppression of MIDN expression in rat PC12 cells inhibits neurite outgrowth and expression of Parkin ubiquitin ligase. However, the detailed molecular mechanisms of MIDN expression are unknown. We, therefore, investigated the molecular mechanism of MIDN expression in human neuroblastoma SH-SY5Y cells. We found that MIDN expression was promoted by insulin via extracellular-signal regulated kinase (ERK)1/2 and PI3-kinase-dependent pathways. In addition, MIDN promoter activity was enhanced by mutations at transcription factor AP-2 consensus sequences and reduced by mutations at cAMP response element-binding protein (CREB) and activator protein 1 (AP-1) consensus sequences. The dominant-negative CREB mutant did not block MIDN promoter activity, but both the pharmacological inhibitor and decoy oligodeoxynucleotide for AP-1 significantly blocked its activity. Additionally, DNA binding of c-FOS and c-JUN to the AP-1 consensus sequence in the MIDN promoter was enhanced by insulin as determined by chromatin immunoprecipitation, which suggested that AP-1 positively regulated MIDN expression. Taken together, this study reveals molecular mechanisms of MIDN gene expression induced by insulin in neuronal cells, and drugs which promote MIDN expression may have potential to be a novel medicine for PD. Significance Statement We demonstrated that insulin promotes MIDN expression via ERK1/2 and PI3-kinase pathways. Furthermore, we identified the important region of the MIDN promoter and showed that transcription factors, including AP-1, positively regulate MIDN expression, whereas TFAP2 negatively regulates basal and insulin-induced MIDN expression. We believe that our observations are important and that they contribute to the development of novel drugs to treat Parkinson's disease.
Collapse
|